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We present the experimental study of the distributions of the reflection amplitudes ri = |Sii| of the
two-port scattering matrix Ŝ for networks with unitary and symplectic symmetries for the intermediate
absorption strength parameter γ. The experimental results confirm the theoretical predictions obtained
within the framework of the Gaussian unitary and symplectic ensembles of the random matrix theory.
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1. Introduction

The theory of quantum chaotic scattering in large
complex quantum systems was developed more than
seventy years ago [1–3]. However, controllable ex-
perimental investigations of such systems due to
the effects of decoherence are still extremely dif-
ficult. Therefore, many of physical problems from
the field of quantum chaos are experimentally un-
dertaken with the help of microwave networks sim-
ulating quantum graphs [4–7].

This article shows how microwave networks can
be applied to obtain the experimental results on
the distributions P (r) of the reflection amplitudes
ri = |Sii| of the two-port scattering matrix

Ŝ =

[
S11 S12

S21 S22

]
(1)

for networks with unitary and symplectic symme-
tries. The experimental results are compared to the
exact random matrix theory (RMT) solutions of
this problem [8].

The concept of quantum graphs constructed from
a set of vertices connected by one-dimensional quan-
tum wires was introduced more than 80 years
ago by Linus Pauling [9]. They are not only ba-
sic mathematical objects but are also indispens-
able in modeling physical networks in the limit
where the lengths of the wires are much larger than
their widths [4, 10]. Quantum graphs are invaluable
tools for studying open quantum systems exhibit-
ing chaotic scattering [11–14]. They have been used

to describe a large variety of systems and models,
e.g., superconducting quantum circuits [15], quan-
tum circuits in tunnel junctions [16], and the re-
alization of high-dimensional multipartite quantum
states [17].

Quantum graphs can be simulated by microwave
networks because of the formal equivalence of the
Schrödinger equation describing quantum graphs
and the telegraph equation of the corresponding
microwave networks [4–6]. It was demonstrated
that microwave networks can experimentally sim-
ulate systems whose fluctuation properties can be
described by all three fundamental ensembles in
RMT. In the case of the systems characterized by
T -invariance, they are the Gaussian orthogonal en-
semble (GOE, symmetry index β=1 in RMT) [4, 12,
18–23] and the Gaussian symplectic ensemble (GSE,
symmetry index β=4) [7, 14, 24, 25]. For sys-
tems for which T -invariance is broken, this is the
Gaussian unitary ensemble (GUE, symmetry index
β=2) [4–6, 26–28].

It should be emphasized that the other complex
quantum systems can be simulated by microwave
plane billiards [29–45] and atoms excited in strong
microwave fields [46–55].

2. Theoretical outline

The distribution of the amplitude of the di-
agonal elements Sii of the scattering matrix Ŝ,
P (r), where r = |Sii|, is an important but
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very rarely studied characteristic of chaotic sys-
tems. The distribution of the reflection ampli-
tude P (r) in the GOE system and in the sys-
tem with partially violated time reversal invariance
was experimentally studied using microwave chaotic
cavities [29, 56].

Recently, substantial progress has been made in
the investigation of open chaotic systems with vi-
olated time reversal invariance (symmetry index
β = 2). The distributions of Wigner’s reaction
K-matrix in the case of high absorption were for the
first time experimentally studied in [6]. Finally, the
experimental investigation of distributions of the
off-diagonal elements of the two-port scattering and
the Wigner’s K̂ matrices were investigated in [28].
However, the distribution of the reflection ampli-
tude P (r) has not been studied yet.

For open chaotic systems with symplectic symme-
try (symmetry index β = 4), the distribution of the
rescaled reflection amplitude P (r̃), where r̃ = r

〈r〉
and 〈r〉 is the average value of r, has been studied
in [7].

In this article, we present the first experimental
study of the distribution of the reflection amplitude
P (r) for an open GUE system. These results are
compared with the ones obtained for the GSE sys-
tem. The openness of the systems will be described
by the dimensionless parameter γ = 2πΓ/∆, char-
acterizing the absorption strength [8, 57], where Γ
and ∆ are the width of resonances and the mean
level spacing, respectively.

The diagonal elements of the scattering matrix Ŝ
can be expressed as Sii = ri e

iθi , where ri and θi are
the reflection amplitude and the phase measured at
the i-th port of the network. The relationship be-
tween the diagonal elements Sexp

ii of the two-port
scattering matrix Ŝexp measured directly in the ex-
periment and the diagonal entries Sii of the matrix
Ŝ will be discussed later.

In the experimental investigations, quantum
graphs with unitary symmetry were modeled by
microwave networks with the circulators [5, 6]
(see Fig. 1). The GSE microwave networks with
symplectic symmetry contained two connected mi-
crowave subnetworks with unitary symmetry (see
Fig. 2). The time reversal invariance violation was
induced by T-shaped circulators of opposite orienta-
tion introduced at corresponding vertices. The con-
nections between the subnetworks were realized by
two phase shifters in order to maintain the signal
phase difference of π (see Fig. 2) and to enforce
the appearance of Kramer’s doublets specific to the
GSE systems [7].

3. Experiment

In this article, the distributions of the reflection
amplitudes P (r) are tested for the intermediate val-
ues of the absorption parameter γ = 5.1 ± 0.5 and
γ = 5.6±0.2 (Γ ' ∆) for the networks with unitary

Fig. 1. The scheme of the experimental set-up for
measuring the scattering matrix Ŝ of the 9-vertex
microwave networks with violated T -invariance
(GUE system) and absorption. The T -violation was
induced using four Anritsu PE8403 microwave cir-
culators. Absorption in the networks was caused by
the internal absorption of microwave cables, 4 phase
shifters, and 4 circulators.

and symplectic symmetries, respectively. In order
to achieve such values of the parameter, in addition
to the microwave cables, 4 circulators and 4 phase
shifters were introduced into the unitary microwave
network (see Fig. 1). The microwave network with
symplectic symmetry contained altogether 20 1 dB
attenuators, 2 circulators, and 4 phase shifters, i.e.,
10 1 dB attenuators, 1 circulator, and 1 phase shifter
for each connected by 2 phase shifters microwave
subnetwork with unitary symmetry (see Fig. 2).

The two-port scattering matrices Ŝexp of the
microwave networks with unitary and symplectic
symmetries required for the evaluation of the nor-
malized two-port scattering matrix Ŝ and the dis-
tributions P (r), were measured using a vector net-
work analyzer (VNA), Agilent E8364B (see Figs. 1
and 2). The networks were connected to VNA
through the leads — HP 85133-616 and HP 85133-
617 flexible microwave cables. The T -violation in
the unitary network and in the subgraphs of the
main GSE network was induced with Anritsu
PE8403 and Aerotek microwave circulators with low
insertion loss, which operate in the frequency ranges
ν ∈ (7–14) GHz and ν ∈ (3.5–7.5) GHz, respec-
tively. The circulators are non-reciprocal three-port
passive devices. A wave that enters the circulator
through port 1, 2, or 3 exits through port 2, 3, or 1,
respectively.

4. Basic formulas

For systems with GUE and GSE invariance
(β = 2 and β = 4), the analytic expression for
the distribution of the reflection amplitude r can
be expressed by the distribution of the reflection
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Fig. 2. The scheme of the microwave network with symplectic symmetry. The microwave network is con-
structed from two GUE subgraphs. Time reversal invariance violation is induced by T-shaped circulators. The
subgraphs are connected by two phase shifters (No. 1 and No. 2) that induce a relative phase π. Different
realizations of the GSE graph were realized by increasing the lengths of two corresponding bonds with phase
shifters (No. 3 and No. 4) by the same amount. The absorption strength parameter γ in the GSE network was
controlled by 20 1 dB attenuators.

coefficient R = r2 given by [8]

P (r) =
4r

(1− r2)2
P0

(
1 + r2

1− r2

)
. (2)

The probability distribution P0(x) for GUE sys-
tems is given by the expression

P0(x) =
1

2

[
AGUE

(α
2
(x+ 1)

)β/2
+BGUE

]
× exp

(
−α
2
(x+ 1)

)
, (3)

where α = γβ/2, AGUE = eα − 1, and BGUE =
1 + α− eα.

While, in the case of GSE symmetry, the proba-
bility distribution P0(x) is defined by

P0(x) =
1

2

[
AGSEγ(x+ 1) +BGSE

]
e−γ(x+1)

+C(x, γ)e−γx
γ∫

0

dt
sinh(t)

t
, (4)

where AGSE = e2γ − 1, BGSE = 1 + 2γ − e2γ , and
C(x, γ) = 1

2γ
2(x+ 1)2 − γ(γ + 1)(x+ 1) + γ.

For each realization of a microwave network, the
absorption parameter γ = 1

2

∑2
i=1 γi was evaluated

by fitting the theoretical mean reflection coefficient

〈r2〉th =

1∫
0

dr r2P (r) (5)

to the experimental one, 〈r2i 〉 = 〈SiiS
†
ii〉, obtained

after eliminating the direct processes, where the in-
dex i = 1, 2 denotes the port 1 or 2. In particular,
the diagonal elements Sii of the scattering matrix Ŝ
of a network for the perfect coupling case were ob-
tained by removing the direct processes present in
the diagonal elements Sexp

ii of the scattering matrix
Ŝexp using the impedance approach [41].

5. Results

In Fig. 3a, the experimentally obtained dis-
tribution of the reflection coefficient P (r) =
1
2

∑2
i=1 Pi(r) for the microwave networks with uni-

tary symmetry is shown for the effective absorption
strength γ = 5.1 ± 0.5 (red dots). The results are
obtained by averaging over 700 realizations of the
network, which were generated by increasing and
decreasing the length of different pairs of network
bonds by the same amount, while keeping the total
optical length of the network constant at 3.61 m.
The corresponding theoretical distribution P (r) cal-
culated from (2) and (3) for the parameter γ = 5.1
is represented by a red dashed line. A good over-
all agreement of the experimental distribution P (r)
with the theoretical one is observed. For compari-
son, we also show the theoretical distribution P (r)
calculated for GSE systems with the same absorp-
tion strength γ = 5.1 (blue solid line).
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Fig. 3. (a) The experimental distribution of the re-
flection amplitude P (r) for the microwave network
with unitary symmetry for γ = 5.1±0.5 (red dots).
It is compared with the theoretical ones for GUE
(red dashed line) and for GSE (blue full line) calcu-
lated for γ = 5.1. (b) The experimental distribution
of the reflection amplitude P (r) for the microwave
network with symplectic symmetry for γ = 5.6±0.2
(blue diamonds). It is compared with the theoreti-
cal ones for GSE (blue full line) and for GUE (red
dashed line) for γ = 5.6.

The experimental distribution of the reflection
coefficient P (r) for the microwave networks with
symplectic symmetry for the effective absorption
strength γ = 5.6 ± 0.2 (blue diamonds) is shown
in Fig. 3b. The results were obtained by averag-
ing over 30 realizations of the networks. The to-
tal optical length of the networks varied from 7.09
to 7.17 m. In Fig. 3b, we also show the correspond-
ing theoretical distribution P (r) (blue full line) cal-
culated from (2) and (4) for the parameters γ = 5.6.
The good overall agreement of the experimental dis-
tribution P (r) with the theoretical one confirms
that the procedure leading to the determination of
the absorption parameter γ using (5) also works
very well for the networks with symplectic sym-
metry. Additionally, the distribution P (r) predicted
for GUE systems (γ = 5.6) is shown with the red
dashed line.

6. Conclusions

In conclusion, we have reported on the measure-
ments of the distribution P (r) of the amplitude of
the diagonal elements r = |Sii| of the two-port scat-
tering matrix Ŝ for the unitary and symplectic mi-
crowave networks for intermediate loss parameters
γ = 5.1 ± 0.5 and γ = 5.6 ± 0.2, respectively. The
experimental results were compared with the the-
oretical ones [8], showing good overall agreement.
Thus, our experimental results validated the theo-
retical ones.
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P.M. Koch, R. Blümel, Phys. Rev. E
57, 304 (1998).

[36] Y. Hlushchuk, A. Kohler, Sz. Bauch,
L. Sirko, R. Blümel, M. Barth, H.-J. Stöck-
mann, Phys. Rev. E 61, 366 (2000).

[37] Y. Hlushchuk, A. Błȩdowski, N. Savytskyy,
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