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It is investigated how magnetic boundary control can be used to solve inverse problems for Schrödinger
operators on metric graphs. Explicit examples show that such reconstruction is sometimes possible,
starting from a single contact vertex in the graph.
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1. Introduction

The current note is devoted to the boundary con-
trol method [1–6] applied to solve inverse prob-
lems for magnetic Schrödinger operators on met-
ric graphs [7, 8]. It is well-known that the precise
form of the magnetic potential cannot be recon-
structed from the spectrum — standard magnetic
Schrödinger operators with equal fluxes through the
cycles and the same electric potentials are unitary
equivalent and hence isospectral. Moreover, the in-
verse problems for operators with zero magnetic po-
tential cannot always be solved uniquely [9–18] (see
also numerous papers devoted to isospectral discrete
graphs, e.g., [19–23]). It was proposed in [24] to use
magnetic fluxes to enrich the set of spectral data in
order to get a unique solution to the inverse prob-
lem. The spectral data are given by the spectrum
for different values of the magnetic fluxes through
the cycles. It was proposed to call this method mag-
netic boundary control (MBC-method) to underline
the role of the magnetic field in the solution of the
inverse problem.

In the case of trees (graphs without cycles),
the magnetic potential can be removed completely,
hence the spectrum is independent of the magnetic
potential. The inverse problem is uniquely solvable
if the M -function (energy-dependent Dirichlet-to-
Neumann map) associated with all degree one ver-
tices is known [25, 26]. The MBC-method for stan-
dard operators on graphs with one cycle was con-
sidered in [24]. It was proven that the solution to
the inverse problem is not unique if the cycle is
given by a loop. On the other hand, if the cy-
cle is not a loop, then the solution is unique in
the generic case†1. Our goal today is to study the

†1One should mention that for the lasso graph with other
than standard vertex conditions, the inverse problem is
uniquely solvable by the MBC-method [27].

MBC-method for graphs with several cycles. It ap-
pears that the inverse problem can sometimes be
uniquely solved using this new method. We have
illustrated our discoveries with a few explicit exam-
ples showing both the power of the method and its
limitations.

2. Metric graphs and standard
Schrödinger operators

A finite compact metric graph Γ can be
seen as a collection of compact intervals En =
[x2n−1, x2n], n = 1, 2, . . . , N, called edges with the
set of end points V = {xj}2Nj=1 divided into equiva-
lence classes V m (m = 1, 2, . . . ,M) called vertices,
so that V =

⋃M
m=1 V

m and V m1
⋂
V m2 = ∅, pro-

vided m1 6= m2. Then the metric graph Γ is the
union of edges Γ =

⋃N
n=1En with the end points

belonging to the same vertex identified [8].
The corresponding Hilbert space of square-

integrable functions on Γ coincides with the
orthogonal sum of the spaces of functions on the
edges

L2(Γ ) =

N⊕
n=1

L2(En). (1)

Let q ∈ L2(Γ ) and a ∈ C(Γ \ V ) be real-valued
electric and magnetic potentials on the edges. Then
the standard magnetic Schrödinger operator in
L2(Γ ) is defined by the differential expression

τq,a :=

(
i
d

dx
+ a(x)

)2

+ q(x) (2)

on the functions from

W 2
2 (Γ ) =

N⊕
n=1

W 2
2 (En) (3)

satisfying standard vertex conditions at every ver-
tex V m (m = 1, 2, . . . ,M)
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u(xj) = u(ul), provided xj , xl ∈ V m

— continuity condition,∑
xj∈Vm ∂u(xj) = 0 — Kirchhoff condition.

(4)
Here, u(xj) and ∂u(xj) = (−1)j−1u′(xj) denote the
limiting values of the function u ∈ W 2

2 (Γ ) and its
first oriented derivative, respectively. Note that the
derivates are taken in the direction pointing inside
the corresponding edge and, therefore, are indepen-
dent of the chosen orientation of the edges.

The main results presented in this paper hold
even for potentials q ∈ L1(Γ ), but our presenta-
tion will be limited to L2(Γ ) potentials for the sake
of clarity. The general case has been treated in [8].
We shall also avoid discussing other than standard
vertex conditions — the reason is that the elimina-
tion of the magnetic potential leads to a change in
vertex conditions.

Let us denote the corresponding self-adjoint op-
erator by Lq,a(Γ ). Its spectrum is discrete [7, 8].

The spectrum of Lq,a(Γ ) does not depend on the
particular form of the magnetic potential a, but on
the magnetic fluxes — the integrals of the magnetic
potential along non-trivial cycles Cj in Γ , i.e.,

Φj =

∫
Cj

dy a(y), j = 1, 2, . . . , β1, (5)

where β1 is the first Betti number — the number of
independent cycles in Γ .

3. M-function: short introduction

The (scalar) Titchmarsh–Weyl M -function was
first introduced to describe spectral properties of
one-dimensional Schrödinger operators [28]. For
many years, its matrix generalisation has been used
to solve inverse problems for operators on metric
graphs [25, 29]. It is not our aim to give a rigor-
ous introduction to the theory of M -functions for
metric graphs — it is given in [8].

Among all vertices in Γ , we choose a non-empty
subset ∂Γ , which we call the contact set. It should
be understood that the graph Γ can be approached
only via this set. Of course, we are interested in the
case when this set is small compared to the set of
all vertices in the graph. For any λ ∈ C\R consider
solutions to the stationary magnetic Schrödinger
equation on the edges

−
( d

dx
− ia(x)

)2
ψ(λ, x) + q(x)ψ(λ, x) = λψ(λ, x),

(6)
satisfying standard conditions (4) at all internal
vertices V m ∈ V \ ∂Γ and just continuous at the
contact vertices V m ∈ ∂Γ . Every such solution is
uniquely determined by its values on the contact
set. Consider the matrix-valued function, called M -
function for the graph Γ and contact set ∂Γ ,

MΓ (λ) : ψ|∂Γ 7→ ∂ψ|∂Γ , (7)

connecting the values of the solution at the contact
vertices ψ(V m) to the sums of oriented derivatives

∂ψ(V m) :=
∑

xj∈Vm

∂ψ(xj). (8)

This is a matrix-valued Herglotz–Nevanlinna func-
tion in λ, i.e., it is analytic outside of the real axis
and has a positive imaginary part in the upper half-
plane

=
(
λ
)
> 0⇒ =(MΓ (λ) :=

(
MΓ (λ)−M∗Γ (λ)

)
2i

≥ 0.

(9)
In what follows, we shall also use the Dirich-

let Schrödinger operator LD
q,a(Γ ) — the operator

in L2(Γ ) defined by the same differential expres-
sion, standard vertex conditions at the internal ver-
tices, and Dirichlet conditions at the contact ver-
tices. This operator is again self-adjoint and has a
discrete spectrum.

The singularities of theM -function coincide with
the spectrum of the Dirichlet operator LD

q,a(Γ ),
while some of the spectrum of Lq,a(Γ ) can be iden-
tified using the secular equation detMΓ (λ) = 0.
The last equation determines those eigenvalues of
Lq,a(Γ ), which are not simultaneously eigenvalues
of LD

q,a(Γ ).
The eigenvalues and the normalised (in the orig-

inal Hilbert space L2(Γ )) eigenfunctions of Lq,a(Γ )
and LD

q,a(Γ ) will be denoted by λn, ψn and λDn , ψD
n ,

respectively.
The structure ofM -functions for the graph is best

seen from the following two explicit formulas [30, 31]

MΓ (λ) = −

[ ∞∑
n=1

〈
ψn|∂Γ , ·

〉
`2(∂Γ)

ψn|∂Γ
λn − λ

]−1
, (10)

MΓ (λ)−MΓ (λ
′) =

∞∑
n=1

λ− λ′

(λDn − λ)(λDn − λ′)

×
〈
∂ψD

n |∂Γ , ·
〉
`2(∂Γ)

∂ψD
n |∂Γ . (11)

In the above formulas, ψn|∂Γ and ∂ψD
n |∂Γ denote

the function values and the oriented derivative val-
ues at the contact vertices, respectively, and λ′ 6= λ
is any complex number not lying in the spectra of
Lq,a(Γ ) and LD

q,a(Γ ).
The first formula determines MΓ (λ) directly,

while the second formula determines only the
difference between the values of M -function at two
different points. To use the second formula, it is
enough to know the degrees dm of the contact ver-
tices since the M -function possesses the asymp-
totics

M(−s2) = −sdiag
{
dm
}
+O(1), s→∞.

(12)
To understand formula (12), consider the boundary
control for the Laplace operator (q(x) = a(x) ≡ 0).
If the boundary control is applied at a degree dm
vertex, then for sufficiently small times the ver-
tex acts as a collection of degree one vertices. The
boundary control creates outgoing waves in the
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edges joined at the vertex, hence for small times
the response is equal to the sum of responses from
the degree one vertices. Connectivity between these
edges starts to play a role only when the travelling
waves return after reflection from the neighbour-
ing vertices. Adding electric and magnetic poten-
tials does not affect the asymptotics.

4. Dissolving a vertex

By solving the inverse problem using the
MBC-method, one dissolves high-degree contact
vertices. In this section, we shall discuss whether
the M -function known for different values of the
magnetic fluxes can be used to reconstruct the
M -function for the graph where one of the vertices
is substituted with several (dm) degree one vertices.

Definition 1. We say that the metric graph Γ1 is ob-
tained from a metric graph Γ by dissolving a certain
vertex V 0 in Γ if:

• the metric graphs Γ and Γ1 share the same set
of edges {En}Nn=1,

• the end points connected at V 0 in Γ form degree
one vertices in Γ1,

• all other vertices in Γ and Γ1 coincide.

Let us see Fig. 1, where the dissolving procedure
is presented schematically. The green area repre-
sents the part of the graph that is not affected by
the procedure. The degree four vertex V 0 is substi-
tuted with four degree one vertices V 1, . . . , V 4.

We restrict our presentation to connected graphs
(both Γ and Γ1 are connected). Then, the number
of broken cycles is given by

β1(Γ )− β1(Γ1) = d0 − 1. (13)

Our goal is to compare the M -functions corre-
sponding to Γ and Γ1. These functions depend not
only on the spectral parameter λ, but on the mag-
netic fluxes as well. We shall indicate dependence
on the fluxes through the broken cycles, assuming
that the other fluxes (through preserved cycles) are
fixed.

By V 1, . . . , V d0 we denote the pendant vertices in
Γ1 coming from the vertex V 0 in Γ and let Cj be
a path connecting V d0 to V j , j = 1, 2, . . . , d0 − 1.
These paths on Γ1 correspond to the cycles in Γ
that are broken under the dissolution. The corre-
sponding fluxes are

Φj =

∫
Cj

dy a(y) =

V j∫
V d0

dy a(y), (14)

where j = 1, 2, . . . , d0−1. These fluxes form the vec-
tor Φ. It will be convenient to view Φ as an element
of Rd0 despite the fact that only d0−1 of its coor-
dinates may be non-zero

Φ =
(
Φ1,Φ2, . . . ,Φd0−1, 0

)
. (15)

Fig. 1. Dissolving a vertex.

To reconstruct theM -function for Γ1, it is enough
to consider the fluxes equal to 0 and π, therefore we
introduce the signs

µj := e iΦj , j = 1, 2, . . . , d0;

µ =
(
µ1, µ2, . . . , µd0

)
= e iΦ ,

(16)

and consider the M -functions depending on the
signs µj instead of the phases Φj . To get the cor-
responding spectral data, it is enough to consider
the standard operators with zero magnetic poten-
tial and additional signing conditions(

u(yj + 0)

u′(yj + 0)

)
= −

(
u(yj − 0)

u′(yj − 0)

)
(17)

introduced at certain points yj (j = 1, 2, . . . , d0)
on the pendant edges. The sign conditions can be
seen as a singular magnetic potential concentrated
at the point yj [32]. These operators will be marked
with Lsign

q (Γ ) and called signed Schrödinger opera-
tors. We have 2d0−1 different signed operators.

Our first step is to establish the relation between
the diagonal element of the M -function associated
with Γ and the vertex V 0

M00
Γ (λ,µ) =: M(λ,µ) (18)

and the diagonal d0 × d0 block of the M -function
associated with the graph Γ1 and the degree
one vertices coming from V 0. We shall find
an explicit relation between the scalar Herglotz–
Nevanlinna functionM(λ,µ) and the d0×d0 matrix-
valued Herglotz–Nevanlinna function M1(λ,µ) :=

{M ij
Γ1
(λ,µ)}d0i,j=1.

The dependence of M1(λ,µ) upon µ is trivial,
namely
M1(λ,Φ) = diag {µj}M1(λ,1) diag {µj}−1︸ ︷︷ ︸

=diag {µj}

, (19)

where 1 =
(
1, 1, . . . , 1

)
. To see this, it is enough to

eliminate the magnetic potential starting from V d0

using the transformation

f(x) 7→ g(x) = exp

− i

x∫
V d0

dy a(y)

 f(x). (20)
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The scalar function M(λ,µ) is simply equal to
the sum of all entries in M1(λ,µ)

M(λ,µ)︸ ︷︷ ︸
=M00

Γ (λ,µ)

=

d0∑
i,j=1

µiµjMij
1 (λ,1)︸ ︷︷ ︸

=Mij
Γ1

(λ,1)

. (21)

This formula determines the M -function for any
signed operator on Γ through the M -function
for Γ1.

Let ψD
n denote the eigenfunction corresponding to

zero fluxes through the broken cycles. These eigen-
functions can be chosen to be real-valued. Then,
the normal derivatives of the Dirichlet eigenfunc-
tions for non-zero fluxes are given by µj∂ψD

n (V
j),

implying in particular that the normal derivative at
V 0 is∑d0

j=1
µj∂ψ

D
n (V

j). (22)

It follows that the singularity of M(λ,µ) is of the
form

M(λ,µ) ∼
λ→λD

n

1

λDn−λ

d0∑
i,j=1

µiµj ∂ψ
D
n (V

i)∂ψD
n (V

j)=
1

λDn−λ

[
d0∑
i=1

(
∂ψD

n (V
i)
)2

+

d0∑
i,j=1,
i6=j

µiµj ∂ψ
D
n (V

i)∂ψD
n (V

j)

]
,

(23)

where we have used that ∂ψD
n are real-valued.

Introducing the notation aj := ∂ψD
n (V

j), we are
faced with the following trivial problem — deter-
mine aj if the numbers

(±a1 ± a2 ± · · · ± ad0−1 + ad0)
2 (24)

are known for all possible combinations of the signs.
It is clear that this reconstruction is possible only
up to the multiplication of all aj by −1, which cor-
responds to the multiplication of the corresponding
eigenfunctions by −1.

The sum of the squares can be obtained by aver-
aging over all possible signs

d0∑
i=1

a2j =∑
µ∈({1,−1}d0−1,1)

(
µ1a1+µ2a2+ . . .+µd0−1ad0−1+ad0

)2
2d0−1

.

(25)
Hence, we are able to determine the following

combinations of aj ’s
d0∑

i,j=1,
i 6=j

µiµj aiaj =

(
d0∑
i=1

µiai

)2

−
d0∑
i=1

a2j . (26)

We recover the products by averaging a second
time

akal =
1

2d0−1

∑
µ∈({1,−1}d0−1,1),

µk=µl

(
d0∑

i,j=1,
i 6=j

µiµj aiaj

)
,

(27)
for k 6= l. The product akal = alak appears in
the double sum precisely 2d0−1 times, while all
other products cancel since µiµj attains +1 and −1
equally many times.

If at least three of the coefficients are non-zero,
then the squares a2j are determined as

a2i =
(aiaj) (aial)

(ajal)
, (28)

provided aj , al 6= 0. We are able to recover one non-
zero aj up to a sign, but then all other non-zero
coefficients are determined from the products ajai.
We conclude that if the squared sums (

∑d0
j=1 µjaj)

2

are known for all µ of the form µ ∈ ({1,−1}d0−1, 1),
then the coefficients aj are determined up to a com-
mon sign.

It follows that the diagonal element M(λ,µ)
known for all µ ∈ ({1,−1}d0−1, 1) determines the
vector
∂ψD

n 2 :=
(
∂ψD

n (V
1), ∂ψD

n (V
2), . . . , ∂ψD

n (V
d0)
)
,
(29)

up to the common sign, hence the singular part of
M1(λ,~0) is determined, which as before allows us to
reconstruct it up to the constant matrix A, yielding

M1(λ,0)=A+
∑

λD
n (Γ1)

λ−λ′

(λDn−λ)(λDn−λ′)

〈
ψD
n 2, ·

〉
∂ψD

n 2.

(30)
To determine A, we remember that the M -function
possesses the asymptotics (12).

We conclude that the M -function for Γ1 can be
recovered, provided the M -functions of all signed
operators on Γ are known and the following gener-
ically satisfied conditions are fulfilled:

• the spectrum of LD
q (Γ1) is simple;

• the corresponding eigenfunctions ψD
n on Γ1

are either invisible from the involved degree
one vertices (all ∂ψD

n (V
j) = 0, j = 1, 2,

. . . , d0), or at least three normal derivatives
∂ψD

n (V
j), j = 1, 2, . . . , d0, are different from

zero.

5. First examples

In this section, we discuss how to apply the MBC-
method to solve inverse problems for metric graphs.
We start by presenting examples where the whole
graph can be reconstructed starting from a single
vertex.
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5.1. Example 1

Consider the graph presented in Fig. 2 and as-
sume that the contact set consists of the single ver-
tex V . Let us dissolve the vertex V . The described
procedure allows us to determine the M -function
associated with the new graph and all its degree
one vertices. Conventional boundary control allows
us to determine the lengths of the pendant edges
and the potential q on them [25]. Then these edges
can be peeled away, and we can reduce the inverse
problem to a smaller graph, where contact vertices
are indicated by red points. By repeating the pro-
cedure by dissolving the vertices V ′ and V ′′, the in-
verse problem is reduced to a tree with all pendant
vertices in the contact set (see the upper sequence
in Fig. 2). The MBC-method allows us to solve the
inverse problem for this graph. Note that starting
from a single vertex, we recovered both the metric
graph Γ and the electric potential q on it.

The inverse problem for this graph can be solved
by dissolving the vertices V , V ∗, and V ∗∗ instead
(see the lower sequence in Fig. 2). The resulting

graph is the cycle with 3 contact points — the in-
verse problem can again be solved by dismantling
the cycle into three intervals.

This example shows that the MBC-method allows
us to solve the inverse problem for rather compli-
cated graphs with an arbitrary number of cycles and
very few contact points.

5.2. Example 2

Figure 3 presents another graph with a single con-
tact vertex V . After dissolving V and removing the
pendant edges, we get the graph with three vertices.
We may dissolve only the vertex V ′ because the re-
maining two contact vertices have degree two.

This leads to a graph with three contact vertices,
namely two degree two vertices and one bottleneck
vertex V ′′ — the dissolution of this vertex would
disconnect the graph. The inverse problem for the
remaining graph cannot be solved by dismantling it,
since the corresponding trees are not independent.
Note that the original graph in this example is a
slight modification of the graph presented in Fig. 2.

Fig. 2. Reconstruction of the whole graph using the MBC-method.

Fig. 3. Reconstruction terminated by the bottleneck.
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It is not surprising that not all pendant-free
graphs may be reconstructed starting from a sin-
gle contact vertex — the described procedure may
terminate immediately or after a few steps. As the
last example shows, there are two reasons for the
termination:

• degree two contact vertices,

• bottlenecks.

6. Conclusions

It is shown how magnetic boundary control can
be applied to solve inverse problems for Schrödinger
equations on metric graphs. It remains to charac-
terise all metric graphs together with contact sets
that guarantee solvability of the inverse problem.
One may prove explicit theorems characterising the
minimal contact sets.
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