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We study the influence of feedback operations on the dynamics of (d+1)-dimensional monitored random
quantum circuit. Competition between unitary dynamics and measurements leads to an entanglement
phase transition, while feedback steers the dynamics towards an absorbing state, yielding an absorbing
state phase transition. Based on previous results in one spatial dimension (Phys. Rev. Lett. 130, 120402
(2023)), we discuss the interplay between the two types of transitions for d ≥ 2 in the presence of (i)
short-range feedback operations or (ii) additional global control operations. In both cases, the absorbing
state transition belongs to the d-dimensional directed percolation universality class. In contrast, the
entanglement transition depends on the feedback operation type and reveals dynamics’ inequivalent
features. The entanglement and absorbing state phase transition remain separated for short-range feed-
back operations. When global control operations are applied, we find the two critical points coinciding;
nevertheless, the universality class may still differ, depending on the choice of control operation.
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1. Introduction

Monitored many-body quantum systems provide
a natural perspective for understanding the progress
in quantum simulations [1] and noisy intermediate-
scale quantum technologies [2, 3]. Repeated mea-
surements introduce non-unitary effects on the
otherwise unitary evolution of quantum systems,
leading to dynamics that can be described by
stochastic quantum trajectories [4–8]. Most impor-
tantly, there is a striking distinction between the
average and typical properties of the trajectory en-
semble. While the former lead to quantum chan-
nels and Lindbladian evolution, the latter reveal a
rich structure, including fingerprint phenomena like
measurement-induced transitions (MIT) [9–14].

The distinction between average and typical tra-
jectory is of central importance for the observ-
ability of these transitions. While average dy-
namics is experimentally feasible, extraction of
typical features of quantum trajectories requires
post-selection over the measurement results — a
task of outstanding difficulty for generic systems

and observables [15–24]. Indeed, to perform the
post-selection for a given quantum trajectory, one
has to ensure that each of the conducted measure-
ments yields the desired result. MIT is observed in
settings where the number of measurements scales
proportionally to the space-time volume of the con-
sidered system. Since quantum measurements are
inherently stochastic, the probability of obtaining
a given trajectory is exponentially suppressed, or
in other words, the resources needed to perform
an experiment scale exponentially with the size of
the system. Thus, without fine-tuning (cf. [25–29]),
avoiding or mitigating post-selection is a central
open problem in monitored quantum dynamics.

Recently, it has been proposed to use feedback
operations that condition the system’s dynamics
on measurement outcomes to circumvent this post-
selection problem. Indeed, conditional operations
alter the average dynamics [30–32], and, in prin-
ciple, can encode non-linear features of quantum
trajectories, such as MIT, even at the averaged den-
sity matrix level. This idea has been successful for
monitored free fermions and certain models of quan-
tum chaos [33, 34], but the introduction of feedback
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does not necessarily imply that MIT is observable
on the level of average state. For instance, when a
feedback mechanism introduces an absorbing state
to the system, i.e., a state that is a fixed point of
the dynamics, the resulting absorbing phase transi-
tion (APT) and MIT are generally distinct [35–38].
Nevertheless, for carefully chosen feedback opera-
tions [39], fluctuations of the order parameter of
APT and the entanglement entropy can be coupled.
In that case, the entanglement entropy undergoes
a dynamical transition that inherits the universal
features of APT. However, even when the critical
points of MIT and APT coincide, the universal con-
tent of APT may differ from that of MIT, depend-
ing on the renormalization group relevance of the
underlying feedback operations [39, 40].

These previous works investigate one-dimensional
systems and leave the role of dimensionality in mon-
itored systems with feedback essentially unexplored.
Indeed, higher dimensional systems are generally
challenging from a numerical perspective. The ex-
tensive entanglement generated by weakly moni-
tored dynamics poses severe limitations to tensor
network methods [41]. Similarly, the exponential
growth of the Hilbert space with system size lim-
its the exact simulations to a few tens of qubits. An
important exception is stabilizer circuits, which are
efficiently simulable via the Gottesman–Knill theo-
rem [42, 43], and have been recently investigated in
(d + 1) random circuits with [44–46] and without
monitoring [47].

This paper investigates the interplay between
APT and MIT in (d + 1)-dimensional stabi-
lizer circuits. We employ the flagged Clifford cir-
cuits [37, 39, 40], showing that short-range feed-
back operations lead to distinct APT and MIT
critical points and investigating their properties.
Subsequently, we also include a global feedback-
control operation. In that case, the critical points
of APT and MIT coincide. We unravel the similar-
ities between the time evolution of the order pa-
rameter of APT and the entanglement entropy at
any dimension d investigated. Finally, we discuss
the range of validity of our results.

This manuscript is structured as follows. In
Sect. 2, we review flagged stabilizer circuits, dis-
cuss the interplay between monitoring and feed-
back in a heuristic manner, and detail our imple-
mentation in d ≥ 2. The core section of our work
is Sect. 3, which discusses our numerical findings.
Specifically, in Sect. 3.1 we study the order param-
eter behavior for APT, highlighting its direct per-
colation (DP) universality class through numerical
results in 2 ≤ d ≤ 4. In Sect. 3.2, we compare
those findings with the entanglement dynamics for
different choices of feedback operation. Section 3.3
discusses the order parameter and entanglement en-
tropy at a fixed circuit depth (time) t ∝ L, revealing
additional aspects of APT and MIT. Our conclu-
sions, with further discussions and outlooks, are
presented in Sect. 4.

Fig. 1. Gates building a layer K = ActrlK0 of
the considered quantum circuit. The K0 layer con-
sists of gates Um,n applied to neighboring qubits m
and n, depicted in panel (a). These gates include a
two-body Clifford gate Um,n, conditioned on the
flags fm and fn (as discussed in Sect. 2.1), as well
as measurements Mm and Mn of the Zm and Zn

operators. These measurements are performed with
a probability of p. (b) Feedback-control operation
Actrl is a global Clifford gate that acts non-trivially
on all lattice sites at which fm = 0.

2. Feedback-controlled and flagged
stabilizer circuits

This section reviews the concept of flagged stabi-
lizer circuits and details our numerical implementa-
tion of d-dimensional circuits. We also discuss the
phenomenology of our system here.

2.1. Flagged stabilizer circuits

We consider a (d+1) dimensional quantum circuit
defined on a d-dimensional spatial lattice Λ, com-
prising of T layers that intersperse unitary dynam-
ics and projective measurements of the local mag-
netization Zm. The lattice Λ is fixed as as hyper-
rectangular L1×· · ·×Ld lattice, where L1 = L and
L2 = . . . = Ld = L/2. We assume periodic bound-
ary conditions in all directions and denote by |X|
the number of sites in a sublattice X. Throughout
this manuscript, we denote Pauli operators by Xm,
Ym, Zm, while |1m〉 and |0m〉 are the +1 and −1
eigenvectors of Zm, and m labels the lattice sites.
We consider two types of circuits: (i) with short-
range feedback control, in this case each layer of the
circuit is given asK = K0, withK0 comprised of lo-
cal measurements and unitary gates; (ii) with global
control-feedback operations for which each layer of
the circuit is arranged as K = ActrlK0, where Actrl

is a global feedback operation described below.
The measurement/unitary layer K0 is built of

|Λ|/2 two-body gates Um,n presented in Fig. 1a.
The two-body gate Um,n acts on the nearest neigh-
boring sites m,n of the lattice. The first index, m,
is chosen with uniform probability, without repeti-
tions, over the whole lattice Λ. In turn, the second
index is set as n = m + eu, where eu is the unit
vector in a randomly chosen direction u = 1, . . . , d.
The gate Um,n consists of the measurements Mm,
Mn of Zm, Zn operators, and acts on system’s state
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|ψ〉 via

Mm|Ψ〉 =



1+Zm

2

|Ψ〉
√
p+
, with probability p+.

1−Zm

2

|Ψ〉
√
p−
, with probability p−,

(1)

with p± = 〈Ψ |1± Zm|Ψ〉/2 being the Born rule
probability of a given measurement outcome. Each
of the measurements is performed with the mea-
surement probability (or rate) p, which is the control
parameter that allows tuning the considered quan-
tum circuit between various dynamical phases. The
measurements are followed by the action of a two-
body gate Um,n selected, with uniform probability,
from the 2-qubit Clifford group. The gate Um,n is
conditioned on the classical labels fm in a way spec-
ified below. The procedure of creating the layer K0

consists of a random generation of |Λ|/2 two-body
gates Um,n that is performed independently during
the construction of each of the circuit layers.

To introduce feedback in our system, we fix
|ABS〉 ≡

⊗
m∈Λ |1m〉 as the absorbing state, i.e.,

we require that |ABS〉 is a fixed point of the dy-
namics of our circuit, K|ABS〉 = |ABS〉. For this
purpose, the two-body gates Um,n should preserve
the states |1m1n〉. Since Clifford gates fulfilling this
condition do not generate genuine quantum corre-
lations, we introduce, following [39], the classical
flags fm = 0, 1 at each site m ∈ Λ to establish the
feedback mechanism in our stabilizer circuits. The
system is initialized in the state |Ψ0〉 =

⊗
m∈Λ |0m〉

and we initially set fm = 0 for allm ∈ Λ. After each
measurement, we change the flag to fm = 1 when
the outcome is +1 (otherwise the flag remains un-
changed, fm = 0). The two-body gate Um,n acts
on the sites m,n only when fmfn = 0. Otherwise,
Um,n is replaced by the two-site identity matrix.

The short-range feedback mechanism is present
in a circuit comprised solely of layers K0 due to the
flag mechanism built in the two-body gates Um,n.
It is straightforward to verify that |ABS〉 is indeed
an absorbing state, K0 |ABS〉 = |ABS〉.

Finally, to introduce the global control op-
eration to our system, we consider Actrl, see
Fig. 1b, which is a global random Clifford uni-
tary that acts non-trivially only on the subset
Λ̃ = {m ∈ Λ : fm = 0} ⊂ Λ of unflagged sites. This
construction of the feedback-control operation Actrl

ensures that our stabilizer circuit can generate ex-
tensive entanglement in the presence of monitoring
while preserving |ABS〉 as an absorbing state. In the
following, we will compare and contrast the prop-
erties of the circuit built of layers of K = K0 with
the time evolution of the circuit K = ActrlK0 com-
posed of the global feedback-control operation Actrl

and the measurement/unitary layer K0.
We note that with these specifications, the de-

scribed setups are amenable to efficient numer-
ical simulations for d ≥ 2 [45, 47] that scale

polynomially in the system size L. Our simula-
tions of flagged stabilizer circuits are implemented
in a state-of-the-art package STIM [43] and use an
asymptotically fast [48, 49] algorithm for computa-
tion of rank with complexity O(N3/ log2(N)) [50],
whereN = |Λ| is the number of qubits in the lattice.

2.2. Post-selection: linear and non-linear functions
of the density matrix

Before proceeding to the systematic numerical
analysis of the next section, we would like to high-
light some vital physical aspects of the dynamics
of the considered quantum circuits with feedback.
Performing numerical simulations of the quantum
dynamics of the flagged stabilizer circuits, we ob-
tain the time-evolved state |Ψt〉 ≡

∏
tKt |Ψ0〉 and

the corresponding density matrix ρt ≡ |Ψt〉〈Ψt|. We
are interested in quantities that are averaged over
the circuit realizations. This leads to a crucial dif-
ference between physical quantities concerning their
dependence on the density matrix ρt:

• Linear functions of ρt, for instance, a defect
density

ndef(Ψt) = 1− Tr

(
ρt
∑
m

1 + Zm

2N

)
, (2)

where N = |Λ| = L(L/2)d−1 is the total num-
ber of sites in the lattice. Taking the aver-
age (denoted by the overline) over the cir-
cuit realizations of the defect density yields
ndef ≡ ndef(Ψt), which, due to the linearity of
the considered quantity, amounts to

ndef = 1− Tr

(
ρt
∑
m

1 + Zm

2N

)
, (3)

i.e., the average defect density ndef is deter-
mined solely by the average density matrix ρt.

• Non-linear functions of ρt, for instance, entan-
glement entropy

SX(Ψt) = −TrX
(
ρX(t) log2 ρX(t)

)
, (4)

where ρX(t) = TrXc(ρt) is the reduced den-
sity matrix for the subsystem X [8] obtained
by tracing out the degrees of freedom of its
complement Xc (Λ = X ∪ Xc). Due to the
non-linearity of (4), the average entanglement
entropy, SX(t) ≡ SX(Ψt), has to be calculated
directly by evaluating SX(Ψt) and by averag-
ing the result over the circuit realizations. In
other words, there is generally no functional
dependence between SX(t) and the average
density matrix ρt.

The dichotomy between linear and non-linear func-
tions of ρt is reflected at the level of physical quan-
tities and phenomena that can be captured with the
two types of quantities. Averages of linear functions
of ρt are amenable to experiments as they do not
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require post-selection and are dependent solely on
the average density matrix ρt. The defect density
ndef captures APT in the system. Conversely, non-
linear functionals of the state, such as the entan-
glement entropy SX(t), reveal phenomena occuring
at the level of individual trajectories of the system,
such as MIT, and require post-selection. Indeed, to
calculate SX(Ψt), we have first to ensure that we
consider a fixed final state |Ψt〉 that depends on
the outcomes of the performed measurements, then
evaluate SX(Ψt) by repeatedly preparing the same
final state |Ψt〉, and only then we can average the
result over the circuit realizations.

2.3. Phenomenology of feedback-monitored
systems with an absorbing state

In our system, due to the presence of a feed-
back mechanism, we expect that limt→∞ ρ =
|ABS〉〈ABS|. Indeed, if in a particular region λ of
the lattice Λ the measurements of Zm yield the re-
sult of 1, the flags in the region λ are set to unity,
fm = 1. Hence, due to the feedback used, the uni-
tary gates Um,n can act non-trivially only on the
edges of the λ region. In contrast, in the bulk of
the subsystem λ the state is already locally ferro-
magnetically ordered, as in the absorbing |ABS〉.
Hence, as our system evolves, the lattice Λ becomes
covered with ordered domains in which the spins are
aligned as in the absorbing state, 〈Ψt|Zm|Ψt〉 = 1,
and defect regions in which the spins are not aligned
in that way, 〈Ψt|Zm|Ψt〉 6= 1, as schematically pre-
sented in Fig. 2. The fraction of sites in the defect
regions is precisely given by ndef defined in (2).

Since |ABS〉 is invariant under eachK layer of the
circuit, the ordered domains, on average, grow. This
introduces ordering to the system, which finally
reaches the absorbing state. The timescale for reach-
ing |ABS〉 is altered by p. At high measurement
rates (p > pc

APT), ordered regions develop quickly
and the defect density ndef decays exponentially
in time. Conversely, at small measurement rates
(p < pAPT

c ), the system is in a non-absorbing phase.
The unitary gates scramble information, while still
competing with the measurements. This leads to a
non-vanishing defect density ndef , prevails to time
scales exponentially large in the system size L.
Close to the APT critical point p ≈ pAPT

c , order-
ing in the system develops so that the defect den-
sity decays in a characteristic power-law fashion,
which is a signature of absorbing phase transition
(APT).

The dynamics of APT can be observed at the
level of the average state ρt. In contrast, the entan-
glement properties of the system unravel a richer
structure observable at the level of individual tra-
jectories |ψt〉.

Notably, the entanglement content of the system
is fixed by the presence/absence of the feedback-
control operation Actrl, which, by construction, does

Fig. 2. Conditioning of the unitary gates on the
measurement outcomes by the flags mechanism
leads to the emergence of ordered domains (high-
lighted in orange) and defect regions. (a) Short-
range control operations only entangle degrees of
freedom within the same defect regions. (b) An ad-
ditional global feedback-control operation Actrl gen-
erates long-range entanglement, coupling distant
disordered areas. The blue lines pictorially repre-
sent entangled degrees of freedom.

not affect the dynamics of the average state ρt.
Without the control operation (a = 0, K = K0),
the feedback mechanism is solely short-ranged, and
no-long range entanglement is generated between
distant disordered regions, see Fig. 2a. Indeed, the
unitaries Um,n generate quantum correlations only
among degrees of freedom within or close to the
boundary of defect regions. The absorbing state is
a product state. Hence, we expect that MIT occurs
before APT (i.e., pMIT

c < pAPT
c ) in such a way that

the state can follow the area-law of entanglement
entropy while the system is not yet in an absorb-
ing phase. For instance, the state may host isolated
single-site defects. Such a state is not volume-law
entangled but is still not an absorbing state.

When the global feedback-control operation Actrl

is used, it globally couples all defect regions, cre-
ating long-range entanglement between distant de-
fects, see Fig. 2b. In this case, we expect pMIT

c =
pAPT
c since any arbitrarily separated qubits in a de-

fect state will be correlated by Actrl and only a fully
ordered state hosts no entanglement. This heuristic
discussion was corroborated for d = 1 dimensional
systems in [39]. We confirm this picture with a sys-
tematic numerical analysis for d ≥ 1 in the following
sections.

3. Numerical results

In this section, we discuss numerical results for
the described circuit architecture and various space
dimensions d ≤ 4, considering the average dynamics
reflected by the defect density ndef as well as non-
linear functions of ρt. Specifically, we investigate the
entanglement entropy dynamics SX(t) for setups
with short-range feedback mechanisms and with the
additional global feedback-control operation Actrl.
Lastly, we investigate the system’s entanglement
and average state features at a fixed circuit depth.
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Fig. 3. Absorbing state phase transition in d = 2, 3, 4 dimensional circuits. The time evolution of the defect
density ndef was obtained by considering PCA for average dynamics (see text). Panels (a, b, c) show the ndef as
a function of time t for measurement rate below/close to/above APT. Darker colors correspond to increasing
system sizes. For d = 2 (a), we consider L = 100, 400, 800, for d = 3 (b) L = 32, 64, 128, and for d = 4 (c)
L = 16, 32, 64. In the vicinity of APT, we observe characteristic power-law decays ndef ∝ t−δ with exponents
δ close to the exponents for the DP class. The insets show tδndef plotted as functions of t|p − pAPT

c |1/ν ,
demonstrating data collapses with exponents consistent with the DP class, see Table I for exponent values.

3.1. Dynamics of the order parameter

We begin by analyzing the dynamics of the av-
erage state ρt. Following standard techniques, see
e.g. [35, 36, 39, 40], the average dynamics can be
analytically mapped to a probabilistic cellular au-
tomaton. Appendix A2 details a short discussion
about this mapping which we use to calculate quan-
tities depending on ρt, such as the defect density
ndef . Computing the classical average dynamics is
more efficient than calculating the full quantum
dynamics of the circuit with stabilizer formalism,
which allows us to simulate systems in 2 ≤ d ≤ 4.
Focusing on the evolution of the defect density ndef

over time t (circuit depth) close to APT, we average
the results over no less than Nreal = 200 realizations
of the circuit and study the behavior ndef in systems
of size up to L = 800 in d = 2, L = 128 in d = 3,
and L = 64 in d = 4 dimensions. Our results are
summarized in Fig. 3.

Our results for d = 2 and systems of size L ≥ 100
are shown in Fig. 2a. At p = 0.8, the defect den-
sity attains a non-zero stationary value that persists
on time scales that increases exponentially with L,
indicating that the system is in the non-absorbing
phase. In stark contrast, a hallmark of the absorb-
ing phase is visible for p = 0.825 — the defect
density decays to zero exponentially with time t
independently of the system size L. The critical
point that separates the two phases is located at
the measurement rate pAPT

c = 0.8175(2) at which
a power-law decay ndef ∝ t−δ with an exponent
δ = 0.45(1) emerges. This behavior is characteristic
for the DP universality class in dimension d = 2.
Varying the measurement rate around p = pAPT

c ,
we observe a collapse of tδndef plotted as a function

of t|p−pAPT
c |1/ν , see inset in Fig. 3a, with exponent

ν = 1.30(3), which is in agreement with the d = 2
DP universality class [51, 52].

Our results for the average dynamics in d = 3 are
presented in Fig. 3b. In the non-absorbing phase,
the defect density ndef attains a non-zero stationary
value up to a time scale which grows exponentially
with L, as exemplified by the results displayed for
p = 0.9. In the absorbing phase, ndef decreases ex-
ponentially to zero, as demonstrated by the data for
p = 0.92. At APT in d = 3, at pAPT

c = 0.912(1),
we notice a power-law decay ndef ∝ t−δ, with
the exponent δ = −0.73(2), compatible with the
d = 3 DP universality class. Moreover, as the inset
in Fig. 3b illustrates, we find a collapse of tδndef

versus t|p−pAPT
c |1/ν , with ν = 1.11(4) consistently,

within error bars, with the critical exponents for the
d = 3 DP universality class [51, 52].

As shown in Fig. 3c, the defect density ndef in
the d = 4 dimensional system behaves in a quanti-
tatively similar fashion in the non-absorbing phase
(e.g., at p = 0.8) and in the absorbing phase (e.g.,
at p = 0.96). The two phases are separated by a
phase transition at which the power-law decay of
the defect density emerges. At the considered sys-
tem size L = 64, we find that the decay of ndef

is well approximated by a decay with an expo-
nent δ = 0.85(1) at pAPT

c = 0.948(2). However,
by comparing this exponent with the results for
L = 16 and L = 32, we notice a persistent in-
crease of our estimate of δ as L increases. For in-
stance, at L = 16, the power-law decay persists
for the longest time for p = 0.945 with exponent
δ = 0.79(1). Hence, the effects of finite system
size introduce a systematic error into our numerical
analysis, preventing us from quantitatively confirm-
ing the mean-field critical exponents δ = 1 and
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Fig. 4. Entanglement entropy SX without the control operation (a) and with the control operation Actr (b)
close to APT in the d = 2 dimensional system. Panel (c) shows SX for d = 3 with Actrl. Darker (lighter)
tones correspond to L = 60 (L = 40) for d = 2 and L = 24 (L = 16) for d = 3, while the colors represent
the measurement rate p. For d = 2, at p = 0.8175 ≈ pAPT

c , we observe the power-law decays with exponent
δ = 0.45(1) characteristic for the DP class in d = 2. The bottom insets in (a, b) show collapses of data with
exponents consistent with DP class in d = 2, see Table I. The upper insets in (a, b) present the value of
entanglement entropy SX at time t = 4L for p < pAPT

c as a function of the size of the subsystem boundary
∂X, where (a) indicates an area-law SX ∝ |∂X|, while (b) exhibits a volume-law behavior, SX ∝ |X|. For
d = 3 in (c), we find a power law behavior with δ = 0.65(4) around the critical point pAPT

c = 0.912(1). In the
inset, we reveal the emerging volume-law scaling, SX ∝ |X|. Results are averaged over more than 103 circuit
realizations.

TABLE I

Summary of critical exponents characterizing dynamical transitions in flagged Clifford circuits. The column
denoted by “DP class” shows the expectations of the directed percolation theory [51, 52]. The column
“Unitary Dyn.” presents the exponents obtained in studies of the full quantum dynamics of the flagged
stabilizer circuits. At the same time, the column “Average Dyn.” reports the results obtained from the
simulation of the probabilistic cellular automaton and they correspond to the average dynamics of the
flagged stabilizer circuits. The results of our numerical simulations are consistent with the DP universality
class, except for the average dynamics results for d = 4, which are subject to significant system size drifts
and hence are denoted by the asterisks.

DP class Unitary Dyn. Average Dyn.
d δ ν δ ν δ ν

2 0.450(5) 1.295(6) 0.45(2) 1.30(5) 0.45(1) 1.30(3)
3 0.73(1) 1.11(1) 0.65(4)∗ − 0.73(2) 1.09(4)
4 1 1 − − 0.85(5)∗ 1.0(1)∗

ν = 1 expected for the DP universality class at
d = 4 [53]. Nevertheless, the trends characterizing
our results suggest that the mean-field critical expo-
nents may describe the considered system when the
time scales and sizes of the system are sufficiently
large.

3.2. Entanglement evolution

Now, we switch to full quantum dynamics of the
circuit and calculate the time-evolved state |Ψt〉. We
focus on non-linear functions of the density matrix
ρt, which grasp physics beyond average state prop-
erties. We consider the average entanglement en-
tropy SX(t) for the subsystem X, which is a hyper
rectangle of dimensions lx ×L/2× . . .×L/2 (recall
that the full system has dimensions L×L/2× . . .×

L/2). We set the value of lx as L/4, which allows
us to distinguish between area-law and volume-law
scaling of entanglement entropy when the system
size L is increased.

Without the feedback-control operationActrl, i.e.,
in the presence of only short-range feedback control,
the system undergoes measurement-induced tran-
sitions (MIT) at pMIT

c = 0.255(3) between phases
with volume-law and area-law entanglement en-
tropy, with properties fully analogous to MIT re-
ported in d = 2 systems without feedback [45].

In Fig. 4a, we present the time evolution of the
entanglement entropy SX(t) at measurement rates
p close to APT, which occurs at pAPT

c = 0.8175(2).
The entanglement entropy SX(t) saturates at
p < pAPT

c to a finite value, decays exponentially
with time t when p > pAPT

c and follows a power-law
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Fig. 5. Properties of the system at time t = 4L as
a function of the measurement rate p for the dimen-
sional system d = 2. Panel (a) presents results with
short-range feedback only (i.e., without the control
Actrl) and demonstrates a volume-law phase of en-
tanglement SA ∝ L2 at p < pMIT

c = 0.255(3) and
an area-law phase SA ∝ L at p > pMIT

c . The or-
der parameter O ≡ 1 − ndef is smaller than unity
for p < pAPT

c = 0.8165(19) and approaches 1 in
the L → ∞ limit for p > pAPT

c . The inset in
panel (a) shows the area-to-area law transition of
the entanglement entropy SX at p = pAPT

c . The
panel (b) presents the same, but in the presence
of the global feedback-control operation Actrl. APT
and MIT merge in a single transition at which the
volume-to-area law entanglement transition accom-
panies the ordering transition reflected by O.

decay when p ' pAPT
c . This behavior is analogous to

the behavior of the defect density ndef near APT.
Moreover, as shown in the lower inset of Fig. 4a,
the entanglement entropy has the same dynamical
scaling as ndef , with compatible critical exponents,
see Table I. Importantly, the entanglement entropy
presents an area-law behavior and scales propor-
tionally to the number of sites at the boundary ∂X
of the region X, SX ∝ |∂X| at any measurement
probability p > pAPT

c , as illustrated in the upper
inset in Fig. 4a. Consequently, at p = pAPT

c , there is
an area-to-area law entanglement transition at time
t ∝ L, in full analogy with the d = 1 case [39].

In the presence of the feedback-control opera-
tion Actrl, the dynamical behavior of the entan-
glement entropy SX(t) at a fixed subsystem size
is entirely analogous to the short-range feedback

case, as shown in Fig. 4b. However, in the presence
of Actrl, the entanglement entropy has the volume-
law scaling with the subsystem size at all p < pAPT

c .
This is demonstrated in the upper inset in Fig. 4b,
which shows that SX/|X| approaches a constant as
the subsystem size increases. Thus, at measurement
rate p = pAPT

c , the system undergoes an entan-
glement transition between volume-law scaling and
area-law scaling of entanglement entropy at time
t ∝ L (see the next section for further discussion of
this point).

Finally, the results for d = 3, presented in Fig. 4c,
exhibit an analogous behavior. We note that the
power-law decay of SX/|X| close to APT is gov-
erned by an exponent δ ≈ 0.65(4), slightly smaller
than the value for the DP class for d = 3. This is
a finite-size effect caused by the limitations of the
largest system size, L = 24, available to our full
quantum dynamics simulation. In contrast, calcula-
tions of average dynamics were performed for sys-
tems of size up to L = 128 at d = 3 and yielded
the result consistent with the DP class in d = 3.
The presence of the feedback-control operation Actrl

ensures that the entanglement entropy follows a
volume-law SX ∝ |X|, as indicated by the satu-
ration of the curves shown in the inset of Fig. 4c.
Consequently, at t ∝ L, the system undergoes an
entanglement transition between volume-law and
area-law scaling of the entanglement entropy.

The critical features of the entanglement entropy
dynamics reported in this section for systems in di-
mensions d = 2 and d = 3 are entirely analogous
to the results for d = 1 discussed in [39]. By anal-
ogy, we expect similar results to extend to d = 4,
the upper critical dimension for the DP universality
class [53]. Nevertheless, our present capabilities of
the simulation of Clifford circuits prevent us from a
quantitative confirmation of this conjecture.

3.3. Absorbing and entanglement phase transition
at time t ∝ L

As we argued in Sect. 2.2, the presence of a
feedback mechanism in our system implies that
limt→∞ ρt = |ABS〉〈ABS| in any finite system
size L. In other words, if the limit of large time
is taken, we will always find our system in the triv-
ial, ordered, product state |ABS〉〈ABS|. However,
fixing a specific time scale at which we observe the
system, for instance, setting t = 4L (which we will
use henceforth in this section), allows us to uncover
manifestations of the dynamical phase transitions
described above.

In Fig. 5, we compare the results for d = 2 by
considering both short-range feedback and includ-
ing the global feedback-control operation Actrl. A
clear signature of APT is the fact that the order pa-
rameter O ≡ 1−ndef approaches its maximal value
O → 1 at p > pAPT

c when the system size increases,
while O < 1 for p < pAPT

c , as demonstrated by the
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red lines in Fig. 5. We reiterate that the behavior of
the order parameter is the same in the presence and
absence of Actrl by the construction of our feedback
mechanism.

In the presence of the short-range feedback only,
see the top panel in Fig. 5, we observe two separate
transitions, namely (i) MIT between phases with
volume-law and area-law entanglement entropy at
the measurement rate p = pMIT

c = 0.255(3) and (ii)
APT at p = pAPT

c . We note that area-law scaling for
d = 2 implies that SX ∝ L. Notably, at p = pAPT

c ,
there is a second entanglement transition between
the area-law phase characterized by SX ∝ L and
the area-law phase with SX → 0 as demonstrated
by the inset in the top panel of Fig. 5.

However, when the global feedback-control oper-
ation Actrl is present, the entanglement entropy SX
behavior parallels that of the defect number ndef .
Consequently, in that case, there is only a single
volume-law to area-law entanglement transition in
our system at p = pAPT

c , as shown in the lower panel
of Fig. 5.

The behavior of entanglement entropy presented
at time t = 4L has its roots in the separation of
time scales of the approach to the absorbing state
that occurs at APT. Since the dynamical behav-
ior of entanglement entropy in d = 3 is parallel to
the results for d = 2, the entanglement entropy has
analogous behavior to that presented in Fig. 5 in the
presence and absence of the global feedback control
operation in d = 3 at time t ∝ L (data not shown).

4. Conclusions

In this work, we analyzed the role of dimensional-
ity in the dynamics of monitored stabilizer circuits
with a feedback control mechanism introduced by
classical labels (flags), which gives rise to an ab-
sorbing state of the dynamics. While dimensional-
ity changes the universal content of APT and MIT,
the phenomenological understanding presented of
one-dimensional circuits is generalized straightfor-
wardly to higher dimensions d. In particular, simi-
larly to the d = 1 dimensional case [39], the range
of feedback-control operations is a crucial ingredi-
ent for the interplay between entanglement and ab-
sorbing state transition. We find that circuits with
short-range feedback control exhibit two entangle-
ment transitions at circuit depths proportional to
the system size, namely a volume-to-area law tran-
sition at the MIT critical point and an area-to-
area law transition at the APT transition point. In-
stead, when global feedback-control operations are
present, there is only a single volume-to-area MIT
which coincides with APT. For the employed global
unitary operation, MIT inherits the properties of
the underlying APT universality class. In our imple-
mentation, the latter is unaffected by the feedback
control operations range and always leads to the
critical behavior described by directed percolation

universality class in d dimensions, as summarized in
Table I. The average dynamics results are consistent
with the expectation that d = 4 is the upper criti-
cal dimension beyond which the mean-field critical
exponents capture the properties of APT. In con-
trast, the upper critical dimension for MIT in setups
without feedback mechanisms is dc = 6 [45].

Similarly to the one-dimensional case, our work
concludes that the post-selection problem can be
mitigated if appropriate feedback-control opera-
tions are chosen. The behavior of the entangle-
ment entropy at the area-to-area law phase transi-
tion in the setup with short-range feedback control
and the volume-to-area law phase transition in the
setup with global control operation can be observed
by measurements of the defect density, which does
not require the post-selection. However, the crucial
caveat is that the correspondence between the dy-
namics defect density and the entanglement entropy
does not generally hold but requires the choice of
a sufficiently strongly entangling control operation
(see [39] for explicit examples). In other words, the
post-selection problem is mitigated only by meeting
stringent control operations requirements. More-
over, introducing global control operations may sig-
nificantly alter the trajectory ensemble. As a result,
feedback control drives the original measurement-
induced transition (present in the system without
feedback control) onto a different universality class.
We expect similar conclusions to hold for generic
(Haar) circuits. While numerical methods are in-
effective, a generalization of the arguments in [40]
may lead to a formal proof of the distinct APT and
MIT when q � 1 dimensional qudits are considered.
Similarly, we expect that our arguments general-
ize to a monitored fermionic model with conditional
feedback control in higher dimensions and variable-
range interactions, which we will extensively discuss
in a future contribution [54]. An interesting future
direction is to enhance our understanding of the in-
terplay between absorbing states, topological state
preparation, and shallow circuits [55–62]. We leave
these questions as subjects of further explorations.
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Appendix:
Additional details

For self-consistency, this appendix presents ad-
ditional technical details. After a more formal dis-
cussion on flagged Clifford circuits, we discuss the

mapping of average dynamics to the classical model.
We briefly review the Gottesman–Knill theorem
and how stabilizer simulations are performed.

A1. Flagged Clifford circuits

Our discussion follows closely the paper [39], to
which we refer for additional details. At a formal
level, flagged Clifford circuits extend our many-
body quantum state to |Ψ〉 7→ |Φ〉 = |Ψ〉 ⊗ |F〉.
The flag vector |F〉 = ⊗m∈Λ|fm〉 registers the post-
measurement polarizations and determines the ac-
tion of the unitary gates at each time step. As in
the main text, we fix |ABS〉 = |1m〉 as the absorbing
state.

The key idea is that flagged sites m (i.e., for
which fm = 1) are unchanged by the measurement
layer M and by the global unitary A. Furthermore,
depending on the nearest neighbors flags fn, two-
body gates Um,n act trivially or as a random Clif-
ford transformation. (Here n = m + êµ, with êµ
being the versor in the randomly chosen direction
µ = 1, . . . , d.)

In the doubled Hilbert space, the absorbing state
|Φabs〉 = |ABS〉 ⊗ |1m〉⊗m is the fixed point of
the dynamics, while the initial state is |Φ0〉 =
|Ψ0〉 ⊗ |0m〉⊗m . The non-trivial control operation
Actrl, when present, is given by

Actrl|Φ〉 =
(
C{m:fm=0}|Ψ〉

)
⊗ |F〉 (5)

with C{m:fm=0} being a global Clifford unitary act-
ing only on unflagged sites. On the other hand,
the projective measurement and two-body gates are
given respectively by

Pm|Φ〉 =


1
√
p−

(
1− Zm

2
|Ψ〉
)
⊗
[(
Xm − iYm

)fm |F〉] , outcome − 1,

1
√
p+

(
1 + Zm

2
|Ψ〉
)
⊗
[(
Xm + iYm

)1−fm |F〉] , otherwise,

(6)

and

Um,n|Φ〉 =

 Cm,n|Ψ〉 ⊗
[(
Xm − iYm

)fm(
Xn − iYn

)fn |F〉] , if fmfn = 0,

|Φ〉, otherwise,
(7)

for the nearest neighboring sites m and n.

A2. Mapping of average dynamics to
classical model

As discussed in the previous section, the flagged
Clifford circuit acts in a formally doubled Hilbert
space. We now discuss the dynamics of the av-
erage state over Clifford gates. More importantly,
the average dynamics of the observables linear in
a state, such as ndef , is fully encoded in the mean

state Rt = EClifford[|Φt〉〈Φt|], with t — depth/time
of the circuit. The core idea is that the average
dynamics over the Clifford unitaries corresponds to
a probabilistic cellular automaton (PCA). The av-
erage state requires independently drawn Clifford
operations C, each of them acting on a single bra
and ket, namely

I ≡
∫

Clifford

dC C|Ψ〉〈Ψ |C†. (8)
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However, the integral I is easily performed using
the 2-design property of the Clifford group [63] as
the Haar integral

I =

∫
Haar

dC C|Ψ〉〈Ψ |C† = 1

2w
11C ⊗ P⊥|Ψ〉〈Ψ |P⊥,

(9)
where 11C is the sites where C acts non-trivially, and
P⊥ is the projection on its complementary space.
By introducing the indices km = 0,±1, the on-site
mixed state ρ(0)

m = 1
211m, and the on-site projectors

ρ
(±1)
m = 1

2 (11m ± Zm), it follows that the Clifford
averaged state is

Rt = EClifford[|Φt〉〈Φt|] =(⊗
m∈Λ

ρ(fm)
m

)
⊗

(⊗
m∈Λ

ρ(−1)fm+1

m

)
. (10)

Since the physical state and the flags are in one-
to-one correspondence, the average dynamics corre-
spond to a probabilistic cellular automaton of the
flags. The average dynamics over measurement loca-
tions, measurement outcomes, and unitary locations
can be written down analogously. This corresponds
to a discrete master equation for Rt, that we do not
detail for presentation purposes, cf. also [39].

A3. Brief review on the simulation of
stabilizer circuits

We conclude by briefly reviewing ideas for sta-
bilizer simulations and refer to [42, 45] for addi-
tional details. The stabilizer state on the lattice Λ is
fixed by Ld independent Pauli strings gm such that
gm|Ψ〉 = |Ψ〉. Each Pauli string is parametrizes as

gm = e iπφm

∏
j∈Λ

(XaimZb
i
m) (11)

where φm, aim, bim = 0, 1 are the Z2 numbers. The
group G generated by the Pauli strings gm is abelian
and fixes the state as |Ψ〉〈Ψ | =

∑
g∈G g/2

Ld

. There-
fore, the state is completely determined by the ma-
trix G = (φm|aim, bim), whose rows fix the genera-
tors of the group G.

Stabilizer circuits involve stabilizer states that
evolve under the Clifford gates and projective mea-
surements. By definition, Clifford unitaries trans-
form a Pauli string into a single Pauli string. Hence,
they correspond to a transformation of the Ld ×
(Ld + 1) matrix G to the new matrix G′ [42]. Sim-
ilarly, projective measurements onto Pauli strings
transform G in a new matrix G′′. If the project-
ing Pauli string g∗ is already in the group G, then
G 7→ G. (Finding the measurement outcome re-
quires a Gaussian elimination, cf. [42].) Viceversa,
if the operator g∗ is not in the group G, then there
exist a set Ianti of anticommuting operators gµ such
that {g∗, gµ} = 0 for each µ ∈ Ianti. The measure-
ment outcome is randomly and uniformly ±1, and
the state collapses after the measurement onto the

resulting string ±g∗. One can verify that the up-
dated matrix G 7→ G′′ is given by gν such that
[g∗, gν ] = 0, together with g∗ and the transformed
set gµ̃ · gµ for µ̃ ∈ Ianti and µ ∈ Ianti/{µ̃}. The
above statement summarizes the Gottesman–Knill
theorem and illustrates how the system is efficiently
simulable with polynomial classical resources of the
number of N qubits. Lastly, given a bipartition
X ∪Xc, the entanglement of a stabilizer state |Ψ〉
can be computed efficiently [64, 65] using

SX(|Ψ〉) = |X| − log2 |GX |, (12)
where GX is a subgroup of all elements in G that
act trivially on Xc, and |X| is the number of qubits
in X. The calculation of log2 |GX | reduces to the
calculation of the rank of the appropriate submatrix
of the matrix G over the Z2 field for which we use
the algorithm of [48–50]. We note that participation
entropies of stabilizer states can be calculated in a
similar way, see [14].
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