
ACTA PHYSICA POLONICA A No. 6 Vol. 144 (2023)

Proceedings of the 11th Workshop on Quantum Chaos and Localisation Phenomena (CHAOS 23)

Engineering Metamaterial Interface Scattering Coefficients
via Quantum Graph Theory

T.M. Lawriea, G. Tannera,∗ and G.J. Chaplainb

aSchool of Mathematical Sciences, University of Nottingham, NG7 2RD, United Kindom
bCentre for Metamaterial Research and Innovation, Department of Physics and Astronomy,
University of Exeter, Exeter EX4 4QL, United Kindom

Doi: 10.12693/APhysPolA.144.486 ∗e-mail: gregor.tanner@nottingham.ac.uk

For layered metamaterial devices, the reflection and transmission coefficients at an interface typically
depend on the properties of the coupling between different layers. In this paper, we set out to engineer
the reflection/transmission behaviour at boundaries to obtain desirable properties such as achieving
total reflection and transmission. Based on the quantum graph formulation for modelling metamaterials
developed in Sci. Rep. 12(1), 18006 (2022), we tailor the interface reflection and transmission coefficients
by patterning the boundary with resonant elements at each interface vertex. By tuning the internal
lengths of the resonant elements, we demonstrate both minimization and maximization of the reflection
coefficient via a scattering formulation. In addition, we present an interface set-up incorporating beyond-
nearest-neighbour connections, which yields narrow-band transmission for certain angles only, creating
an angular filtering interface.
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1. Introduction

Over recent decades, the field of metamaterial re-
search has grown rapidly with the intent of engi-
neering materials with special electromagnetic and
acoustic wave properties, see for example [1] for
an overview. Typically, metamaterial properties are
given by a unit cell resonant or phase modulating
characteristics. Recently, also non-local or beyond-
nearest-neighbour interactions [2] have been inves-
tigated. These structures have additional coupling
terms due to connections that extend beyond the
periodic unit cell; numerical and experimental real-
isations have been studied both in an acoustics and
elasticity setting [3–6]. Customisation procedures
have been developed to engineer the dispersion be-
haviour of metamaterials using competing channels
of the power flowing through the structure [7]. In
numerical simulations, the governing models have,
so far, been based on analogies to systems of coupled
masses and springs akin to the canonical model used
by Brillouin [8]. In this paper, we model metamate-
rials via quantum graph theory instead, first intro-
duced by Lawrie et al. [9]. The wave dynamics takes
place here along one-dimensional edges coupled at
vertices on an infinite periodic graph network. Res-
onant characteristics can be introduced in the form
of vertex scattering conditions. The model provides
a fast and flexible tool for designing metamaterials
and for uncovering new and interesting wave phe-
nomena.

Quantum graph theory was initially formulated
by Kottos and Smilansky [10] in order to study
the quantum mechanical properties of complex sys-
tems; for a comprehensive introduction, see [11, 12].
The simple mathematical construction of quantum
graphs naturally leads to a great number of in-
terdisciplinary applications, such as the study of
quantum chaos [11], modelling the vibrations of
coupled plates [13], formulating quantum random
walks [14, 15] and quantum search algorithms [16].
The graph formalism allows the eigenvalue condi-
tions to be written in terms of a secular equa-
tion for a matrix of finite dimension. Similarly, the
scattering matrix of an open quantum graph can
be given as a closed-form expression involving fi-
nite dimensional matrices. Closed-form expressions
of the Green’s function of a quantum graph have
been given in [17]. Infinite periodic quantum graphs
allow for a spectral analysis where an underlying
graph “decoration” can be chosen to create spec-
tral gaps [18]. For such infinite periodic graph struc-
tures, it has furthermore been shown by Exner et
al. [19] that the spectrum of the graph Hamiltonian
converges to the corresponding Schrödinger opera-
tor on the Euclidean space in the continuum limit.
This makes the mathematical language of quantum
graph theory an ideal tool for modelling metamate-
rial set-ups using a continuum limit formulation.

Describing wave coupling between different media
is a key problem in metamaterial research and the
motivation for this work. The ability to efficiently
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model such an interface permits an additional de-
gree of freedom for metamaterial design, which has
recently received attention in the context of ho-
mogenisation [20]. At a metamaterial interface, the
boundary reflection coefficients depend strongly on
the properties of the interface layer connecting the
two metamaterials. In order to tune the reflection
behaviour, we use and expand on tools introduced
in [9]. We tailor the interface scattering coefficients
by decorating the boundary with resonant elements
at each interface vertex. By varying the underlying
graph structure, we demonstrate the tunability of
the reflection/transmission behaviour ranging from
total reflection to total transmission. This formula-
tion is then used to construct a beam splitting and
steering device with minimal reflection — a prim-
itive cloak. In addition, we present scattering ef-
fects when introducing a beyond-nearest-neighbour
structure at the boundary. We find rapid switching
between full reflection and transmission as a func-
tion of the angle of incident, that is, the interface
acts as an angular filtering device.

The paper is structured as follows: In Sect. 2, we
introduce the general quantum graph formalism for
modelling metamaterials based on the theory devel-
oped in [9]. In Sect. 2.1, the wave dynamics on the
graph is defined, and in Sect. 2.2, it is shown how
the compact portions of the graph at each vertex are
reduced to simple frequency-dependent point scat-
terers. The eigenfunction solutions on the periodic
quantum graph are introduced in Sect. 2.3 and com-
bined to form Gaussian beam solutions in Sect. 2.4.
In Sect. 3, we derive the scattering matrix for a
boundary layer or interface connecting two meta-
materials. We demonstrated the efficiency and flex-
ibility of the quantum graph approach by showing
various example set-ups in Sect. 3.2. In particular,
modifications for obtaining resonant interfaces giv-
ing zero and full reflection, as well as a configuration
displaying both beam splitting and reconfiguration,
are shown in Sect. 3.2.1. Finally, in Sect. 3.2.2, the
effects of introducing a beyond-nearest-neighbour
interface are formulated, showing interesting angle
filtering properties.

2. Metamaterials:
The quantum graph formalism

2.1. General set-up

We will provide a brief introduction to the
quantum graph model for metamaterials here; for
more details, see [9]. Typically, metamaterials are
constructed from a periodic arrangement of sub-
wavelength resonant elements. We consider each
such element as an open quantum graph Γ (V, E , L),
where V is a finite set of vertices with imposed
boundary conditions connected by a finite set of
bidirectional edges E with metric length L = {`j :
j ∈ E}. Edges of finite length will be called bonds

Fig. 1. Six examples of sub-wavelength resonant
or phase modulating elements are shown labelled
here as Γx, Γy, Γ0, Γ1, Γres, and Γphase. The bond
lengths are shown as `x,res, `y,res, `res, and `y. In
turn, the lead directions are given by l, r, d, u, i, and
o. The graph in (c) represents a phase modulator,
the graph in (d) represents a resonator on a vertex,
and (e) and (f) resonant resonators on an edge.

B with coordinate zj = [0, `j ] with reverted edge
coordinate given by z̃j = `j − zj . Edges of infi-
nite length will be called leads L with coordinate
zj = [0,∞) and no reverted edge coordinate. Nat-
urally, E = B ∪ L. The resonant characteristics of
an element are determined by treating the compact
portion of the graph as a scattering site, as shown
in Fig. 1. The construction of the corresponding
scattering matrix is described in Sect. 2.2. The open
graphs are then arranged and connected to form a
mesh with square periodic topology embedded in
R2 and discussed in more detail in Sect. 2.3. For
this construction, four leads L = Ll,Lr,Ld,Lu are
imposed on the compact portion of the graph in the
left (l), right (r), down (d), and up (u) directions.
In the example in Fig. 1b, two additional leads, Li
and Lo, have been added, heading in (i) and out
(o) of the plane and allowing for beyond-nearest-
neighbour connections discussed in more detail in
Sect. 3.1. All edges in E are endowed with the
Helmholtz wave equation with wave number k, i.e.,(

∂2

∂z2j
+ k2

)
ψj(zj) = 0. (1)

The solutions are given as a superposition of
counter-propagating plane waves on a given edge
j ∈ E , i.e.,

ψj(zj) = e ikzjaoutj + e− ikzjainj . (2)
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Here, aout/inj represents the complex wave ampli-
tudes heading out of or into a vertex. The edge so-
lutions can then be concatenated to form the vector
Ψ(Ẑ) = (ΨL(Ẑ),ΨB(Ẑ))

T of all lead and bond so-
lutions, where

Ψ(Ẑ) = e ikẐaout + e− ikẐain. (3)
Here, aout/in = (a

out/in
L ,a

out/in
B )T represents the

vector of all complex wave amplitudes, and Ẑ is a
diagonal matrix of all edge coordinates. Given the
general solutions, we can treat the compact portion
of the graph as a scattering site and thus derive
a resonant element scattering matrix ŜΓ .

2.2. The unit cell scattering matrix

Wave transport along each bond can be modelled
by mapping the outgoing wave amplitudes at ver-
tices to the incoming wave amplitudes at adjacent
vertices by a matrix P̂ (k;L),

ain
B = P̂ (k;L)aout

B . (4)
The matrix elements of P̂ take account of the phase
e ik`j accumulated by the wave as it travels along
a given bond j. The wave amplitudes on different
edges are mapped from incoming to outgoing wave
amplitudes at the vertices via a vertex scattering
matrix σ̂ that satisfies the imposed vertex bound-
ary conditions, i.e.,

aout = σ̂ ain, or in block form(
aout
L

aout
B

)
=

(
σ̂LL σ̂LB

σ̂BL σ̂BB

)(
ain
L

ain
B

)
.

(5)

For this work, we assume Neumann–Kirchhoff
boundary conditions [11] at each vertex, giving the
pq-th matrix element of σ̂ associated with vertex Vj
as [

σ̂
Vj

]
pq

=
2

v
Vj

− δpq. (6)

Note that the index j runs now over the number of
vertices V in Γ . Here, δpq is the Kronecker delta,
and v

Vj
is the valency (number of attached edges)

at vertex Vj . From here, a graph scattering matrix
ŜΓ can be determined, which performs the mapping
between the leads only, i.e.,

aout
L = ŜΓ (k;L)a

in
L . (7)

Now, ŜΓ can be constructed from σ̂ and P̂ by

ŜΓ (k;L)=σ̂LL+σ̂LB

[
Î−P̂ (k;L)σ̂BB

]−1
P̂ (k;L)σ̂BL,

(8)
where Î is the identity matrix; see [9] for more de-
tails.

Below are the results of solving (8) for each reso-
nant element shown in Fig. 1, i.e.,

ŜΓ0
= 1

2 Ê
(4×4) − Î(4×4), (9)

ŜΓ1
= 1

3 Ê
(6×6) − Î(6×6), (10)

ŜΓphase(k; `y) =
1
2


−1 1 e

ik`y
2 e

ik`y
2

1 −1 e
ik`y
2 e

ik`y
2

e
ik`y
2 e

ik`y
2 −e ik`y e ik`y

e
ik`y
2 e

ik`y
2 e ik`y −e ik`y

,
(11)

ŜΓres(k; `res)=
2 cos(k`res)

3 cos(k`res)+e− ik`res
Ê(4×4) − Î(4×4),

(12)

ŜΓx(k; `x,res)=
2 cos(k`x,res)

cos(k`x,res)+e− ik`x,res
Ê(2×2)−Î(2×2),

(13)

ŜΓy (k; `y,res)=
2 cos(k`y,res)

cos(k`y,res)+e− ik`y,res
Ê(2×2)−Î(2×2).

(14)
Here, Ê(n×n) represents a square matrix of all ones
of dimension n. Having defined the scattering ma-
trices associated with each resonant element, one
can now construct the full metamaterial.

2.3. Eigenfunction solutions of the periodic graph

From here, the compact portions of the above
graphs are treated simply as frequency-dependent
point scatterers. Each scatterer is arranged into a
square periodic 2D mesh, where the open leads of
each resonant element are truncated to form con-
nections of length ` between each compact graph.
In addition, resonant elements of the type Γx and
Γy, as shown in Fig. 1, can be placed halfway along
an edge in the x- and y-direction, respectively (see
Fig. 2). This allows for more freedom in construct-
ing interesting wave dispersion curves. The periodic
construction means that all wave solutions at the
central vertex of any unit cell nm are translationally
invariant up to a phase obeying Bloch’s theorem [8],

Ψnm(0) = e i (κxn+κmm)`Ψ(0). (15)
Here, κx and κy represent the quasi-momentum.
The symmetry in each connecting edge allows the
horizontal and vertical edge scattering due to Γx
and Γy to be evaluated at zr = `/2 and zu = `/2,
respectively, and we obtain(

ainl
ainr

)
= M̂x(k; `res)

(
aoutl

aoutr

)
,

(
aind
ainu

)
= M̂y(k; `res)

(
aoutd

aoutu

)
,

(16)
where

M̂j(k; `j,res) :=

e ik`

(
e− iκj` 0

0 1

)
ŜΓj (k; `j,res)

(
e iκj` 0

0 1

)
(17)
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Fig. 2. Panel (a) shows the square periodic ar-
rangement of some arbitrary graph Γ (such as the
examples Γ0, Γphase, or Γres) with mesh indices n,
m, spaced by edges of length `. Resonators Γx and
Γy may be placed on both the horizontal and verti-
cal edges. Panel (b) shows the local edge wave am-
plitudes aout/inj represented by blue arrows in the
neighbourhood of the central vertex.

with j = x or y and `j,res is the resonator length
of the edge scattering elements Γj . By substitution
of (16) into (7), one obtains[

Î− Û(k, κx, κy;L)
]
ain
L (k, κx, κy;L) = 0, (18)

where Û represents the quantum map and is explic-
itly given as

Û :=

M̂x 0

0 M̂y

 ŜΓ . (19)

The spectrum of dispersion curves relating k, κx,
and κy are given by solving the secular equation

det
[
Î− Û(k, κx;κy, L)

]
= 0. (20)

Note that Û is implicitly a function of the chosen
graph metric L. By varying these metric parame-
ters and by changing the topology of the graph Γ ,
one has great control over the possible wave prop-
erties of the metamaterial. We will briefly discuss
the examples shown in Fig. 1. A metamaterial con-
structed purely of elements Γ0 (i.e., `j,res = 0 for
j = x and y) has in the low-frequency limit an
approximately circular dispersion curve modelling
free space propagation. As the frequency increases,
the underlying square periodic topology becomes
“noticeable”, leading to square iso-frequency con-
tours and directional band gaps. The properties
of a metamaterial constructed purely of elements
Γres are similar in shape to that of Γ0, however,
the presence of the edge of length `res opens band
gaps, thus forcing high-frequency material proper-
ties into the low-frequency domain. The same can
be said for the elements Γx and Γy, where the open-
ing of band gaps is then directional. As for graphs
constructed from elements Γphase, waves travelling
from down(up) to up(down) accumulate an addi-
tional phase e ik`y . This can be thought of as com-
pressing a lattice of period ` by ` + `y to a lattice
of period ` by `, while maintaining the edge lengths
between cells, see Fig. 3. Such a construction breaks
the vertex scattering symmetry and allows for neg-
ative refraction without relying on resonant charac-
teristics as shown in [9].

2.4. Gaussian beams from graph eigenfunctions

To construct the allowed eigenfunction solu-
tions, we consider a single frequency k and wave
number κy, leaving in general a choice of two
wave numbers κx. Naturally, this choice defines
the direction of the energy flow. To delineate be-
tween waves travelling in opposite horizontal di-
rections, the following notation is used: Eigen-
function solutions with energy flux Jx pointing
in the positive x-direction are given an index →,
and the corresponding eigenvector in (18) is re-
defined as aout/in := aout/in(k, κ→x , κy). Eigen-
function solutions with energy flux Jx pointing in
the negative x-direction are given an index ←,
and the corresponding eigenvector in (18) is rede-
fined as bout/in := aout/in(k, κ←x , κy). Explicitly, we
write

Ψnm :=

 Ψ→nm(Ẑ; k, κy) = e i (κ
→
x n+κym)

(
e ikẐaout + e− ikẐain

)
, Jx > 0,

Ψ←nm(Ẑ; k, κy) = e i (κ
←
x n+κym)

(
e ikẐbout + e− ikẐbin

)
, Jx < 0.

(21)

For fixed k and κy, we thus obtain an eigenfunction solution on the mesh as

Υnm(Ẑ; k, κy) = A(k, κy)Ψ
→
nm(Ẑ;κy, k) +B(k, κy)Ψ

←
nm(Ẑ;κy, k), (22)
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where A and B are wave amplitudes associated
with right-hand and left-hand moving waves, re-
spectively. They are both functions of k and κy as
they will later represent incident and scattered field
amplitudes at an interface.

From here, one can construct Gaussian beam so-
lutions Φnm by integrating over the Brillouin zone
(BZ) of a given metamaterial

Φnm(z; k) =
1√
2π

∫
BZ

dκy α(κy)Υnm(Ẑ, κy; k),

(23)
where α is a κy-dependent expansion coefficient cho-
sen here to give a Gaussian mode profile, and is de-
fined as

α(κy;κ
′
y, w) = γ exp

[
−
(
κy − κ′y

)2
2w2

]
. (24)

Here, κ′y determines the direction of the beam rel-
ative to the x, y coordinate system, w defines the
width of the beam, and γ is a normalisation con-
stant.

3. Wave behaviour at interfaces

3.1. Engineering interface boundary conditions

In previous work [9], the boundary conditions be-
tween two different metamaterials modelled by pe-
riodic quantum graphs were fixed by satisfying an
equivalence condition on the joining edges. In this
section, we will demonstrate how to influence the
reflection and transmission behaviour at such an in-
terface by introducing an additional boundary layer
B, as illustrated in Fig. 4a. For this, we consider two
infinite half-spaces, each constructed from a square
periodic quantum graph with an identical period,
as defined in the previous section.

The left half-space represents metamaterial 1
with unit cell Γ (1), while the right half-space rep-
resents metamaterial 2 with unit cell Γ (2). The two
metamaterials are coupled via a periodic bound-
ary along the y-direction constructed from either
Γ (B) = Γres and Γ (B) = Γy,res or a simple
point scatterer with beyond-nearest-neighbour con-
nections, Γ (B) = Γ (1), as discussed in [2], see
Fig. 4b and c.

The wave properties of the boundary are defined
by a scattering matrix ŜB(k, κy;L), which performs
the horizontal (H) mapping,

aout
H = ŜB(k, κy;L)a

in
H . (25)

Fig. 3. Illustration of the relationship between the
vertex and edge length scale in the case of Γphase
giving rise to non-trivial wave effects.

Here, aout/in
H = (α

out/in
l , α

out/in
r )T represents the (to

be determined) vector wave amplitudes heading out
of or into the boundary vertex on the left (l) or
right (r). The boundary scattering matrix is con-
structed from the underlying vertex scattering ma-
trix as defined in (7), along with the vertical peri-
odicity conditions defined in (16). By decomposing
(7) into horizontal (H) and vertical (V ) dynamics,
one can write(

aout
H

aout
V

)
=

(
ŜHH ŜHV

ŜV H ŜV V

)(
ain
H

ain
V

)
. (26)

One obtains

ŜB = ŜHH + ŜHV

[
Î− M̂yŜV V

]−1
M̂yŜV H .

(27)
From this definition, we can determine how the
boundary scatters the global wave fields of inci-
dent amplitude A(1), B(2) to give the global scat-
tered field of amplitude A(2), B(1). To do this, we
construct the global boundary scattering matrix
Σ̂B(k, κy;L), which performs the mapping,(

B(1)

A(2)

)
= Σ̂B

(
A(1)

B(2)

)
. (28)

To do this, one substitutes the x component of the
eigenfunction solutions (22) on the left and right
side of the interface, i.e., at zl = zr = 0 at the loca-
tion of the boundary n = nB for any m, that is,

α
out/in
l = A(1) e i (κ

(1)→
x nB+κym)`a

(1)out/in
l

+B(1) e i (κ
(1)←
x nB+κym)`b

(1)out/in
l ,

α
out/in
r = A(2) e i (κ

(2)→
x nB+κym)`a

(2)out/in
r

+B(2) e i (κ
(2)←
x nB+κym)`b

(2)out/in
r , (29)

into (25). After some algebra, we get

Σ̂B =

(
e− iκ(1)nB` 0

0 e iκ
(2)nB`

)[(
a
(1)out
l 0

0 b
(2)out
r

)
− ŜB

(
a
(1)in
l 0

0 b
(2)in
r

)]−1

×

[
ŜB

(
b
(1)in
l 0

0 a
(2)in
r

)
−

(
b
(1)out
l 0

0 a
(2)out
r

)](
e− iκ(1)nB` 0

0 e iκ
(2)nB`

)
. (30)

490



Engineering Metamaterial Interface Scattering Coefficients. . .

Fig. 4. (a) The boundary region between metamaterials 1 and 2 with amplitudes αout/in
l and αout/in

r related
by the boundary scattering matrix ŜB. (b) Boundary constructed of resonators Γres and Γy. (c) Boundary
with beyond-nearest-neighbour connections with lµ, the length of this connection, and µ giving the distance
in terms of unit cells; (in the example shown, µ = 2).

3.2. Examples

In the following, we will discuss a few exam-
ples leading to interesting reflection/transmission
behaviour at interfaces.

3.2.1. Non-reflecting boundaries, beam splitting
and steering

In the first example, we will consider how to con-
struct non-reflective interfaces using boundary ele-
ments, as shown in Fig. 4b. Here, metamaterial 1
is constructed from elements defined by Γ0, while
metamaterial 2 is constructed from elements de-
fined by Γres for lres = 1.1995`. The corresponding
dispersion curves of the two materials are shown
in Fig. 5a at k = 1. Note that the particular value
of lres leads to a square-like dispersion pattern of
material 2 with singular behaviour for vanishing κx
or κy. The third plot in Fig. 5a shows the chosen
expansion coefficient α giving rise to a beam with
width w = 0.0575 centred at κ′y = 1, which yields an
incident Gaussian beam angle of θ′ = π/4. The cho-
sen boundary is constructed exclusively from Γres,
for lres = 0`, lres = 0.9667`, and lres = π`/2 in
Fig. 5b–d, respectively.

The transmission |A(2)|2 and reflection coeffi-
cients |B(1)|2 of the beam Ψnm are shown on the
RHS of Fig. 5 for panels (b), (c), and (d) as a func-
tion of the incident angle θ. This demonstrates that
we can obtain both complete transmission and total
internal reflection by varying the boundary proper-
ties in terms of lres. In particular, total internal re-
flection happens when lres = π/(2k). At this length,
the vertex is in resonance, and the boundary con-
ditions reduce to Dirichlet Ŝres = −Î, making the
boundary completely reflective.

With this knowledge, we set out to construct a
layered metamaterial set-up that will allow us to
steer an incoming beam at normal incident around
an object. We can do this with minimal reflec-
tion at the boundaries using the techniques de-
scribed above. The example shown in Fig. 6 is
made up of four different metamaterials connected
by interface layers of the type used in the exam-
ple shown in Fig. 5. Metamaterials 1 and 4 are
identical and are made up of resonant elements
Γres with `res = 0.725`. The corresponding dis-
persion curves at k = 1 are shown in Fig. 6a.
Metamaterial 2 is constructed from both Γ0 and
Γy with `y,res = 0.909175`; note that the material
exhibits a corner singularity in its dispersion curve
for normal incident giving rise to the beam split-
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Fig. 5. (a) Isofrequency contours associated with
metamaterial 1 and 2 for k = 1 together with
the Gaussian beam expansion coefficients α. (b)–
(d) Reflection behaviour of the beam for different
lres chosen at the boundary, see text for details.

Fig. 6. The plots in (a) show the isofrequency con-
tours associated with metamaterials 1, 2, 3, and 4,
while the 5th plot shows the chosen expansion coef-
ficient α for the incident beam. The plot in (b) dis-
plays the resulting norm squared wave amplitude
of the incoming and scattered beam |Φnm|2. The
material interfaces are optimized to give minimal
reflection.

Fig. 7. (a) Dispersion curves of metamaterials 1
and 2 together with the beam shape α for the beam
incoming from the LHS. (b)–(e) Wave patterns
given by |Φnm|2, for different configurations (left)
and the reflection/transmission coefficients at the
interface as function of the incoming angle θ (right);
the parameters are (b) µ = 3, lµ=3 = 6.32757`; (c)
µ = 6, lµ=6 = 9.3`; (d) µ = 10, lµ=10 = 12.41818`;
(e) µ = 12, lµ=12 = 15.96`.

ting behaviour observed in Fig. 6b. Metamaterial 3
is constructed from Γphase and Γx for `y = 4.64`
and `x,res = 2.7955`. The metamaterial is designed
in such a way as to reverse the beam splitting be-
haviour yielding negative reflection (see the relevant
dispersion curve). We may regard such a device as
a primitive cloak in the sense that one can hide or
shield an object from normal incidence.

3.2.2. An angle filtering boundary

In the previous example, only nearest-neighbour
coupling has been used in the vertical direction of
the boundary such as shown in Fig. 4b, that is, a
cell m is coupled to cells m ± 1 only. We will now
study the properties of an interface boundary made
up of the elements shown in Fig. 4c, i.e., we con-
sider Γ (B) = Γ1, and we connect up the vertices by
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using beyond-nearest-neighbour interaction. In the
example in Fig. 4c, the next-to-nearest-neighbour
coupling is used, that is, in addition to the nearest
neighbours, cell m is also coupled to cellsm±µ with
µ = 2, here. We will later also consider µ > 2.

By introducing the additional coupling, the va-
lency of a boundary vertex increases by two. The
vertex conditions are then given by the vertex scat-
tering matrix ŜΓ1

in (10) with Γ1 shown in Fig. 1b.
To obtain ŜB, we must now redefine M̂y to include

the additional coupling. The structure inherits the
same Bloch phase as the unit cell has, and the wave
amplitudes as such obey the following conditions

ainu = e ik` e− iκy`aoutd

aind = e ik` e iκy`aoutu

aini = e ik`µ e− iκyµ`aouto

aino = e ik`µ e iκyµ`aouti (31)
and M̂y becomes

M̂y =


0 e i (k−κy)` 0 0

e i (k+κy)` 0 0 0

0 0 0 e i (k`µ−κyµ`)

0 0 e i (k`µ+κyµ`) 0

 .

(32)

Here, lµ represents the length of the lead connecting
elementm to elementm±µ. Naturally `µ ≥ µ`. This
is a free parameter that alters the phase accumula-
tion for the wave propagation along the y-direction.
In Fig. 7, we show various examples of the wave
behaviour at such an interface. In all cases, meta-
materials 1 and 2 are identical here and given by
simple point scatters Γ0, as shown in Fig. 1a. We
have chosen a relatively broad beam profile of the
incoming beam, covering a wide range of κy val-
ues and giving the beam a cone-like appearance. A
range of µ and corresponding `µ values are tested.

Surprisingly, the interface acts as an invisible
aperture or angle filtering device, letting the in-
coming wave pass only at certain angles of incident.
The number of incoming directions able to pass the
interface increases with the connectivity index µ,
as demonstrated in Fig. 7b–e; see the figure cap-
tion for details regarding the chosen parameters µ
and `µ. The filtering behaviour is brought about by
a transmission function being zero for most angles
θ apart from narrow-band transmission windows,
see the RHS of Fig. 7. Note that these transmis-
sion windows exist here although there are no res-
onant elements present at either vertices or edges
and seem to be an interference effect of the compet-
ing vertical channels. We report this behaviour here
without further analysis, which will be provided in
a forthcoming publication.

4. Conclusions

We have demonstrated applications of a quantum
graph approach to modelling metamaterials cou-
pled through structured interfaces, thus providing
a fast and efficient tool for aiding the design pro-
cess for layered metamaterial devices. The reflection
and transmission coefficients of complex interfaces
can be explicitly calculated in our approach, and

the freedom in choosing the vertex scattering ma-
trices and edge lengths provides a large parameter
space for constructing desired material properties.
We show in particular that interfaces with minimal
reflection or transmission can be designed. Beyond-
nearest-neighbour coupling along the interface has
been incorporated, which can be used as a single-
frequency angular filter, allowing for energy trans-
mission only at specific angles and potentially pro-
viding a possibility for a tunable aperture or filter.
The examples highlight the potential of quantum
graph-based metamaterial and interface design. The
tuning of edge lengths and the freedom in assign-
ing the vertex scattering matrices are unique to the
graph model presented here and enable an open sys-
tem description that is cumbersome in other con-
ventional mass-spring models, where either the con-
struction of Green’s function or a full time-domain
simulation is required.
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