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In an absorptive system, the Wigner reaction K-matrix (directly related to the impedance matrix in
acoustic or electromagnetic wave scattering) is non-selfadjoint, hence its eigenvalues are complex. The
most interesting regime arises when the absorption, taken into account as an imaginary part of the
spectral parameter, is of the order of the mean level spacing. I will show how to derive the mean density
of the complex K-matrix eigenvalues for the M -channel reflection problem in disordered or chaotic
systems with broken time-reversal invariance. The computations have been done in the framework of
the nonlinear σ-model approach, assuming fixed M and the dimension of the underlying Hamiltonian
matrix N → ∞. Some explicit formulas are provided for zero-dimensional quantum chaotic system as
well as for a semi-infinite quasi-1D system with fully operative Anderson localization.
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1. Introduction

Consider the problem of wave scattering from a
piece of random medium confined to a spatial do-
main D and described by a self-adjoint Hamiltonian
H, e.g.,

H=
∑
r∈Λ

V (r)
∣∣r〉〈r∣∣+ ∑

r∼r′

[
trr′
∣∣r〉〈r′∣∣+ tr′r

∣∣r′〉〈r∣∣],
(1)

where the second sum runs over nearest neighbours
on a lattice Λ (assumed to be confined to the do-
main D). The parameters tr′r are in general com-
plex, satisfying t∗rr′ = tr′r to ensure the hermiticity
of the Hamiltonian, H = H†, where we use t∗ to
denote complex conjugation of t and H† for Hermi-
tian conjugation of H. The disordered nature of the
medium is taken into account by choosing the on-
site potentials V (r) and/or hopping parameters tr′r
to be random variables. Such construction is known
in the literature as the Anderson model and pro-
vides the paradigmatic framework to study single-
particle localization phenomena. Note that form (1)
can also be used for modelling a quantum particle
motion on any graph r ∈ G, with trr′ being the
elements of the adjacency matrix of graph G.

The tight-binding representation is convenient as
it allows one to think of such a Hamiltonian as de-
scribed by a large N × N random matrix H, with
N being the number of sites in the lattice or graph.
Alternatively, one may think of its continuum ana-
logue, H = − ~2

2m∇
2 + V (r), r ∈ D, with the ap-

propriate (e.g., Dirichlet) conditions at the bound-
ary of D. In fact, under appropriate conditions,

the essentially random nature of wave scattering
can be generated by an irregularly shaped bound-
ary of the domain D, without any intrinsic po-
tential disorder. This is the standard case in the
so-called wave billiards, the paradigmatic toy sys-
tems for studying the effects of quantum or wave
chaos, see, e.g., [1–4]. In such a case, the famous
Bohigas–Giannoni–Schmit conjecture [5] allows one
to describe universal features of such systems ef-
ficiently by replacing the Hamiltonian H with a
random N × N matrix from Gaussian ensembles:
Gaussian orthogonal (GOE), Gaussian symplec-
tic (GSE), or Gaussian unitary (GUE), depending
on the presence or absence of time-reversal sym-
metry (and/or other relevant symmetries) in the
system.

A very convenient framework for describing the
scattering of classical or quantum waves from the
disordered or chaotic medium has been formulated
in [6] (see, e.g., [7] for more detail). Within such
a framework, which is frequently called in the lit-
erature the “Heidelberg model”, one constructs the
unitaryM×M energy-dependent scattering matrix
S(E) describing the scattering of waves incident on
a random medium at some energy E and then exit-
ing it viaM open scattering channels, numbered by
c = 1, . . . ,M (see Fig. 1). Unitarity reflects the flux
conservation, i.e., the vectors a = (a1, . . . , aM ) of
incoming and b = (b1, . . . , bM ) of outgoing ampli-
tudes are linearly related via b = S(E)a and have
the same norm.

The relation between S(E) and the medium
Hamiltonian H is then provided by the following
expression
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S(E) =
1− iK(E)

1+iK(E)
, K(E) =W †

1

E−H
W,

(2)
where columnsWc (c = 1, . . . ,M) of an N×M ma-
trixW of coupling amplitudes toM open scattering
channels can be taken as fixed vectors satisfying the
orthogonality condition

N∑
i=1

W ∗ciWbi = γcδcb, (3)

with γc > 0 ∀c = 1, . . . ,M determining the “bare”
strength of coupling of a given channel to the scat-
tering system. The resultingM×M Hermitian ma-
trix K(E) is known in the literature as the Wigner
reaction K-matrix. It is the hermiticity of K which
implies S-matrix unitarity and, hence, implies the
flux conservation. Note that the Wigner K-matrix
is experimentally measurable in microwave scatter-
ing systems, as it is directly related to the systems
impedance matrix, see, e.g., [8–10].

One of the serious challenges related to the theo-
retical description of scattering characteristics, how-
ever, is related to the fact that experimentally mea-
sured quantities suffer from inevitable energy losses
(absorption), e.g., due to damping in resonator walls
and other imperfections. Such losses violate the uni-
tarity of the scattering matrix and are important for
interpretation of experiments, hence considerable
efforts were directed towards incorporating them
into the Heidelberg approach [11]. At the level of
the model (1), the losses can be taken into account
by allowing the spectral parameter E to have a fi-
nite imaginary part by replacing E → (E + iα) ∈ C
with some α > 0. This replacement violates the
hermiticity of the Wigner matrix K(E + iα); in
particular, entries of K now become complex even
for real symmetric choice of H and real W . The
most interesting, difficult, and experimentally rel-
evant regime occurs when absorption parameter α
is comparable with the mean separation ∆(E) be-
tween neighbouring eigenvalues of the wave-chaotic
Hamiltonian H. For example, if one uses the Gaus-

SH
W

Fig. 1. A sketch of a chaotic wave scattering from
a region schematically represented by a cavity and
assumed to contain a random medium inside. An
operator governing wave dynamics in such a cavity
decoupled from the channels is assumed to be effec-
tively described by a large random matrix H. An
infinite lead is assumed to support M propagating
channels in the considered energy range and is cou-
pled to the cavity region by a matrix/operator W .
The ensuing M × M unitary scattering matrix S
can be related to H and W in the framework of the
Heidelberg approach and is given by (1).

sian random matrix model for H, normalized to
have the mean eigenvalue density given by Wigner
semicircle ν(E) = 1

(2π)

√
4− E2 in a finite interval

|E| < 2, one has ∆(E) = (ν(E)N)−1 as N→∞.
The statistics of the real and imaginary parts of
K-matrix entries in such a regime have been the
subject of a considerable number of theoretical pa-
pers [12–16] and are by now well-understood and
measured experimentally with good precision for
systems with preserved time-reversal invariance in
microwave cavities [8–10, 17] and microwave sim-
ulations of quantum graphs [18–21]. More recently,
experimental results forK-matrices in systems with
broken time-reversal invariance [22, 23] and eventu-
ally symplectic symmetry [24] have been also re-
ported.

In the present paper, we will be interested in yet
another characteristic of the non-Hermitian Wigner
matrix K(E + iα), the mean density of its com-
plex eigenvalues Kc = Re(Kc) − i Im(Kc), ∀c =
1, . . . ,M , defined as

ρM (u, v; y) =

〈
M∑
c=1

δ
(
u−Re(Kc)

)
δ
(
v−Im(Kc)

)〉
,

(4)
where we suppressed the energy dependence for
simplicity, indicating instead explicit dependence
on the appropriately scaled absorption parameter
y = 2πα

∆ . Here and henceforth, the angular brackets
〈. . .〉 indicate the averaging over ensemble of ran-
dom Hamiltonians H. Note that selecting the cou-
pling vectors Wc coinciding with the first M basis
vectors in N -dimensional space, i.e., W1 = e1 =
(1, 0, . . . , 0), W2 = e2 = (0, 1, 0, . . . , 0), etc., con-
verts the K-matrix to M × M top left corner of
the N ×N resolvent matrix (E+iα−H)−1. Physi-
cally, this corresponds toM perfectly coupled chan-
nels attached to the first M sites. From that an-
gle, we aim to characterize the eigenvalue density
for the corner resolvent minor at complex values of
the spectral parameter, which is an interesting and
potentially rich mathematical problem. We are not
aware of any systematic studies in that direction.

Note that in a fully chaotic, zero-dimensional sys-
tem, the positions of channel attachment do not
play any role due to inherent ergodicity. In a more
general non-ergodic situation, which may arise due
to the presence of Anderson localization phenom-
ena, one may think of such an arrangement as cor-
responding to a wave reflection problem. In such
a setting, the density (4) has appeared recently
in paper [25] as an important quantity facilitating
the computation of the mean density of S-matrix
poles, also known as resonances, in the complex
energy plane. The latter density is experimentally
measurable in wave-chaotic system [26, 27] and is
a subject of long-standing theoretical interest, see,
e.g., [28–34]. Clearly, the density (4) is also experi-
mentally measurable in principle, provided that ac-
curate experimental data can be sampled for the
whole K-matrix. The paper [25] included, without
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a proper derivation, an explicit expression for such
density, valid for a general class of disordered sys-
tems with broken time-reversal invariance, namely
for those that can be mapped on the so-called su-
persymmetric nonlinear σ-model (see [35] and dis-
cussions in [25] for more information). The present
paper aims to fill that gap by providing a detailed
derivation, which involves several steps that are
only relatively briefly described in the available lit-
erature.

To begin with, for the special simplest case
M = 1, the K-matrix consists of a single element,
and finding the density (4) is equivalent to comput-
ing the joint probability density of the real and com-
plex parts of such an element. Such density has been
originally addressed in [36] via quite tedious calcula-
tions in the σ-model approximation. A much more
efficient approach has been proposed later in [14]
(see also an account in [11]). Our goal in this pa-
per is to show how to generalize that approach to
any number of open channels M , on an example of
systems with broken time-reversal invariance. Along
these lines, we also try to elucidate some features of
the method which were omitted in the exposition
in [11, 14].

2. Derivation of the main results

2.1. General exposition of the method

Given two real parameters p ∈ R and q > 0, we
start with defining the following object

Cα(p, q) :=〈
Tr
(
z−K

(
E+iα

))−1
Tr
(
z−K

(
E− iα

))−1 〉
,

(5)
where we denoted z = p+iq, z = p− iq and assumed
the real energy E and the absorption parameter
α > 0 to be fixed. As eigenvalues of the matrices
K(E+iα) and K(E− iα) are complex conjugates
of each other, one can write each trace in terms
of Kc = Re(Kc) − i Im(Kc) := uc − ivc, with
vc > 0, representing (5) as a sum of diagonal and
off-diagonal contributions

Cα(p, q) = C(diag)
α (p, q) + C(off)

α (p, q), (6)
where

C
(diag)
α (p, q) :=

〈∑M
c=1

1
|z−Kc|2

〉
=〈∑M

c=1
1

(p−uc)2+(q+vc)
2

〉
, (7)

whereas C(off)
α (p, q) is given by

C
(off)
α (p, q) :=

〈∑M
c6=c′

1

(z−Kc)(z−Kc′ )

〉
=〈∑M

c6=c′
1

uc−uc′− i (2q+vc+vc′ )

×
[

1
p−uc+i(q+vc)

− 1
p−uc′− i (q+vc′ )

] 〉
. (8)

In the next step, let us introduce the Fourier trans-
form in variable p,

C̃α(k, q) :=
1

2π

∫ ∞
−∞

dp e ipk Cα(p, q). (9)

Taking into account q > 0, vc ≥ 0 ∀c, we get

C̃(diag)
α (k, q) =

〈
1

2

M∑
c=1

e ikuc−|k|(q+vc)

q + vc

〉
, (10)

whereas the Fourier-transformed off-diagonal part
C̃

(off)
α (k, q) now reads〈∑M

c 6=c′
(− i)

[
uc−uc′− i(2q+vc+vc′)

]−1
×
[
θ(−k)e ikuc+k(q+vc) + θ(k)e ikuc′−k(q+vc′ )

]〉
,

(11)
where θ(k) = 1 for k ≥ 0 and zero otherwise.

The next step is to continue analytically in the
parameter q from positive real values to the whole
complex plane slit along the negative real line
q = −v, v > 0, and evaluate the jump across the
slit, defined as

δC̃α(k, v>0):= lim
ε→0

(
C̃α(k,−v− iε)−C̃α(k,−v+iε)

)
.

(12)
For the diagonal part one finds after straightforward
algebra

δC̃(diag)
α (k, v > 0) = i lim

ε→0

〈 M∑
c=1

e ikuc+|k|(v−vc)

(
ε cos(ε|k|)

ε2 + (v − vc)2
− sin(ε|k|)(v − vc)

ε2 + (v − vc)2

)〉
, (13)

which upon using

lim
ε→0

[
ε cos(ε|k|)
ε2+(v−vc)2

− sin(ε|k|)(v−vc)
ε2+(v−vc)2

]
= π δ(v−vc)

(14)
reduces the diagonal contribution to

δC̃(diag)
α (k, v>0) = iπ

〈
M∑
c=1

e ikuc δ(v−vc)

〉
.
(15)

At the same time, straightforward computations
show that assuming that the eigenvalues of the
K-matrix are all distinct, i.e., uc − ivc 6= u′c − ivc′
for c 6= c′, the off-diagonal part does not generate
any non-vanishing jump across the slit at q = −v,
v>0, that is δC̃(off)

α (k, v>0) = 0. Finally, applying
in (15) the inverse Fourier transform in the variable
k and comparing with the definition (4) provides
the expression for the density of complex eigenval-
ues of the K-matrix in the form

ρM (u, v; y) =

∫ ∞
−∞

dk

2iπ2
e− iku δC̃α= y∆

2π
(k, v>0).

(16)
In this way, the problem of computing the den-
sity ρM (u, v; y) is reduced to the ability to evalu-
ate explicitly the correlation function Cα(p, q > 0)
in (5) and perform the required Fourier transforms

449



Y.V. Fyodorov

and jump evaluation. Below, we show how this pro-
gram is executed for those disordered or chaotic sys-
tems with broken time-reversal invariance, which
can be mapped onto the corresponding nonlinear
σ-model.

2.2. Computations for systems with broken
time-reversal invariance

Referring the interested reader to [25] and ref-
erences therein for a detailed discussion of phys-
ical assumptions behind such mapping, we only
mention here that it provides the most powerful
and systematic approaches to addressing univer-
sal single-particle features of wave propagation in
a disordered medium, including Anderson localiza-
tion phenomena. Developed in the seminal works
by Efetov [35] building on earlier ideas of Weg-
ner [37], the model is defined by specifying a weight
function e−S[Q], with the action S[Q] describing in-
teraction between supermatrices Q(r) (i.e., matri-
ces with Grassmann/anticommuting/fermionic and
ordinary/commuting/bosonic entries) associated to
every site r ∈ Λ̃ located on an auxiliary lattice Λ̃.
The size of the supermatrices involved depends on
the underlying symmetries of the Hamiltonian H
and in the simplest case of the Hamiltonians with
fully broken time-reversal symmetry, denoted in
the standard nomenclature as class A with Dyson
parameter β = 2, the supermatrices are of the
size 4 × 4. Physically, such a model provides, in
a certain sense, a coarse-grained description of the
original microscopic Anderson model or its con-
tinuous equivalent, with non-universal features on
scales smaller than the mean free path l being ef-
fectively integrated out. In such a picture, every
(super)matrix Q(r) associated with a single lattice
site in Λ̃ “lumps together” behaviour of the micro-
scopic model on scales of the order of the mean free
path l. From this point of view, the billiards in the
quantum chaotic regime, where essentially l is of the
same order as the system length L, are effectively
characterized by nonlinear σ-models with a single
matrix Q without any spatial dependence. Such a

limit is traditionally called “zero-dimensional”. At
the same time, all effects of the Anderson localiza-
tion require considering extended lattices of inter-
acting Q-matrices.

One of the central objects of such theory turns
out to be the so-called “order parameter function”
(OPF) Fr(Q), which is formally defined [38] by in-
tegrating the weight e−S[Q] over all but one su-
permatrix Q(r). Due to global symmetries of the
action, the OPF can be shown to actually depend
on only a few real Cartan variables parametrizing
Q matrices. In particular, for systems with broken
time-reversal symmetry, one has Fr(Q) := F(λ, λ1),
with λ ∈ [−1, 1] and λ1 ∈ [1,∞] being the com-
pact and non-compact coordinates, respectively (we
omitted spatial dependence on r for brevity). Note
that the OPF characterizes the closed system, which
(in the absence of absorption) conserves the number
of particles, whereas allowing particles/waves at a
given energy to be sent via the lead to the random
medium and then collecting the reflected waves ren-
ders the medium open. However, if one makes an
assumption of “locality” of the lead, whose trans-
verse extent is assumed to be much smaller than
the mean free path l in the disordered medium,
then the coupling with it is effectively point-wise
at the level of σ-model description. Still, even such
point-wise lead may support arbitrarily many prop-
agation channels M , though we will always assume
that M remains negligible to the number of sites in
the underlying microscopic lattice Λ.

The power of nonlinear σ-model description in
our case lies in our ability to provide an explicit
representation for the correlation function Cα(p, q)
defined in (5) in terms of the OPF F(λ, λ1) at the
point of lead attachment. For systems with broken
time-reversal invariance, such computation has al-
ready been performed in [7], albeit formally only in
the “zero-dimensional” limit, with OPF taking an
especially simple form F(λ, λ1) = e−y(λ1−λ), where,
as before, y = 2πα/∆ is the effective absorption pa-
rameter. It is, however, straightforward to adapt the
calculation for arbitrary nonlinear sigma-model (see
Appendix B of [11]), the result being given by the
sum of two contributions, the disconnected one

C(disc)
α (p, q) =

M∑
c=1

1

p−γc E2 − i
(
q+π ν(E)γc

) M∑
b=1

1

p−γc E2 +i
(
q+π ν(E)γb

) (17)

and the connected one

C(con)
α (p, q) =

1∫
−1

dλ

∞∫
1

dλ1
F(λ, λ1)
(λ1−λ)2

RM (p, q|λ, λ1), (18)

where the last factor in (18) is given by

RM (p, q|λ, λ1) := Lp,q
M∏
c=1

(
p− γc E2

)2
+ q2 + 2π ν(E)γcλ+

(
π ν(E) γc

)2(
p− γc E2

)2
+ q2 + 2π ν(E) γcλ1 +

(
π ν(E)γc

)2 (19)

with the coupling coefficients γc defined in (3) and the differential operator Lp,q := 1
4 (

∂2

∂p2 + ∂2

∂q2 ).
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These expressions provide the basis for imple-
menting the analytic continuation procedure de-
scribed above. For simplicity, we consider below ex-
plicitly only the case E = 0, so that πν(E) = 1,
and largely concentrate on the simplest, yet impor-
tant, case of equivalent channels, namely γc = γ,
∀c = 1, . . . ,M†1. The analytic continuation pro-
cedure for the disconnected part amounts to a
straightforward repetition of our derivation of (16)
and yields ρ(disc)(u, v) =

∑M
c=1 δ(u) δ(v − γc). The

connected contribution to the density is much less
trivial, and we consider it below.

One starts with rewriting (19) in the form

RM (p, q|λ, λ1) = Lp,q
(
1− 2qγ(λ1−λ)

p2+q2+2γcλ1+γ2
c

)M
,

(20)
which after expanding the binomial reduces to

RM (p, q|λ, λ1) = −
M∑
l=1

(
M
l

)
(λ1−λ)l
(l−1)!

× ∂l−1

∂λl−1
1

Lp,q 2qγ
p2+q2+2γcλ1+γ2

c
. (21)

The latter form makes it an easy task to perform
the Fourier transform in the variable p assuming

q > 0, which essentially amounts to making in (21)
the replacement
Lp,q 2qγ

p2+q2+2γcλ1+γ2
c
−→ φ(k, q),

φ(k, q) = πγ
2

(
∂2

∂q2−k2
)
q

exp
[
−|k|
√
q2+2γλ1q+γ2

]
√
q2+2γλ1q+γ2

.

(22)
Following the procedures described in (12), we now
continue analytically in the parameter q from posi-
tive real values to the whole complex plane slit along
the negative real line q = −v, v > 0 and we evaluate
the associated jump across the slit

δφ(k, v>0) := lim
ε→0

(
φ(k,−v− iε)−φ(k,−v+iε)

)
,

(23)
which is easily found to be equal to

δφ(k, v>0)=πγ
(
∂2

∂v2−k2
) v cos

[
k
√

2γλ1v−v2−γ2
]

√
2γλ1v−v2−γ2

× θ
(
2γλ1v−v2−γ2

)
. (24)

Straightforward inversion of the Fourier transform
in the variable k converts the above into

δφ(u, v > 0) =
γ

2

(
∂2

∂u2
+
∂2

∂v2

)
v
δ
(
u−
√

2γλ1v−v2−γ2
)
+δ
(
u+
√

2γλ1v−v2−γ2
)

√
2γλ1v−v2−γ2

θ(2γλ1v−v2−γ2) =

1

2

(
∂2

∂u2
+

∂2

∂v2

)
δ (λ1 − xγ) , (25)

where xγ := u2+v2+γ2

2γ v . Next we trade the deriva-
tives over λ1 for those over xγ by the identity

∂l−1

∂λl−11

δ (λ1−xγ) = (−1)l−1 ∂
l−1

∂xl−1γ

δ (λ1−xγ)
(26)

and in this way arrive at replacing (21) with

R̃M (u, v|λ, λ1) = − 1
2

(
∂2

∂u2+
∂2

∂v2

)
×

M∑
l=1

(
M
l

)
(−1)l−1(λ1−λ)l

(l−1)!
∂l−1

∂xl−1
γ

δ (λ1−xγ) .
(27)

With this, (16) and (18) imply the density of
K-matrix eigenvalues via

ρ(con)(u, v)=

1∫
−1

dλ

2π

∞∫
1

dλ1
F(λ, λ1)
(λ1 − λ)2

R̃M (u, v|λ, λ1),
(28)

which upon substituting (27) into it and changing
the order of integrations yields

ρ(con)(u, v)=
1

4π

(
∂2

∂u2
+
∂2

∂v2

) 1∫
−1

dλGM (λ|xγ).
(29)

†1However, see expression (42) for two non-equivalent
channels.

Here we denoted

GM (λ|xγ) :=
M∑
l=1

(
M
l

)
(−1)l−1

(l−1)!

× ∂l−1

∂xl−1
γ

[
(xγ−λ)lT (λ|xγ)

]
,

(30)

with

T (λ|xγ) =
F(λ, xγ)
(xγ−λ)2

. (31)

Applying the Leibnitz formula
∂l−1

∂xl−1
γ

[
(xγ − λ)l T (λ|xγ)

]
=

l−1∑
k=0

(
l − 1
k

)
l!

(k+1)! (xγ−λ)
k+1 ∂k

∂xkγ
T (λ|xγ) (32)

and substituting it back to (30) one may change the
order of summation as

GM (λ|xγ) =
∑M

l=1
Al
∑l−1

k=0
Bk,lVk =

∑
_k = 0M−1Vk

∑M

l=k+1
AlBk,l (33)

with Vk := (xγ − λ)k+1 ∂k

∂xkγ
T (λ|xγ) and

Al :=
(
M
l

) (−1)l−1
(l − 1)!

, Bk,l :=
(
l − 1
k

) l!

(k + 1)!
.

(34)
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This gives∑M
l=k+1AlBk,l =

M !
k!(k+1)!

∑M
l=k+1

(−1)l−1

(M−l)!
1

(l−k−1)! =

(−1)kM !
(M−k−1)!k!(k+1)!

∑M−k−1
n=0 (−1)n

(
M−k−1

n

)
=

(−1)M−1

(M−1)! δk,M−1 (35)

using the Kronecker symbol δk,k′ , since the sum over
n is vanishing for all 0 ≤ k < M − 1, and is equal
to unity at k =M − 1.

As a result, we get the final expression for the
connected part of the mean density of K-matrix
eigenvalues in the form

ρ
(con)
M (u, v) = 1

4π
(−1)M−1

(M−1)!

(
∂2

∂u2+
∂2

∂v2

)
×

1∫
−1

dλ (xγ−λ)M ∂M−1

∂xM−1
γ

F(λ,xγ)
(xγ−λ)2 .

(36)

A few remarks are here in order to help properly
interpret and appreciate the content of (36).

Remark 1. Recalling from (25) that

xγ =
u2 + v2 + γ2

2γ v
≡ u2

2γ v
+

1

2

(
v

γ
+
γ

v

)
≥ 1,

(37)
one may straightforwardly check that for any
smooth enough function Φ(x) holds(

∂2

∂u2
+
∂2

∂v2

)
Φ(xγ) =

1

v2
∂

∂xγ
(x2γ−1)

∂

∂xγ
Φ(xγ)

(38)
for xγ > 1. This exact form was used to represent
the density in [25].

There is, however, a subtlety in (36) related to
its content at xγ → 1. In our derivation, we tacitly
assumed xγ > 1. However, a more careful analysis
shows that the integral in (36) should be pre-
multiplied with the step-function factor θ(xγ − 1)
arising as the result of performing integration over
λ1 ∈ [1,∞) with the factor δ(λ1−xγ). The presence
of such a seemingly innocent θ-factor has, however,
important consequences — when acted upon with
the differential operator on the right-hand side of
(38), it generates the δ-function factors exactly
cancelling the contribution from the disconnected
part, ρ(disc)(u, v) =

∑M
c=1 δ(u) δ(v−γc). As a result,

the formula (36) as it is written (i.e., without
θ-factor) in fact gives the full, properly normalized,
eigenvalue density for the K-matrix in absorptive
systems. A similar mechanism of cancellation of
δ-terms has been first noticed in [39], and we
explain in Appendix A how it works in our case
using the simplest case of M = 1 as an example.

Remark 2. With hindsight, one may notice that
one could have arrived at the same expression
(36) by a much simpler procedure. Namely, by
defining

x̃ :=
p2 + q2 + γ2

2γ q
, (39)

Fig. 2. A sketch of the “quasi-1D” model. The left
part in grey represents an infinite-length ideal lead
supporting M propagating modes. The disordered
part is of a finite length L and contains finite con-
centration of random impurities inside.

rewriting (20) in the form

RM (p, q|λ, λ1) = 1
4q2

∂
∂x̃ (x̃

2−1) ∂∂x̃
(
x̃+λ
x̃+λ1

)M
.

(40)
Then one must simply replace u→ p, q → −v− i0,
implying x̃ → −xγ + i0, and calculate the associ-
ated jump across the cut using

Im

[(
−xγ+i0+λ
−xγ+i0+λ1

)M]
= (xγ−λ)M (−1)M−1

(M−1)!

× ∂M−1

∂xM−1
γ

Im
[

1
xγ−λ1− i 0

]
=

π(xγ−λ)M (−1)M−1

(M−1)!
∂M−1

∂xM−1
γ

δ(xγ−λ1). (41)

Such a recipe is exactly the same as the one em-
ployed for M = 1 in [14], though without a proper
explanation provided there or in the review [11].

Armed with such a recipe, one can easily apply
it to the case of non-equivalent channels. General
formulas in that case look quite complicated,
but in the simplest case of two non-equivalent
channels with coupling constants γ1 6= γ2, one gets
a relatively compact expression

ργ1,γ2(u, v) =
1
4π

(
∂2

∂u2+
∂2

∂v2

)
×

1∫
−1

dλ

{[
F(λ,x1)
x2−λ2

+F(λ,x2)
x1−λ1

]
−
[
F(λ,x1)−F(λ,x2)

]
x1−x2

}
,

(42)
where we defined

x1 =
u2 + v2 + γ21

2γ1 v
, x2 =

u2 + v2 + γ22
2γ2 v

.

(43)

Remark 3. It is clear that performing further
analysis of (36) hinges on our ability to have a
good understanding of the OPF F(λ, x) for the
closed counterpart of the scattering system, which
in general also depends on the (appropriately nor-
malized) absorption parameter α. Such knowledge
is currently available mainly in two cases: (i) the
“zero-dimensional” limit, with OPF taking an espe-
cially simple form F (0d)(λ, x) = e−y(x−λ), where,
as before, y = 2πα/∆, and (ii) in a (semi) infinite
quasi-one-dimensional wire (see Fig. 2) of length
L → ∞, with one edge closed for the waves and
second edge attached to an infinite waveguide with
M propagating channels.

Such a wire is characterized by a classical mi-
croscopic diffusion constant D related to the local-
ization length ξ of the quantum wave problem as
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ξ = 2πνD, with ν being, as before, the mean eigen-
value density at a given energy. Note that math-
ematically such wires can be modelled by a large
banded random matrix [40, 41]. In such a system,
the OPF at points close to its edges has been orig-
inally found in [42] and takes the following form in
terms of the modified Bessel functions Ip(z),Kp(z),

F (1D)(λ, x) = bK0(a) I1(b) + aK1(a) I0(b),
(44)

with
a = κ

√
(x+ 1)/2, b = κ

√
(λ+ 1)/2, (45)

where the parameter κ is related to the absorption
α as

κ =
√

8α/∆ξ, (46)

with an important energy scale ∆ξ = (4π2Dν2)−1

= D/ξ2 giving the mean level spacing in the quasi-
one-dimensional wires whose length L is equal to
the localization length ξ.

In the “zero-dimensional” limit, due to a simple
form of the order parameter function, one can rel-
atively straightforwardly perform the required in-
tegrations and differentiations in (36) and get the
explicit formulas, which we present below for the
simplest cases M = 1 and M = 2 of equivalent
channels

ρ0D,M=1(u, v)=
1

2πv2
e−xγ[

y cosh (y)− sinh (y)(1−yxγ)
]

(47)

and

ρ0D,M=2(u, v)=
1

2πv2
e−xγ sinh(y)

[
y(x2γ−1)− 2xγ

]
+

1

πv2
e−xγ

[
y cosh(y)− sinh(y)

(
1−yxγ

)]
, (48)

with the same definition of xγ (see (37)). The for-
mula equivalent to (47) appeared already in the lit-
erature (see Eq. (5) in [13]), but the two-channel
case seems to be new. As to the quasi-1D system
of infinite length, it turns out that again the re-
sults can be found explicitly in the general case.
Below we present it only for the simplest case of a
single attached channel, when the density acquires
quite an elegant form after manipulations outlined
in Appendix B of this paper

ρ1D,M=1(u, v) =
1

2πv2P0(xγ),

P0(x) =
κ2

4

[
I2(κ)K0

(
κ
√

x+1
2

)
+ I1(κ)

√
x+1
2

×K1

(
κ
√

x+1
2

)]
. (49)

As is shown in [13], for M = 1 and γ = 1 the vari-
able r = (x−1)/(x+1) is nothing else but the modu-
lus of the reflection coefficient, which in the absorp-
tive system is smaller than one. Correspondingly,
the function P0(x) in (49) provides the distribu-
tion for x, hence for r, in a single-channel quasi-1D
system with absorption. This complements a result
for the same geometry in the case of no absorp-
tion inside the sample, but for the second edge of

the sample being in contact with perfectly absorb-
ing lead, see Eqs. (12)–(13) in [12]. Note also that
it is not difficult to further integrate the variable
u, getting an explicit formula for the distribution
of variable v, known as the local density of states,
corresponding to locations close to the edge of the
sample. The latter is an important characteristic of
disordered single-particle systems, see [36, 43, 44].

3. Conclusions

In conclusion, we derived the mean density of
complex eigenvalues for random Wigner reaction
K-matrices for absorptive disordered or chaotic
systems with broken time-reversal invariance, in
the σ-model approximation. Extension of these re-
sults to systems with preserved time-reversal invari-
ance (and then eventually symplectic symmetry) is
certainly possible along similar lines, generalizing
M = 1 results presented in [11]. These subjects are
left for future publications.
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Appendix A:
Cancellation of the disconnected part

Our starting point is the formula (36) with in-
cluded θ-factor, specified for simplicity and trans-
parency to the case of a single channel M = 1 and
γ = 1, so that xγ=1 = x. We write it in the form

ρ
(con)
M=1(u, v) =

1

4πv2
Lx [θ(x− 1)Φ(x)] ,

Φ(x) =

∫ 1

−1
dλ
F(λ, x)
(x− λ)

,

(50)
where we introduce the differential operator

Lx :=
∂

∂x
(x2−1) ∂

∂x
. (51)

Straightforward differentiation then gives
Lx
[
θ(x−1)Φ(x)

]
= θ(x−1)LxΦ(x)

+δ(x−1)
[
2xΦ(x) + 2(x2 − 1)Φ′(x)

]
+ δ′(x−1)

[
(x2 − 1)Φ(x)

]
. (52)

Further using the integration by parts identity

δ′(x−1)
[
(x2−1)Φ(x)

]
=−δ(x−1) d

[
(x2−1)Φ(x)

]
dx =

−δ(x−1)
[
2xΦ(x) + (x2 − 1)Φ′(x)

]
(53)
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we conclude that
Lx
[
θ(x−1)Φ(x)

]
= δ(x−1)

[
(x2−1)Φ′(x)

]
+θ(x−1)LxΦ(x), (54)

so it remains to evaluate limx→1[(x
2−1)Φ′(x)]. To

this end, we notice that it can be generally shown
that limx→1 F(λ, x) = 1, hence from (50) we have
Φ(x → 1) ≈

∫ 1

−1 dλ 1
(x−λ) = ln[x+1

x−1 ], which im-
mediately implies limx→1[(x

2−1)Φ′(x)] = −2. This
gives the singular contribution to the density (50)
in terms of the variables u, v, as follows

− 2
4πv2 δ

(
u2+v2+1

2v −1
)
= − 1

πv δ
(
u2+(v−1)2

)
=

−δ(u) δ(v−1), (55)
which exactly cancels the contribution from the dis-
connected part.

Appendix B

In this appendix, we show how (44), when sub-
stituted into (36), implies (49). Throughout this
appendix, we again use xγ = x and Lx :=
∂
∂x (x

2 − 1) ∂∂x . First of all, we use the identity (45)
from the paper [25], which claims that
∂
∂κF

(1D)(λ, x)=−κ(x−λ)2 K0

(
κ
√

x+1
2

)
I0

(
κ
√

λ+1
2

)
.

(56)
By differentiating both sides of (36) over κ and us-
ing (56) in the right-hand side yields

∂
∂κρ1D,M=1(u, v) = − 1

8πv2Lx
[
κK0

(
κ
√

x+1
2

)
×

1∫
−1

dλ I0

(
κ
√

λ+1
2

)]
(57)

and after performing the integral by substitution
λ = 2z2 − 1, z ∈ [0, 1] find that
∂
∂κρ

(con)
1D,M=1(u, v)=−

1
2πv2Lx

[
K0

(
κ
√

x+1
2

)
I1(κ)

]
=

− 1
2πv2

∂
∂x

√
x+1
2

[
1−x
2 κ I1(κ)K1

(
κ
√

x+1
2

)]
.
(58)

In the next step, we employ the following identity
(see Sect. 5.54 in p. 624 of [45])
1−x
2 κ I1(κ)K1

(
κ
√

x+1
2

)
= ∂
∂κ

[
κI2(κ)K1

(
κ
√

x+1
2

)
+κ
√

x+1
2 I1(κ)K2

(
κ
√

x+1
2

)]
. (59)

Using the fact that ρ(con)1D,M=1(u, v) → 0 as κ → ∞,
we then may conclude that (58) and (59) together
imply

ρ1D,M=1(u, v)=− 1
2πv2

∂
∂x

√
x+1
2 κ I2(κ)K1

(
κ
√

x+1
2

)
− 1

2πv2
∂
∂x

x+1
2 κ I1(κ)K2

(
κ
√

x+1
2

)
=

− 1
2πv2

{
I1(κ)
κ

∂
∂x

[
κ2 x+1

2 K2

(
κ
√

x+1
2

)]
+I2(κ)

∂
∂x

[
κ
√

x+1
2 K1

(
κ
√

x+1
2

)]}
. (60)

Finally, introducing in the above the variable z =
κ
√

x+1
2 , using the chain rule and the identity (see

Sect. 8.846.14 in [45])
d

dz

(
zpKp(z)

)
= −zpKp−1(z), (62)

allows us to bring the density ρ(con)1D,M=1(u, v) to the
final form (49).
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