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We present numerical simulations of the light emitted by a source and scattered by surrounding electric
dipoles with Zeeman splitting. We calculate the leakage of electromagnetic angular momentum to
infinity.
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1. Introduction

Optical sources radiate electromagnetic energy at
a rate that depends on the local density of radia-
tive states (LDOS) near the source and at the emit-
ted frequency of the source [1, 2]. This statement
is classically true and recalls Fermi’s golden rule in
quantum mechanics [3]. LDOS is affected by the en-
vironment and can be either dielectric, structured,
gapped in frequency, or disordered. If the environ-
ment is magneto-active, induced by the presence of
an externally applied magnetic field B0, the source
can also radiate angular momentum (AM) with di-
rection B0 into space.

The first study of this phenomenon [4] used the
phenomenological concept of radiative transfer and,
in particular, the role of the radiative boundary
layer of an optically thick medium to argue that
the Poynting vector has two components in the far
field. The first is the usual energy flux, purely ra-
dial, that decays with distance r from the object
as 1/r2. The second is magneto-transverse and cir-
culates energy around the object (see Fig. 1). This
component decays faster, as 1/r3, but has finite an-
gular momentum constant with distance that trav-
els away from the object. Our second study [5]
demonstrated that this leakage is not restricted to
multiple scattering and also exists when a homoge-
neous magneto-birefringent environment surrounds
the source. In this case: (i) the radiation of AM
results in a torque on the source and not on the
environment, (ii) it depends sensitively on the na-
ture of the source with huge differences between,
e.g., an electric dipole source and a magnetic dipole
source; and (iii) geometric “Mie” resonances can en-
hance the effect much like the Purcell effect does in
nano-antennas [6, 7].

Fig. 1. The geometry considered in this work. A
source emits light into a disordered environment
containing N electric dipole scatterers. In the pres-
ence of a magnetic field B0, a magneto-transverse
component Sφ of the Poynting vector appears out-
side the medium that carries electromagnetic an-
gular momentum. This angular momentum propa-
gates to infinity, and a torque is exerted on scatter-
ers and source.

Our latest study [8] considered numerically a
spherical environment filled with small resonant
electric dipole scatterers. When the optical thick-
ness increases at a fixed frequency, the total leakage
rate of AM is seen to increase. Upon varying the op-
tical thickness, we investigated separately the role
of photonic spin and orbital momentum, the two es-
sential constituents of electromagnetic AM [9], and
found both to co-exist. The torque on the source
was also seen to increase with dipole density but
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hardly with optical thickness. In this work, we study
the frequency dependence of the dipole scatterers.
Especially for large detuning from their resonance,
the scattering from one dipole becomes weak, so
to keep reasonable optical thicknesses, we require
more dipoles, typically thousands, and this takes
more CPU time and memory.

2. Leakage of angular momentum

For a monochromatic electric dipole source with
electric dipole moment d at frequency ω = kc0, po-
sitioned at r = 0, the radiated electric field at po-
sition r is given by
E(r, ω) = −4πk2G

(
r, 0, ω+i0

)
· d(ω) (1)

with Gkk′(r, r
′, ω), the vector Green’s function,

associated with the Helmholtz equation for the
electric field. This Green’s function contains full
information about the environment. The slightly
positive imaginary part of the frequency ω + i0
guarantees outward propagation of the light. The
power P (radiated energy per second) radiated by
the electric dipole is equal to its dissipation rate
Re(J∗ ·E)/2 [10]. Since J = − iωd, we find, after
averaging over the orientation of the dipole source,
that

P = −2π

3
k3c0

∣∣d∣∣2 Im
[
TrG(0, 0)

]
. (2)

We recognize ρ(k) ∼ −Im[ TrG(0, 0)] as LDOS at
the source position. The balance equation for the
angular momentum can be written as [5]

d

dt
Ji,mec = Mi =

R3

8π
εijk Re

[∫
4π

dr̂ r̂lr̂j
(
E∗l Ek +B∗l Bk

)
(Rr̂)

]
,

(3)
with Jmec being the mechanical AM of the mat-
ter and with implicit summation over repeated in-
dices. This formula expresses that the torque M
exerted on the matter is radiated away as AM to
infinity (r > R), thereby assuming a source that
has been constant during a time longer than R/c0.
In this picture, the radiative AM inside the en-
vironment enclosed by the sphere of radius R is
constant in time, and AM leaks to infinity some-
where around r(t) ∼ c0t > R. The cycle-averaged
torque acts on both the source and its environment,
M = MS +ME . The latter is

ME =
1

2
Re

[ ∫
d3r (P ∗ ×E + P ∗m(r ×∇)Em)

]
.

(4)
This torque vanishes for a rotationally-invariant en-
vironment around the source but not when this
symmetry is broken by structural heterogeneity, as
will be discussed here. The torque on a source with
an electric dipole moment d(ω) is given by [10]

MS =
1

2
Re
[
(d∗ ×E)

]
. (5)

With the electric field given by (1), an expression
similar to (2) can be obtained, i.e.,

MS,i = −2π

3
k2
∣∣d∣∣2 Re

[
εijkGkj(0, 0)

]
. (6)

This torque vanishes for an (on average) spherical
environment with isotropic optical response [11].

Alternatively, the leak of AM given by the right-
hand side of (3) can be split up into parts associated
with photonic spin and orbital momentum [9]

M =
R2

8πk
Im

 ∫
r=R

d2r̂ (E∗×E + E∗m(r×∇)Em)

 .
(7)

In particular, the existence of orbital AM expressed
by the second term is interesting since polarized ra-
diation by a source subjected to a magnetic field
may be more intuitive to accept in view of the Fara-
day effect.

3. Environment of N dipoles
with Zeeman shift

The Helmholtz Green’s function for light scatter-
ing from N electric dipoles can be found in the liter-
ature [12–14]. Because of the point-like nature of the
dipoles, it reduces to a 3N×3N complex-symmetric
non-hermitian matrix. The magnetic response of the
dipoles — due to the Zeeman splitting of their in-
ternal resonance — can be extracted in linear order
so that the AM linear in the external field can be
calculated numerically, given the N positions of the
dipoles. The polarizability of a single dipole is given
by

α(ω,B0) = α(0)
ω2

0

ω2
0 − (ω+ωc iε · B̂0)2 − iγω

(8)
in terms of the radiative damping rate γ, the res-
onant frequency ω0 and the cyclotron frequency
ωc = eB0/(2mc0). The second rank operator iε · B̂0

has three eigenvalues 0,±1 corresponding to 3 Zee-
man levels that make the environment linearly
magneto-birefringent. The external magnetic field
B0 is assumed homogeneous across the environ-
ment, but this can easily be altered in future
work, e.g., to describe an environment surround-
ing a magnetic dipole. The detuning parameter
is defined as δ ≡ (ω − ω0)/γ. It is also use-
ful to introduce the dimensionless material pa-
rameter µ = (12π/(α(0)k3))× ωc/ω0 that quanti-
fies the magnetic birefringence induced by one
dipole and typically small (for the 1S–2P tran-
sition in atomic hydrogen one can estimate µ ∼
7 · 10−5 Gauss−1). The mean free path ` is an-
other important length scale and follows from 1/` =
nk Im[α(ω)] if we neglect recurrent scattering, with
n = 3N/(4πa3) the density of dipoles. Without a
magnetic field, the polarizability can be written as
α = −(3π/k3)/(δ + i/2).
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The leak of AM is calculated by performing the
surface integral in (3) numerically for different real-
izations in which dipole positions are averaged over
a sphere with a given radius a at homogeneous av-
erage density throughout the sphere. For more de-
tails we refer to [8]. It was explicitly checked that
the surface integral did not depend on the choice
of R > a as required by the conservation of AM.
Once verified, it is convenient to evaluate (3) in the
far field R � a where the fields simplify. Our code
was also tested on flux conservation and obeys the
optical theorem.

4. Numerical results

In this paper, we focus on numerical results ob-
tained for different detunings δ and relatively large
optical depths τ ≡ a/` in the hope of seeing ma-
jor trends that can be extrapolated to even larger
detunings. This regime becomes rapidly challeng-
ing since τ ∼ 9

4N/(ka × δ)2, so for δ � 1 and
τ � 1 we need a large N . Typically, for δ = 2,
the best we have done so far, and τ = 5, we al-
ready need N = 2000 in a sphere of 13 inverse
wave numbers in radius (ka = 13). These num-
bers imply a value for the number of dipoles per
optical volume η ≡ 4πn/k3 = 3N/(ka)3 ∼ 2.5,
i.e., the dipoles are largely located in each other’s
near field. Nevertheless, for a detuning δ = 2,
dipoles still scatter more or less independently be-
cause k` ∼ 2δ2/η = 3 > 1 [15], but this is no longer
true for η = 6. This implies that completely un-
known effects, such as weak localization, may affect
the radiative transfer of AM.

After an ideal average over all N dipole positions,
the magnetic field is the only orientation left in the
problem, and we expect that M = κB̂0 with κ a
real-valued scalar to be calculated that can have
both signs. Following earlier works [4, 5, 8], we nor-
malize the leakage of AM by the radiated amount of
energy and introduce the dimensionless AM κω/P ,
with P being the radiated amount of energy per
second. This number is linear in the material pa-
rameter µ introduced earlier and can directly be
related to the Hall angle of the Poynting vector in
the far field of the sphere. Alternatively, the number
quantifies the amount of leaked angular momentum
expressed in ~, normalized per emitted photon.

In Figs. 2 and 3, we show the normalized AM
leakage for an optically thin sphere as a function of
detuning. The bars in all figures denote the typical
support of the full probability distribution function
(PDF) when calculating the torque for 1000 differ-
ent realizations of the dipole positions. Except for
the spin leakage rate, they are large, and all AM re-
lated to source and orbital momentum are genuine
mesoscopic parameters. The optical depth τ = 1.9
and average density η = 0.3 are kept constant,
which means that both the number N of dipoles
and the radius a of the sphere change as δ is var-
ied. It is seen that the dimensionless AM depends

Fig. 2. Total normalized leakage rate of angular
momentum (blue) as a function of detuning δ =
(ω−ω0)/γ from the dipole resonance, separated into
torque on the source(orange) and torque on the en-
vironment (green). The optical depth is τ = 1.9,
and the dimensionless dipole density is η = 0.3.

Fig. 3. As in previous figure with same fixed pa-
rameters τ = 1.9 and η = 0.3, but this time, the
total leakage has been split up into leakage of or-
bital angular momentum (green) and leakage of spin
(orange).

significantly on detuning and changes sign near the
resonance at δ = 0. In this weakly scattering regime,
single scattering is still dominant. For a thin layer
in the far field of the source, we can derive a profile
κω/P ∼ η Im[α2] ∼ −ηδ/(δ2 + 1/4)2 independent
of distance. This corresponds more or less to the
observed profile of total AM in Figs. 2 and 3 that
are nevertheless affected by higher-order scattering
events. Both figures also show how total AM leak-
age splits up into either spin + orbital AM (Fig. 2)
or torque on source + torque on the environment
(Fig. 3). All are of the same order of magnitude but
are not always of same sign. In particular, for this
set of parameters, both decompositions have oppo-
site signs.

The picture changes significantly in the multiple
scattering regime. Figures 4 and 5 show the same
normalized leakage of AM for optical depth τ = 4.6
and dimensionless density as large as η = 6. Going
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Fig. 4. Total leakage of optical angular momen-
tum (blue) as a function of detuning. The orange
and green curves represent spin and orbital momen-
tum. The optical depth and average density are kept
constant (τ = 4.6 and η = 6). The calculations have
been done only for δ > 0, i.e., blue-shifted from the
resonance.

Fig. 5. As in Fig. 4, for clarity only the torque on
the source has been shown. Bars denote the support
of the full probability distribution (PDF) over 1000
realizations.

to smaller values of η would require too large a value
for N . The total leakage is now negative for all (pos-
itive) detunings, and spin leakage and orbital leak-
age have the same sign. Except for near resonance,
it is dominated by leaks in orbital AM. In Fig. 5,
we see that the torque on the source is mainly posi-
tive, but changes sign with detuning near resonance.
This implies again that for most detunings, source
and environment are subject to opposite torques. A
normalized torque on the source around 0.1–0.2 is
not much different than that found for η = 0.3 [8].
For low densities, this torque increased with η but
seems to saturate for η > 0.3. The numbers for to-
tal leakage rate (−0.2±0.1) are almost one order of
magnitude less than what we found for η = 0.03 and
τ ≈ 2 in [8], and one may speculate about the possi-
bility of some process related to “weak localization”
that reduces the transfer of angular momentum.

To get an order of magnitude for this effect, we

consider a homogenous gas with atoms of mass
Z mH in a sphere of size a. For an ideal gas at
room temperature, the density is roughly n0 =
40 mol/m3. If we assume that all leaked angular
momentum after a time interval ∆t is transferred
homogeneously to the mechanical momentum of the
sphere, we can estimate that its angular velocity is

Ω

[
rad

s

]
= 5.7

κω

Pµ

µ

Z

(
P

10 W

) (
λ

500 nm

) (
∆t

days

)
(

a
1 cm

)5 ( n
n0

) .

(9)
For κω/Pµ = 0.3, µ/Z ∼ 10−5, the angular rota-
tion is typically of the order of 1 mrad/s after 100
days.

5. Conclusions

In this work, we have reported an exact numeri-
cal study of the radiation of electromagnetic angular
momentum by a light source imbedded in a disor-
dered and magneto-active environment described by
resonant electric dipoles with Zeeman splitting that
scatter light elastically. The angular momentum is
directed along the magnetic field, and its transfer is
directed radially outward from the source. It is, in
general, composed of both spin transport and trans-
port of orbital angular momentum. The first implies
polarization of radiated light, the second is related
to an energy flux circulating around the object and
the magnetic field. Leakage of angular momentum
has been quantified by a dimensionless parameter
that is essentially the ratio of angular momentum
leakage rate (with physical unit Joule) and the en-
ergy of the source emitted during one optical cy-
cle. The number can be seen to be equal to the
angular momentum, expressed in ~, transferred per
emitted photon to the source and environment. It is
proportional to the product of a pure material pa-
rameter µ associated with the magneto-scattering
of the dipoles and the numbers that can be found
in the figures that result from scattering. By con-
servation of angular momentum, this transfer gives
rise to torques on both the emitting source and the
scattering environment. All parameters are seen to
be of the same order, can have mutually opposite
signs, and depend on the detuning from the reso-
nance.

The regime of Thompson scattering is interest-
ing for astrophysical applications and is a major
scattering mechanism in our Sun. It corresponds
to large detunings, where the phase shift between
the incident and scattered field becomes negligible.
The out-of-phase response seems essential for the
leakage to exist, even for large optical depths. The
amount of multiple scattering, quantified by optical
depth, certainly affects the radiative transfer of an-
gular momentum, but it is difficult at this point to
deduce general trends. Our simulations are clearly
in need of a radiative transport theory for angular
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momentum in magnetic fields, which, to our knowl-
edge, does not exist. From our simulations, we sus-
pect that different parts of the environment undergo
different torques. We also expect that as the optical
thickness of the environment increases, the precise
nature of the source becomes of less importance,
quite opposite to what was found for a homogeneous
environment.

Indeed, this picture may possibly apply to stel-
lar atmospheres, globally exposed to the magnetic
dipole fields of their nuclei. Although all ingredients
are present for leakage of angular momentum to ex-
ist, lots of extra complications, such as broadband
radiation, Doppler broadening, etc., make quantita-
tive predictions difficult.
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