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The spectral determinant is usually defined using the spectral zeta function that is meromorphically
continued to zero. In this definition, the complex logarithms of the eigenvalues appear. Hence, the notion
of the spectral determinant depends on the way in which one chooses the branch cut in the definition
of the logarithm. We give results for the non-self-adjoint operators that specify when the determinant
can and cannot be defined and how its value differs depending on the choice of the branch cut.
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1. Introduction

When studying the spectral properties of opera-
tors, various concepts can be investigated. One of
them is the spectral (functional) determinant, cor-
responding to the product of eigenvalues. It can be
viewed as a generalization of the determinant for
a square matrix (an operator with finitely many
eigenvalues). Since for most of the interesting op-
erators the product of their eigenvalues is not con-
vergent, one defines it using the spectral zeta func-
tion, a function of a complex variable s defined
through an infinite sum that is usually convergent
in a certain half-plane in s (for details, see Sect. 2).
Using the fact that the spectral zeta function can
be uniquely meromorphically continued to the rest
of the complex plane in s, allows us to assign the
unique value to its derivative at s = 0. This value
is then used for the definition of the determinant.

The above definition of the spectral determinant
can be traced back to the works of Minakshisun-
daram and Pleijel [1] and Ray and Singer [2]. Since
then, results for various operators have been ob-
tained. Without claiming that the list of works is
complete, we mention, e.g., the papers on the de-
terminant for the Sturm–Liouville operators [3–5],
Dirichlet Laplacians on balls or polygons [6, 7], or
harmonic and anharmonic oscillators [8, 9]. An im-
portant application of the spectral determinants can
be found in string theory or quantum field theory
(see [10] and references therein). A result for more
general elliptic operators obtained in [11] was ap-
plied for the damped wave equation in [12] or for
the polyharmonic operator in [13].

When defining the spectral determinant using the
spectral zeta function, complex logarithms of the
eigenvalues appear (for more details, see Sect. 2).
However, the complex logarithm is not a unique
function. When one wants to define it as a unique
function, one must choose a certain branch — an
interval of the width 2π, from which the arguments
of the eigenvalues are taken. As it was already men-
tioned in [12, 14], the choice of the branch may in-
fluence the value of the determinant. The aim of the
current note is to shed some light on this problem.
For various distributions of the eigenvalues in the
complex plane and different choices of the branch
cut, we find how the determinant changes when al-
tering the branch cut.

The result in [12] obtained for the linear dis-
tribution of the eigenvalues on the imaginary axis
is generalized in two ways: we allow for multiple
rays along which the eigenvalues are distributed,
and we generalize the result to power growth. For
this setting, we prove that the determinant changes
the sign when the branch cut crosses one of the
rays on which the eigenvalues are distributed. More-
over, we prove that for the exponential and the
logarithmic growth, the spectral determinant can-
not be reasonably defined. Finally, we study the
distribution of the eigenvalues on a line not go-
ing through the origin, and we compare the re-
sults to the previous results on the damped wave
equation.

The paper is structured as follows. In Sect. 2,
we properly define all notions used in the paper.
In Sect. 3, we give an introductory example show-
ing how the choice of the branch cut influences the
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determinant. Section 4 gives the main results of the
paper; we compare the determinants for different
branch cuts and various distributions of the eigen-
values.

2. Definition and preliminaries

Throughout this paper, we will assume an
operator A with a discrete spectrum. Operator A
can be, in general, non-self-adjoint, and thus its
eigenvalues may not be real. To define the spectral
determinant for this operator, we have to introduce
the spectral zeta function first, which is a function
of the complex parameter s.

Definition 1. The spectral zeta function of the
operator A is

ζA(s) =

∞∑
j=1

λ−sj , (1)

where λj ’s are the eigenvalues of the operator A.

This definition is a generalization of the Riemann
zeta function ζR(s) =

∑∞
j=1 j

−s. We stress that,
similarly to the Riemann zeta function, the sum in
the spectral zeta function is typically not conver-
gent for all complex s. However, for the most com-
mon operators (as, for instance, the Sturm–Liouvile
operators), the sum is typically convergent in the
half-plane Re(s) > c.

Since it will be used in Sect. 4.4, we also intro-
duce the Hurwitz zeta function.

Definition 2. Hurwitz zeta function is a function of
two complex parameters, s and a, defined by the
formula

ζH(s, a) =
∞∑
j=0

1

(j + a)s
, (2)

Now, we can define the spectral determinant.

Definition 3. The spectral determinant for the opera-
tor A is defined as

det
[
A
]
= exp

(
− ζ ′A(0)

)
, (3)

where prime denotes the complex derivative of the
zeta function with respect to s.

Notice that s = 0 is the point where the sum (1)
is not convergent, as it consists of infinitely many
ones. However, one can bypass this issue if the sum
is properly defined in the above-mentioned half-
plane. We use the fact that the function can be
uniquely meromorphically continued from the half-
plane to the rest of the complex plane, and the
needed derivative at zero is computed using this
continuation.

For the reader’s convenience, we introduce the
well-known notions from complex analysis (see,
e.g., [15, 16]).

Definition 4. We say that a complex function of the
complex variable f(z) is holomorphic in an open set
Ω ⊂ C if there exists its complex derivative f ′(z) for
every z0 ∈ Ω . The function which is holomorphic in Ω
up to the set of isolated points is called meromorphic.
The function is complex analytic at z0 if it is infinitely
many times differentiable and equal to its Taylor
series in the neighbourhood of z0.

Theorem 1. For functions on an open ball, the
function is holomorphic if and only if it is analytic.

Theorem 2. Two functions that are complex analytic
in Ω̃ and coincide on some set with an accumulation
point in Ω̃ are identical.

Hence, if we have a meromorphic function in an
open set Ω , we can meromorphically continue it to
the whole complex plane. The zeta function in Defi-
nition 3 is thus understood as the unique meromor-
phic continuation to zero from the above-mentioned
set where the sum in the definition of the zeta func-
tion converges.

At the end of this section, let us mention a prop-
erty that will be important in the following sec-
tions. There appears the term λ−sj in the defini-
tion of the spectral zeta function. Let us stress that
both λj and s are complex and that the expression
can be rewritten as exp(−s ln (λj)). Hence, the spec-
tral zeta function (and through it also the spectral
determinant) is dependent on the definition of the
complex logarithm of the eigenvalues. The complex
logarithm can be regarded as a multivalued func-
tion, with the imaginary part having values that
can differ by multiples of 2π. When one wants to
define the logarithm as a single-valued function, one
must specify the interval of the width 2π and take
the arguments of the numbers in the argument of
the logarithm from that interval. Thus, one chooses
one particular branch of the logarithm. Then, the
ray in the complex plane where the arguments are
discontinuous is called the branch cut.

As it was found in [12] and earlier in Examples 11
and 12 [14], the choice of the branch cut of the
logarithm can influence the value of the spectral
determinant. In the next sections, we will investi-
gate this issue deeper and try to elucidate under
which conditions the spectral determinant changes
and how.

3. Example — damped wave equation

In this section, we will reproduce an example
from [12]. In the mentioned paper, the spectral de-
terminant for the damped wave equation on an in-
terval of the length T was studied. On this interval,
the equation

∂2v(t, x)

∂t2
+ 2a(x)

∂v(t, x)

∂t
=
∂2v(t, x)

∂x2
, (4)

463



J. Lipovský et al.

is investigated, where a(x) ∈ C([0, T ]) is the damp-
ing function. The Dirichlet boundary conditions
v(0) = v(T ) = 0 and certain initial conditions are
assumed. The problem can be rewritten into the
form of a matrix equation

∂

∂t

(
v0(t, x)

v1(t, x)

)
=

(
0 1
∂2

∂x2 −2a(x)

)(
v0(t, x)

v1(t, x)

)
.

(5)
It is easy to find that after the substitution for v1,
the variable v0 satisfies (4). Furthermore, the ansatz
v0(t, x) = eλtu0(x), v1(t, x) = eλtu1(x) leads to the
alternative formulation of the problem — finding
the eigenvalues for the matrix operator

ADWE =

(
0 1
∂2

∂x2 −2a(x)

)
. (6)

Then, (5) translates to

ADWE

(
u0(x)

u1(x)

)
= λ

(
u0(x)

u1(x)

)
. (7)

The spectral determinant for the operator ADWE

was found in [12], and it was proven that it does not
depend on the damping. The effect of the choice
of the branch cut that is found in [12] is visible
already for the case without damping (a(x) ≡ 0),
i.e., the operator with the eigenvalues λj± = ± jπT i ,
j ∈ N. We will study the spectral determinant for
the branch cuts in the negative and the positive real
axis. For the former, the interval of the arguments
of the eigenvalues will be chosen from the interval
(−π, π), and the eigenvalues can be rewritten as

λj+ =
jπ

T
e i

π
2 , λj− =

jπ

T
e− i π2 . (8)

The spectral zeta function can be then written as

ζA(s) =

∞∑
j=1

[(
jπ

T
e i

π
2

)−s
+

(
jπ

T
e− i π2

)−s]
=

∞∑
j=1

(
jπ

T

)−s (
e− i π2 s + e i

π
2 s
)
=

∞∑
j=1

2

(
jπ

T

)−s
cos
(πs

2

)
=

2es log (
T
π ) cos

(πs
2

)
ζR(s), (9)

where ζR is the Riemann zeta function.
The Riemann zeta function is well defined in the

half-plane Re(s) > 1 and thus can be meromorphi-
cally continued to the rest of the complex plane with
the known values

ζR(0) = −
1

2
, ζ ′R(0) = −

1

2
log (2π). (10)

Differentiating (9) and using (10), we get

ζ ′A(0) = 2 log
T

π
ζR(0) + 2ζ ′R(0) = − log (2T ).

(11)
Hence, the determinant is

det
[
A
]
= elog (2T ) = 2T. (12)

For the choice of the cut on the positive real axis,
one has to take the arguments of the eigenvalues
from the interval (0, 2π). Hence, we plug into the
formula for the zeta function the values

λj+ =
jπ

T
e i

π
2 , λj− =

jπ

T
e i

3π
2 (13)

and, using similar manipulations as above, we ob-
tain the result

ζA(s) = 2e− iπs es log (
T
π ) cos

(πs
2

)
ζR(s). (14)

Thus, the derivative at zero differs by the factor of
iπ, i.e.,

ζ ′A(0) = −2iπζR(0) + 2 log
T

π
ζR(0) + 2ζ ′R(0) =

iπ − log (2T ).
(15)

This results in the spectral determinant that has a
different sign, i.e.,

det
[
A
]
= e− iπ+log (2T ) = −2T. (16)

This result shows that the change of the branch
cut can, in some cases, cause a difference in the
spectral determinant, for instance, in its sign. The
analysis provided in this section illustrates that
to get a proper value of the spectral determi-
nant, one must clearly specify which branch of
the logarithm is assumed in its definition. Even in
this simple example inspired by a physical prob-
lem, the value of the spectral determinant differs;
this drives us to investigate this problem further
and find how the determinant changes in differ-
ent geometrical settings of the eigenvalues of the
problem.

4. Results

In this section, we try to generalize this result for
different and more general types of operators, or in
other words, distributions of eigenvalues. We start
with a result already mentioned in [12], concerning
the shift of the branch cut through finitely many
eigenvalues.

Theorem 3. If the branch cut of the logarithm
moves so that it crosses finitely many eigenvalues
of the operator A, its spectral determinant does not
change.

We generalize the result of Sect. 3 in two di-
rections. First, the eigenvalue distances from the
origin grow at a different rate (as a power of j,
exponentially or logarithmically). Secondly, we al-
low for more rays on which the eigenvalues are
situated.

4.1. Power growth

One of the main results of the paper is the fol-
lowing theorem concerning the power growth of the
eigenvalues.
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Theorem 4. Let us have a finite number of angles α`,
such that 0 < α1 < α2 < · · · < αN < 2π. Let us
assume that the eigenvalues of the operator A are

λ
(1)
j = c1j

c2 e iα1 ,

λ
(2)
j = c1j

c2 e iα2 ,

...

λ
(N)
j = c1j

c2 e iαN (17)
(see Fig. 1), where c1, c2 ∈ R+. If the branch cut is
moved so that it passes n half-lines with angles α`,
the determinant will be (−1)n-multiple of the former
determinant.

Proof. Let us define angles β`, ` = 1, . . . , N+1 such
that 0 < β1 < α1 < β2 < α2 < β3 < · · · < βN <
αN < βN+1 < 2π and assume the branch cuts on
the half-lines under the angles β`. For a particular
branch cut under the angle β`, the arguments of the
eigenvalues will be in the interval (β`, β`+2π). It is
clear that the arguments of the eigenvalues in the
particular rays are successively α1 + 2π, α2 + 2π,
. . . , α`−1+2π, α`, α`+1, . . . , αN . The spectral zeta
function is
ζA(s) =

∑∞
j=1(c1j

c2)−s
[
e− iα1s−2π is+e iα2s−2π is

+ . . .+e− iα`−1s−2π is+e− iα`s+ . . .+e− iαNs
]
=

e−s log c1ζR(c2s)
[
e− iα1s−2π is+e− iα2s−2π is+ . . .

+e− iα`−1s−2π is+e− iα`s+ . . .+e− iαNs
]
. (18)

The sum is convergent for Re(s) > c−12 , hence, we
can continue it to the rest of the complex plane.
The derivative of the spectral zeta function at zero
is
ζ ′A(0) = − log (c1) ζR(0)N+c2ζ

′
R(0)N+ζR(0)(− i)

×

[
2π(`−1)+

N∑
k=1

αk

]
=
N

2
log (c1)−

N

2
c2 log (2π)

+iπ(`−1)+i 12

N∑
k=1

αk. (19)

The determinant is then, according to (3), equal to

det
[
A
]
= (−1)`−1c−

N
2

1 (2π)
c2N
2 exp

[
− i

2

N∑
k=1

αk

]
,

(20)
If the branch cut is changed so that it crosses n
rays of eigenvalues, i.e., we move from the index `
to the index `+ n, the ratio of the determinants is
clearly from the previous formula (−1)n, and hence
we have

det
[
A`+n

]
= det

[
A`
]
(−1)n, (21)

where det[A`] is the determinant for the branch cut
under the angle β` and det[A`+n] is the determinant
for the branch cut under the angle β`+n.

Fig. 1. Power growth of the eigenvalues on more
half-lines.

Let us stress that even for the cut on the same
place in the complex plane but with the angle dif-
ferent by 2π, the determinant does not have to be
the same. If the number of rays of the eigenvalues
is odd, the determinant changes the sign.

4.2. Exponential growth

This subsection is devoted to the exponential
behaviour of the eigenvalues.

Theorem 5. If a ray of eigenvalues behaving as
λj = c1 e

c2j e iα, c1, c2 ∈ R+ is present, the spectral
determinant diverges to +∞.

Proof. We will restrict ourselves to the case when
there is only the above-mentioned ray of eigenval-
ues, although the presence of other eigenvalues (ei-
ther finitely many or infinitely many with power
growth) does not influence the result. First, we write
down the spectral zeta function

ζA(s) =

∞∑
j=1

c−s1 e−c2js e− iαs =

c−s1 e− iαs
∞∑
j=1

e−c2js = c−s1 e− iαs e−c2s

1− e−c2s
=

e−s log (c1) e− iαs 1
ec2s−1 , (22)

where we use the sum for the geometric series that
converges for Re(s) > 0. Its derivative is

ζ ′A(s) = − log c1 e
−s log (c1) e− iαs 1

ec2s − 1

− iαe−s log (c1) e− iαs 1

ec2s − 1

−c2 e−s log (c1) e− iαs ec2s

(ec2s−1)2 . (23)

Both ζA and ζ ′A diverge as s = 0; the limit of the
derivative at zero is −∞. Hence, the spectral deter-
minant diverges to +∞.
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4.3. Logarithmic growth

In this subsection, we study the case where the
eigenvalues on a ray grow logarithmically or slower.

Theorem 6. Let log denote the natural logarithm. If a
ray of eigenvalues behaving as λj = ωj e

iα, ωj ∈ R+,
ωj ≤ c1 log (c2j), c1 ∈ R+, c2 ≥ 1 is present, the
spectral zeta function is not defined.

Proof. The spectral zeta function can be con-
structed similarly to the previous cases, i.e.,

ζA(s) = e− iαs
∞∑
j=1

ω−sj . (24)

Now, we prove that
∑∞
j=1 ω

−s
j diverges for all s ∈ R

with s > 0 (for s ≤ 0, the claim is obvious)
∞∑
j=1

ω−sj ≥ c
−s
1

∑∞

j=1
(log (c2j))

−s =

c−s1

∑∞

j=1
(log (c2) + log (j))−s. (25)

The last sum diverges by the integral criterion. For
any given s > 0, there exists c > 1 such that
1
x < log (x)

−s for x > c. Moreover, there exists
c̃ > 0 such that (log (c2)+log (x))−s ≥ (2 log x)−s ≥
c̃ (log x)−s for x > c. Then,
∞∫
1

dx (log (c2)+ log (x))−s ≥

∞∫
c

dx (log (c2)+ log (x))−s ≥
∞∫
c

dx c̃ log (x)
−s

>

>

∞∫
c

dx
c̃

x
=∞, (26)

and hence the sum diverges. Therefore, there is no
half-plane Re(s) > const. such that the zeta func-
tion is defined in this half-plane, and hence the spec-
tral determinant cannot be reasonably defined.

4.4. Eigenvalues on a vertical line
outside the origin

The next example illustrates that the ratio of the
determinants for different branch cuts is not always
1 or −1. We consider the example from Sect. 3 with
the eigenvalues shifted horizontally. The eigenvalues
will be λj = b+ ij, j ∈ Z\{0} (see Fig. 2).

We will choose the branch cut in the following
way. The first one will be on the positive real axis
or just above it, hence, the arguments of the eigen-
values will be taken from the interval (0, 2π). The
second branch cut will be chosen on the negative
real axis, and the arguments of the complex num-
bers will be taken from the interval (π, 3π). Note
that the eigenvalues in the lower half-plane will have
the same arguments for both choices of the branch
cut.

Fig. 2. Eigenvalues on a vertical line outside the
origin.

The spectral zeta functions can be written using
the Hurwitz zeta functions in the following way

ζ1(s) = e−
π
2 isζH(s, 1− ib) + e−

3π
2 isζH(s, 1+ib)

(27)
for the first choice of the branch cut and

ζ2(s) = e−
5π
2 isζH(s, 1− ib) + e−

3π
2 isζH(s, 1+ib)

(28)
for the second choice. For this construction, we have
rotated the set of points j ± ib, j = 1, . . . ,∞ by
corresponding angles. Note that in the definition of
the Hurwitz zeta function, the sum goes from 0,
while in the definition of the spectral zeta function,
it starts from 1. This results in the factor of 1 in the
second argument of ζH.

Differentiating the expressions (27) and (28), one
obtains

ζ ′1(0) = −π2 i ζH(0, 1− ib) + ∂ζH(s,1− ib)
∂s

∣∣∣
s=0

− 3π
2 i ζH(0, 1+ib) + ∂ζH(s,1+ib)

∂s

∣∣∣
s=0

,

ζ ′2(0) = − 5π
2 i ζH(0, 1− ib) + ∂ζH(s,1− ib)

∂s

∣∣∣
s=0

− 3π
2 i ζH(0, 1+ib) + ∂ζH(s,1+ib)

∂s

∣∣∣
s=0

.
(29)

Let us denote by det1 and det2 the determinant
for the first and the second cut, respectively. The
ratio of both determinants is

det1
det2

= e−ζ
′
1(0)+ζ

′
2(0) = e−2 iπζH(0,1− ib). (30)

Our final task is to find the value of the Hurwitz
zeta function ζ(0, 1− ib). We can use the following
formula (see, e.g., Eq. (1.10.7) in [17])

ζH(s, a) =
1

2
a−s +

a1−s

s− 1

+2

∫ ∞
0

dx
sin (s arctan (x/a))

(a2 + x2)
s/2

(e2πx − 1)
. (31)
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Applying this formula for s = 0 and a = 1− ib,
one finds that the sine and hence also the integral
vanish, and we obtain

ζH(0, 1− ib) =
1

2
+

1− ib

−1
= −1

2
+ b i . (32)

Substitution to (30) yields
det1
det2

= e−2 iπ(−
1
2+b i ) = −e2bπ. (33)

Remark 1. We can see that unlike in [12], the de-
terminant not only changes the sign, but the ra-
tio of the determinants depends on the parame-
ter b. Another example can be found in Examples 11
and 12 [14]. A more detailed analysis of the eigen-
values of our system and the damped wave equation
in [12] for the general value of the damping shows
that, on the one hand, the eigenvalue distribution
looks very similar and, on the other hand, there
are differences in the higher terms of the eigenvalue
asymptotics. For the damped wave equation on the
interval of length 1 with the damping a(x), the large
j eigenvalue asymptotics is

λj ≈ πj i − 〈a〉+
〈a2〉
2π ij

+
1

2π2j2

[
〈a3〉 − 〈a〉〈a2〉

+
1

2

(
a′(1)− a′(0)

)]
+ . . . (34)

(see [18]). The correct choice of the length of the
interval supporting the damped wave equation (in
particular, equal to π) and b = −〈a〉 gives the same
first two terms of the asymptotics as in our example.
However, the higher-order terms differ. This results
in different behaviour of the determinant; in [12],
the determinant did not depend on the damping,
while in the present example, it depends exponen-
tially. One can deduce that even small changes in
the eigenvalue asymptotics can influence the spec-
tral determinant.

5. Conclusions

In this paper, we have illustrated the subtleties of
the spectral determinant and the spectral zeta func-
tion. The spectral zeta function, used for defining
the spectral determinant, is a function of a complex
variable s and (in general, infinitely many) complex
eigenvalues λj . In the variable s, one may find a cer-
tain region in which the infinite sum in its definition
converges, and the zeta function is well-defined and
may be meromorphically continued into the rest of
the s-complex plane. On the other hand, the situ-
ation in the complex plane in which the eigenval-
ues λj “live” is more complicated. The value of the
spectral zeta function depends on the choice of the
interval from which the arguments of the eigenval-
ues are taken. This may result in the discontinuities
of the spectral zeta function in the λ-plane. If the
branch cut moves through infinitely many eigenval-
ues (or, from the other perspective, if we perturb the

eigenvalues so that they move through the branch
cut), the spectral zeta function (and hence also the
spectral determinant) may change.

Although this phenomenon was mentioned ear-
lier in [12, 14], to the best of our knowledge, it has
not been studied in detail previously. In the current
paper, we have given new Theorems 4, 5, and 6
that specify for eigenvalues on rays with power, ex-
ponential, and logarithmic behaviour, respectively,
whether the zeta function and the spectral deter-
minant can be defined, and if yes, how the de-
terminant changes when moving the branch cut.
Moreover, in Sect. 4.4, we studied in detail the ex-
ample of an operator with the eigenvalues on the
line not including the origin. Such a distribution
of eigenvalues is close to the distribution of eigen-
values of the damped wave equation on an inter-
val. However, we show that the behaviour of the
spectral determinants for both operators differs sig-
nificantly. Our result demonstrates that the higher
terms of the asymptotics of the eigenvalues for the
damped wave equation are crucial for the behaviour
of some of its spectral properties, e.g., the spectral
determinant.
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