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While quantum multifractality has been widely studied in the physics literature and is by now well
understood from the point of view of physics, there is little work on this subject in the mathemat-
ical literature. I will report on the proof of multifractal scaling laws for arithmetic S̆eba billiards. I
will explain the mathematical approach to defining the Rényi entropy associated with a sequence of
eigenfunctions and sketch how arithmetic methods permit us to obtain a precise asymptotic in the
semiclassical regime and how this allows us to compute the fractal exponents explicitly. Moreover, I
will discuss how the symmetry relation for the fractal exponent is related to the functional equation of
certain zeta functions.
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1. Introduction

Many dynamical systems are in a state of transi-
tion between two regimes. In models of the brain,
such as neural networks, the firing patterns of neu-
rons may undergo a transition from isolated firing to
avalanches of firing neurons. In the quantum physics
of disordered electronic systems, the system may be
in an insulating or a conducting phase. The former
phase corresponds to electronic states, which are
localized (no transport), whereas the latter phase
corresponds to extended states (diffusive dynam-
ics). The study of phase transitions, and in par-
ticular the critical states at the transition between
these different regimes, is central to understand-
ing important phenomena such as the functioning
of our brain or the properties of semi-conducting
materials.

One of the key features of systems in a criti-
cal state is that they often display a self-similarity
in a certain scaling regime, which is so complex
that it cannot be captured by a single fractal
exponent but only by a continuous spectrum of
fractal exponents. This phenomenon is known as
multifractality.

Multifractality in quantum systems has been
studied in the physics literature since the 1980s and
has become an extremely active field in theoretical
and experimental physics [1–8]. However, the abun-
dance of results in the physics literature is in stark
contrast with a glaring absence of rigorous math-
ematical results. One of the key difficulties in ob-
taining a mathematical proof is to formulate the
problem in a concise mathematical way and then
develop the mathematical methods which permit its
resolution.

In joint work with Keating, we recently proved
the existence of multifractal eigenfunctions for
arithmetic S̆eba billiards [9] as well as quantum
star graphs [10]. The key idea which permitted this
advance was an approach to associate a quantity,
known as Rényi’s entropy — in some sense, a gener-
alization of Shannon’s entropy — with each eigen-
function. We were able to obtain asymptotic esti-
mates of the Rényi entropy along a typical sequence
of eigenfunctions. This permitted the derivation of
explicit formulae for the fractal exponents and led
to the derivation of a multifractal scaling law for
this system.

Multifractal self-similarity typically emerges at
the transition between two physical regimes. Ex-
amples of such intermediate quantum systems are
disordered systems at the Anderson or quantum
Hall transitions from a localized to a delocalized
phase [1, 2]. In the field of quantum chaos, pseudo-
integrable systems [11] are intermediate between in-
tegrability and chaos in the sense that their dy-
namics in phase space is not constrained to tori
but rather to handled spheres (e.g., rational polyg-
onal billiards). One often includes in this class
toy models of pseudointegrable dynamics such as
parabolic automorphisms of the torus [12], quantum
star graphs [13–16], and S̆eba billiards (rectangular
billiards with a Dirac delta potential) [17].

The morphology of eigenfunctions with multifrac-
tal self-similar structures is far more complex than
being purely localized or delocalized. Numerical and
experimental studies of a large class of quantum
systems have resulted in numerous conjectures in
the physics literature [4, 6–8], such as predictions
of a symmetry relation for the fractal exponents Dq

around the critical value q = 1/4.
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2. The gap between localization
and delocalization

Much of the mathematical literature on quantum
chaos over the past 40 years has focused on the clas-
sification of limit measures which arise in the high-
frequency limit from eigenfunctions of quantized
chaotic systems. One of the key results of the field
is the quantum ergodicity theorem, which states
that on a Riemannian manifold without bound-
ary, whose geodesic flow is ergodic with respect
to the Liouville measure, a typical sequence of
eigenfunctions gives rise to Liouville measure as
the only semiclassical defect measure along this
sequence.

Quantum ergodicity (QE) was first proved in the
1980s by Zelditch and Colin de Verdière [18, 19],
who completed the earlier work of Snirelman [20].
QE was later generalized to manifolds with
boundary by Gérard–Leichtnam [21] and Zelditch–
Zworski [22]. The quantum unique ergodicity
(QUE) conjecture put forward by Rudnick and
Sarnak in 1994 [23] asserts that the only such
measure should be the Liouville measure. Linden-
strauss [24] proved this conjecture in 2006 for arith-
metic hyperbolic surfaces and was awarded the
Fields Medal for his work. Moreover, Ananthara-
man [25] ruled out localization on points or geodesic
segments for Anosov manifolds. De Bièvre–Faure–
Nonnenmacher [26] demonstrated the existence of
partially localized limit measures for the eigenstates
of quantized hyperbolic automorphisms of tori with
minimal periods.

While rigorous mathematical work has largely
focused on the proof of localization and delocal-
ization results for the probability densities which
arise from quantum eigenfunctions (Q(U)E, scar-
ring, Anderson localization), the key feature of in-
termediate quantum systems is the multifractal self-
similarity of their eigenfunctions. This feature to
this day remains poorly understood from a mathe-
matical point of view.

3. Multifractality for quantum billiards

Consider the Dirichlet problem for the positive
Laplacian −∆ = −∂2x − ∂2y on a compact domain
D ⊂ R2 with a piece-wise smooth boundary. We
have discrete spectrum accumulating at infinity as-
sociated with eigenfunctions ψj

(∆+ λj)ψj = 0, ψj |∂D = 0, (1)

where 0 = λ0 < λ1 ≤ · · · ≤ λj ≤ · · · → +∞.
Our goal is to prove a multifractal scaling law

for a subsequence of eigenfunctions {λjk}∞k=0, as
λjk → +∞. The general idea is to embed the do-
main in a rectangle and expand with respect to an
eigenbasis of complex exponentials. The key point
is that the scaling law should be independent of ro-
tations and scaling of the rectangle in which the do-
main is embedded. The scaling parameter will then

Fig. 1. The measure µλ is concentrated on lattice
points, which lie inside a thin annulus of central
radius

√
λ. The width of this annulus grows with λ

on a logarithmic scale. The number of lattice points
inside the annulus is subject to subtle fluctuations.

arise from the number of O(1) contributions in this
expansion, as the eigenvalue tends to infinity.

We will illustrate this in detail using the case of
toral Schrödinger operators. Let Td = 2πRd/Zd and
V ∈ C0(Td). We consider L2-normalized solutions
of the stationary Schrödinger equation on Td,

(−∆+ V )ψλ = λψλ, ||ψλ||L2(Td) = 1.

(2)
We can expand the eigenfunctions into Fourier se-
ries

ψλ(x) =
1

2π

∑
ξ∈Zd

ψ̂λ(ξ)e
iξx. (3)

By Parseval’s identity, we obtain a discrete proba-
bility measure on Zd, namely µλ(ξ) := |ψ̂λ(ξ)|2.

For q > 1, we define the moment sum

Mq(µλ) =
∑
ξ∈Zd

µλ(ξ)
q. (4)

A fractal scaling law, in the semiclassical limit
λ→∞, is a power law

Mq(µλ) ∼ N
(1−q)Dq

λ , (5)
where Nλ denotes the number of O(1)-contributions
in (4), as λ→∞, and Dq denotes the fractal expo-
nent.

We note that, in the case of the torus, the mass of
the probability measure µλ is concentrated on lat-
tice points which lie inside a thin annulus of central
radius

√
λ and whose width depends on the spectral

parameter λ (see Fig. 1). In the semiclassical limit,
as λ → ∞, the number of O(1)-contributions will
grow slowly (in fact on a logarithmic scale) with
λ. However, this number fluctuates a lot, as the
number of lattice points in thin annuli is subject
to strong fluctuations (this is due to the scale of
the width being of much lower order than the error
term in the Gauss circle law). In order to compute
Nλ, as a function of λ, one must perform a spectral
average. This is the first challenge, from a mathe-
matical point of view, to be able to prove a fractal
scaling law. As we will see below, for particularly
simple choices of potential, where the measure µλ
takes a simple and explicit form, it is possible to
perform this calculation. For generic potentials, it
is expected to be a much more challenging task.
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In order to compute the fractal exponent as-
sociated with a sequence of eigenfunctions, we
introduce the Rényi entropy of the measure µλ,
i.e.,

Hq(µλ) =
1

1−q
log
(
Mq(µλ)

)
, q > 1. (6)

The Rényi entropy may be thought of as a gener-
alization of the Shannon entropy, which is familiar
from information theory, in the sense that the
latter is recovered in the limit as q → 1

lim
q→1

Hq(µλ) = −
[
d

dq
log
(
Mq(µλ)

)]
q=1

=

−
∑
ξ∈Zd

µλ(ξ) log
(
µλ(ξ)

)
. (7)

Provided one can obtain an asymptotic for the
Rényi entropy in the limit, λ → ∞, possibly by
restricting oneself to a subsequence of eigenval-
ues, and tackle the problem of determining the
scaling parameter (by averaging out the fluctu-
ations mentioned above), then one might hope
to be able to compute the fractal exponent Dq

for q > 1.
For a generic choice of the potential V , this prob-

lem can be very hard. To give an idea of the chal-
lenges involved: if one picks a potential model of
a disordered system in a scaling regime that corre-
sponds to the thermodynamical limit (e.g., taking a
large torus and scaling back to the standard torus),
the occurrence of multifractal scaling appears to be
related to the onset of a phase transition between
localized and delocalized regimes (in d ≥ 3).

For a simple choice of potential, however, which
allows for explicit expressions of the eigenfunctions
and, thus, the measure µλ, it is possible to overcome
these challenges.

4. Multifractality for an arithmetic
S̆eba billiard

In a 1990 paper [17], Petr S̆eba introduced rect-
angular billiards with a Dirac delta potential placed
in the interior as a toy model for more compli-
cated pseudo-integrable billiards, whose dynamics is
in some sense intermediate between integrable and
chaotic dynamics. In this section, we will consider
a slightly modified version of this billiard, namely
a square torus with a delta potential. We will refer
to this as an arithmetic S̆eba billiard because the
Laplace spectrum is of an arithmetic nature. It is
given, up to a factor, by integers representable as a
sum of two squares:

σ(−∆T2) =
{
n = x2+y2 | (x, y) ∈ Z2

}
. (8)

We note that the Laplace eigenvalues have multi-
plicities, which are given by the arithmetic function

r2(n) = #
{
(x, y) ∈ Z2 | n = x2+y2

}
, (9)

which counts the number of lattice points on the
circle of radius

√
n.

Employing self-adjoint extension theory, one can
show that the spectrum of the S̆eba billiard consists
of two types of eigenvalues. There are old Laplace
eigenvalues, with multiplicity reduced by 1, which
correspond to co-dimension 1 subspaces of eigen-
functions, which vanish at the position of the po-
tential. There are also new eigenvalues, with multi-
plicity 1, corresponding to new eigenfunctions which
feel the potential. These new eigenvalues interlace
with the Laplace eigenvalues.

Moreover, self-adjoint extension theory yields ex-
plicit formulae for these new eigenfunctions, which
in turn give rise to an explicit expression for the
Fourier coefficients and, hence, the measure µλ

µλ(ξ) =

(
|ξ|2−λ

)−2∑
ξ′∈Z2

(
|ξ′|2−λ

)−2 . (10)

Moreover, we note that λ /∈ σ(−∆), because of the
interlacing property of the new eigenvalues.

The moment sums associated with the measure
µλ, for a new eigenvalue λ, are of the form

Mq(µλ) =
ζλ(2q)

ζλ(2)q
, (11)

where we introduce the shifted zeta function

ζλ(s) =
∑
n≥0

r2(n)

|n− λ|s
, <(s) > 1. (12)

4.1. Weak coupling: a monofractal regime

It is instructive to look at the physically trivial
case of weak coupling (fixed self-adjoint extension).
In this regime, λ is typically close to a neighbouring
Laplace eigenvalue m (see [27]). Let us denote by
∆j the distance between a new eigenvalue and the
nearest Laplace eigenvalue.

For a given x � 1, we define the mean distance
up to threshold x as

〈∆j〉x =
1

#{λk ≤ x}
∑
λk≤x

∆k. (13)

In the case of the square torus, we have 〈∆〉x =
O((log(x))−1/2) (which is a special case of a more
general estimate derived in [27]), where we note
that in this case, the average spacing of the Laplace
eigenvalues is of order

√
log(x) due to the multi-

plicities in the Laplace spectrum.
Thus, only one term (or one circle in the lattice

with radius
√
m) contributes. The sum scales as fol-

lows along the subsequence of typical eigenvalues

Mq(µλ) =
ζλ(2q)

ζλ(2)q
∼

r2(m)
∣∣m−λ∣∣−2q

(r2(m)
∣∣m−λ|−2)q = r2(m)1−q.

(14)
The number of terms that contribute is simply

the number of lattice points on the circle |ξ|2 = m.
The Rényi entropy has asymptotics

Hq(µλ) ∼
1

1−q
log
(
r2(m)1−q

)
= log

(
r2(m)

)
.

(15)
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It can be shown that for a full-density subse-
quence of Laplace eigenvalues, we have for any m
(m→ +∞) in this subsequence

r2(m) =
[
log(n)

] 1
2 log(2)+o(1)

. (16)

Hence,

Nλ =
[
log(m)

]log(2)/2
, (17)

which is known as the normal order of r2.
We note that the fluctuations of the arithmetic

function r2(n) are very subtle. It is a classical the-
orem of Landau from 1907 that the number of in-
tegers less or equal than x grows like cx/

√
log(x),

which implies that on average the multiplicities are
of order

√
log(x). The smaller exponent 1

2 log(2)
arises along a typical (as in full density) subse-
quence, because there is a very sparse subsequence,
where r2(n) grows much faster (of order no(1) for
some slowly decaying exponent function). Moreover,
there are also sparse subsequences where r2 remains
bounded.

From the Rényi entropy, one can now readily
obtain the fractal exponent

Dq = lim
λ→∞

Hq(µλ)

log
(
Nλ
) = 1. (18)

In particular, we note that the fractal exponent
does not vary with q, because, due to the weakness
of coupling strength, only the nearest circle con-
tributes.

4.2. Strong coupling: a multifractal regime

The physically interesting regime requires a
renormalization of the extension parameter in
the semiclassical limit. This allows us to con-
sider stronger coupling strength. We can mea-
sure the strength of the perturbation by com-
puting the mean distance between old and new
eigenvalues. For a suitable renormalization, one
obtains
〈∆j〉 =

[
log(x)

]α+o(1)
, α ∈

(
− 1

2 ,
1
2

]
, (19)

where the exponent α is a measure of the strength
of the perturbation.

Because in such regimes the new eigenvalues
lie farther away from the neighbouring Laplace
eigenvalues (on the scale of the mean spac-
ing of the eigenvalues), many more circles con-
tribute. In fact, all lattice points in a thin an-
nulus of central radius

√
λ must be taken into

account.
We have the following theorem, proven jointly

with Keating in [9], which computes the fractal ex-
ponents associated with a full density subsequence
of new eigenvalues in a strong coupling regime. For a
range of exponents q, which depends on the coupling
strength α associated with the subsequence, we de-
rive an explicit formula for the fractal exponent,
which shows how it varies with q, thereby proving
multifractality.

Theorem 1. Let Λ be a sequence of new eigen-
values in a strong coupling regime such that
α(Λ) ∈ ( 14 ,

1
2 ). There exists a full-density sub-

sequence Λ′ ⊂ Λ such that for any q in the
range

1− log(2)

2−4α
< q ≤ 1

2−4α
(20)

we have the following formula for the fractal expo-
nents associated with the sequence Λ′

Dq(Λ
′) =

1

2α

(
1− 1

2q

)
log(2). (21)

4.3. The ground state regime

Instead of studying a high-frequency regime,
where λ → ∞, one might as well consider a low-
frequency regime, where λ → 0. In this regime,
there is no relationship expected between the in-
termediate type of dynamics and the occurrence
of multifractality. Rather, multifractality in such
regimes is expected to occur for a much wider class
of systems.

However, in the case of S̆eba billiards, there is
a very interesting link with Epstein’s zeta function
associated with quadratic forms. This link occurs
for general tori, not just arithmetic ones. We intro-
duce the following modified version of the shifted
zeta function above

ζ∗λ(s) =
∑
n∈N

rQ(n)

|n− λ|s
, <(s) > 1, (22)

where N denotes the Laplace spectrum on a gen-
eral unimodular rectangular tori, given by the set
of values taken by the quadratic form Q(x, y) =
a2x2 + a−2y2; (x, y)2, and a > 0. Moreover, rQ de-
notes the representation number of Q.

We introduce the modified moment sums
M∗q (λ) = ζ∗λ(2q) for q > 1. Note that we
need to remove the first term, as this blows
up in the limit λ → 0. We are, thus, inter-
ested in the fluctuations around this blow-up term,
which motivates the study of the modified moment
sums.

For q > 1 we define the fractal exponents

D∗q =
d∗q − qd∗1
q−1

,

d∗q = lim
λ→0

ζ∗λ(2q) = ζQ(2q), (23)
where we denote Epstein’s zeta function associated
with the quadratic form Q as

ζQ =
∑

(m,n)∈Z2\{0}

Q(m,n)−s, <(s) > 1.

(24)
We also note that we have the following functional
equation

ζQ(1− s) = ϕQ(s)ζQ(s), (25)
where ϕQ denotes a certain meromorphic function
associated with Q.
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The first prediction of symmetry relations for the
fractal exponents of multifractal systems is due to
Mirlin, Fyodorov, Mildenberger, and Evers for the
case of the Anderson model in [28]. The following
symmetry relation was proved in [9].

Theorem 2. The fractal exponent D∗q admits an
analytic continuation to the full complex plane. It
satisfies the following symmetry relation with re-
spect to the critical point q = 1/4

D∗1
2−q

=
1−q
1
2+q

[
D∗q+

logϕQ(2q)+(2q− 1
2 ) log ζQ(2)

1−q

]
.

(26)

5. Conlusions

Multifractal scaling is an important property of
quantum systems that are intermediate between
two physical regimes, and many important systems,
such as the Anderson model and pseudo-integrable
quantum billiards, fall into this category. However,
understanding the rigorous mathematical underpin-
ning of multifractality goes far beyond the study of
intermediate quantum systems. In fact, multifractal
scaling appears to be related to deep and impor-
tant mathematical problems in a number of models
in mathematical physics. Another highly interest-
ing type of models are nonlinear partial differential
equations (PDE), such as the Euler and Navier–
Stokes equations, which model the dynamics of in-
compressible fluids. In this case, it turns out that
the occurrence of multifractal scaling is related to
the deep and difficult question of the regularity or
blow-up of solutions to these nonlinear PDE, which
is the subject of a forthcoming article [29].
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