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We extend the Berezinskii diagrammatic technique to one-dimensional disordered spin systems, in which
time-reversal invariance is broken due to a spin–orbit coupling term inducing left–right asymmetric
scattering. We then use this formalism to theoretically describe the dynamics of the quantum boomerang
effect, a recently discovered manifestation of Anderson localization. The theoretical results are confirmed
by exact numerical simulations of wave-packet dynamics in a random potential.
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1. Introduction

In the presence of a spatially disordered poten-
tial, quantum wave packets may experience, after
a transient temporal spreading, a complete freezing
of their density distribution due to the proliferation
of destructive interference in the multiple scattering
process. This phenomenon, which generically occurs
in low dimensions, is one of the most representative
manifestations of Anderson localization [1]. As such,
it has been primarily exploited in the experimen-
tal quest for the localization of cold atoms in ran-
dom potentials [2–5]. Recently, however, a variety of
alternative signatures of Anderson localization has
been identified. Those include the temporal freezing
of the coherent backscattering effect in reciprocal
space [6–8] or the universal growth of narrow peak
structures in the density profile [9, 10] and momen-
tum distribution [11–13] of spreading wave packets
(see [14] for a review).

Recently, yet another unexpected manifestation
of Anderson localization, dubbed the quantum
boomerang effect (QBE), has been discovered [15].
QBE corresponds to a back-and-forth motion of the
mean position of a quantum wave packet launched
with a finite velocity in a given direction in a ran-
dom potential. In one dimension, for instance, if
the quantum particle is launched to the right, it
will first move to the right over a distance of the
order of the mean free path, then make a U-turn

and eventually return to its starting point at long
time. This phenomenon was also shown to exist
in higher-dimensional random or pseudo-random
systems [15, 16], as well as in kicked-rotor mod-
els [16], where it was recently demonstrated exper-
imentally [17]. While originally described in time-
reversal-invariant (TRI) systems, recently QBE was
also shown to exist in systems without time-reversal
symmetry [18–20]. In [18], in addition, QBE was
characterized in the presence of a spin–orbit cou-
pling mechanism inducing left–right asymmetric
scattering between different spin states. This is also
the scenario addressed in the present paper.

At a theoretical level, describing the temporal dy-
namics of quantum wave packets in the presence of
disorder is a challenging task [21–23]. In one dimen-
sion, however, a very powerful analytical approach
known as the Berezinskii diagrammatic technique
has been developed [24]. Originally, this method was
successfully used for calculating the ac conductivity
of electronic conductors in the localization regime or
the long-time density distribution of spreading wave
packets [24–26], the predictions being exact in the
limit of weak disorder. More recently, it also allowed
the description of QBE in TRI systems [15] and, in
the context of electron scattering, was extended to
account for the presence of spin–orbit coupling [27].

In this paper, we extend the Berezinskii diagram-
matic technique to TRI-broken spin-dependent
systems in which a spin–orbit coupling term
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induces asymmetric scattering, as recently realized
experimentally with cold atoms [28, 29]. This for-
malism is developed in Sects. 2 and 3. In Sect. 4,
we then apply the method to the calculation of
a specific observable, namely the mean position
of a quantum-mechanical wave packet launched in
a random potential with finite velocity. This pro-
vides a thorough theoretical description of QBE in
spin–orbit coupled systems with asymmetric scat-
tering, complementing results obtained in the re-
cent work [18]. Generally speaking, the formalism
presented in this paper provides a practical analyti-
cal tool to characterize the dynamics of spinor wave
packets in disordered systems with TRI-broken
symmetry.

2. Principles of the Berezinskii technique

We start by recalling the main ideas of the orig-
inal Berezinskii diagrammatic technique used to
compute the time-dependent transport properties
of one-dimensional disordered systems. The start-
ing point is the single-particle Hamiltonian

H = H0 + V (x), (1)
where V (x) is a random (disorder) potential and H0

is the disorder-free part of the Hamiltonian (e.g.,
H0 = p2/(2m)). We suppose that the random po-
tential has a vanishing mean, V (x) = 0, and fol-
lows Gaussian statistics characterized by the two-
point correlation function V (x)V (x′) = ηC(x′ − x),
where η is called the disorder strength. Symbol (. . .)
here denotes averaging over different disorder re-
alizations. The function C(x′ − x) quantifies the
range of the spatial correlation of the disorder. In
the whole paper, we restrict ourselves to a delta-
correlated potential, i.e., C(x′ − x) = δ(x′ − x).

In this paper, we aim at describing the time evo-
lution of quantum-mechanical wave packets gov-
erned by an Hamiltonian of the type of (1). In
the localization problem, this evolution is charac-
terized by considering the disorder-average of ob-
servables that depend quadratically on the wave
function, such as the density n(x, t) or the mean
position 〈x(t)〉 =

∫
dx xn(x, t) of the wave

packet. These observables, by definition, can be
expressed in terms of the disorder-averaged corre-
lator GR(x, x′, ε)GA(x′′, x, ε− ~ω) [30, 31], where
GR/A(x, x′, ε) ≡ 〈x| (ε−H ± i0+)

−1 |x′〉 are the
single-realization, retarded and advanced Green’s
functions at energy ε associated with Hamilto-
nian (1). The energy difference ~ω introduced in
the correlator allows us to capture the time depen-
dence of observables after an inverse Fourier trans-
form. The precise connection between 〈x(t)〉 and
the Green’s function correlator, for instance, will
be given in Sect. 3.

Both Green’s functions GR/A that appear in the
correlator may be computed in a perturbative fash-
ion using the Born expansion [30]

GR/A(x, x′, ε) = G
R/A
0 (x, x′, ε)

+

∫
dx1 G

R/A
0 (x, x1, ε)V (x1)G

R/A
0 (x1, x

′, ε)

+

∫
dx1dx2 G

R/A
0 (x, x1, ε)V (x1)G

R/A
0 (x1, x2, ε)

×V (x2)G
R/A
0 (x2, x

′, ε) + . . . , (2)
where

G
R/A
0 (x, x′, ε) ≡ 〈x|

(
ε−H0 ± i0+

)−1 |x′〉 (3)

are the retarded and advanced Green’s functions
associated with the free part of the Hamiltonian.
Physically, the expansion (2) describes a multiple
scattering sequence involving scattering events on
the random potential at points x1, x2, . . ..

As for the case of the average product
GR(x, x′, ε)GA(x′′, x, ε− ~ω), it includes all possi-
ble correlations between two multiple scattering
paths starting at the initial points x′ and x′′, re-
spectively, and both ending at the final point x. The
starting point of the Berezinskii technique is to take
advantage of the one-dimensional geometry, which
enables us to order the scattering events on a line
−∞ < x1 ≤ . . . ≤ x′ ≤ . . . ≤ x ≤ . . . ≤ xi <∞.

(4)
Thanks to this ordering, each contribution to the
product GRGA may be represented by a diagram,
like the one shown in Fig. 1a [24], which combines
a retarded (solid lines) and an advanced (dashed
lines) multiple scattering sequence, respectively un-
folded in the upper and lower parts of the diagram.
The scattering events occur at the points xi. In the
example of Fig. 1a, the upper sequence involves 8
scattering events (twice at point x3), and the lower
one — 7 scattering events.

The diagrams effectively contributing to Green’s
function correlator GRGA do not have arbitrary
shapes. Indeed, because of the assumed Gaussian
statistics and the corresponding Wick’s theorem,
only diagrams whose scattering events can all be
paired appear. For instance, the diagram in Fig. 1a
vanishes upon averaging because some scattering
events cannot be paired. Pairing scattering events at
different points would occur in the case of a weakly
correlated disorder (for which the correlation length
is smaller than the mean free path), a problem pre-
viously addressed in [25, 26, 32].

The second important approximation of the
Berezinskii technique is to assume that among all
possible diagrams contributing to the correlator,
only those for which the phase factors induced
by free-particle Green functions exactly compen-
sate each other when ω → 0 matter. This ap-
proximation, which holds true in the regime of
“weak disorder” (see Sect. 3.3), amounts to impos-
ing that there is exactly the same number of re-
tarded and advanced Green’s function in between
any two successive scattering events xi and xi+1.
In turn, this yields restrictions on the possible
scattering vertices, which are building blocks of the
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x1 x2 x3 x4 x5 x6 x7 x8x~x

L Z R

x1 x2 x3 x4 x5 x6 x7 x8 xx’’ x’ x9

(a)

(b)

Fig. 1. (a) Example of diagram involved in
the product GR(x, x′, ε)GA(x′′, x, ε−~ω) computed
from the Born expansion (2). Solid lines rep-
resent free retarded Green’s functions GR

0 , and
dashed lines — free advanced Green’s functions GA

0 .
Scattering events occur at points xi. (b) Exam-
ple of non-vanishing contribution to the correlator
GR(x, x̃, ε)GA(x̃, x, ε−~ω). The wavy lines refer to
a two-point correlation function of the random po-
tential. At each scattering event, one finds a vertex
belonging to the set presented in Fig. 3. The corre-
lation diagram can be divided into three blocks L,
Z, and R, separated by the points x̃ and x.

diagrams — aside from the trivial constraint that
the solid/dashed lines have to be continuous, all ver-
tices have to be phaseless.

With these conditions implemented, the Berezin-
skii diagrammatic technique provides a strategy to
exactly sum all possible diagrams with nonzero con-
tributions, as we will now detail for the case of a
spin–orbit Hamiltonian H0.

3. Diagrammatic approach without
time-reversal symmetry

3.1. Free Hamiltonian and Green’s function

In this work, we extend the standard Berezin-
skii technique to a one-dimensional spin sys-
tem with spin–orbit coupling and Zeeman split-
ting breaking all anti-unitary time-reversal symme-
tries [18, 28, 29]. The corresponding disorder-free
Hamiltonian reads

H0 =
~2k2

2m
+ γ~kσz +

~δ
2
σz +

~Ω
2
σx, (5)

where σi are the usual Pauli matrices. The Hilbert
space is spanned by two-dimensional complex-
valued spinors. Further, γ is the strength of the
spin–orbit coupling, Ω is the Rabi frequency, and
δ is the detuning. Diagonalization of the Hamilto-
nian H0 yields two energy bands denoted by ± with
corresponding energies

E±(k) =
~2k2

2m
± ~

2

√
(2γk+δ)

2
+ Ω2. (6)

Due to this band structure, for a given energy ε, the
Hamiltonian hosts either 2 or 4 possible eigenstates.
From now on, we focus on the case where only two
eigenstates are involved, which corresponds to a dy-
namics operating at energies belonging to the lower
band only [18]. We denote by k± the momenta of
these two states, and by v± = 1

~ |dE−(k±)/dk|
the associated velocities. As compared to the stan-
dard single-particle Hamiltonian H̃0 = p2/(2m), it
should be noted that the two involved momenta are
not just of opposite sign, i.e., k− 6= −k+ (and, cor-
respondingly, v− 6= v+). The left–right symmetry
is therefore broken, which, as will be seen below,
constitutes the most significant difference as com-
pared to the usual Berezinskii approach. In [27], a
much simpler situation was studied, where only the
spin–orbit interaction is present (i.e., δ = Ω = 0);
in such a case, the dispersion relation is symmet-
ric with respect to k → −k, so that v− = v+, and
the extension of the Berezinskii technique is rather
easy. In contrast, the calculations presented in the
present paper are more general and valid when (gen-
eralized) TRI is broken.

In the diagrammatic treatment of disorder scat-
tering introduced in the previous section, a funda-
mental ingredient is the free Green’s function (3),
which we need to evaluate for the Hamiltonian (5).
To this aim, we use the definition

GR0 (x, x′, ε) ≡
∞∫
−∞

dk

2π

e ik(x−x′)

ε−E−(k)+i0+
. (7)

A careful calculation of the integral in momentum
space provides us with

GR0 (x, x′, ε) =


− i

~v+ e ik+(x−x′), x− x′ > 0,

− i
2~

(
1
v+

+ 1
v−

)
, x = x′,

− i
~v− e ik−(x−x′), x− x′ < 0,

(8)
where, in particular, the diagonal value GR0 (x, x, ε)
is obtained by properly accounting for all the real
and complex poles in the denominator in (7). Note
that, strictly speaking, when x − x′ 6= 0, these ex-
pressions only hold at distances |x− x′| larger than
the de Broglie wavelength 2π/|k±|. This knowledge,
however, is sufficient within the weak disorder limit
(see (15) given in Sect. 3.3) where the Berezinskii
approach operates. Because of translation invari-
ance, the free Green’s function GR0 (x, x′, ε) =
GR0 (x−x′, ε). Its Fourier transform is therefore

431



J. Janarek et al.

x’
x’’

x’
x’’ x’

x’’
x’

x’’

(a) (b) (c) (d)

Fig. 2. List of all possible initial vertices. In the
limit ω → 0 they correspond to the factors (a)
(~v+)−1 e ik+(x′′−x′), (b) (~v−)−1 e ik−(x′′−x′),
(c) (~2v−v+)−1/2 e i (k+x′′−k−x′), and (d)
(~2v−v+)−1/2 e i (k−x′′−k+x′).

diagonal in momentum space, with the diago-
nal value defined as GR0 (k, ε)=

∫
dr e− ikrGR0 (r, ε),

where r=x−x′. Note that with this definition,
(8) implies that GR/A(k, ε) 6= GR/A(−k, ε), con-
trary to TRI systems. From (8), finally, the ad-
vanced Green’s function follows from Hermitian
conjugation, GA0 (x, x′, ε) = [GR0 (x′, x, ε)]∗.

In the following, we will also need the energy-
shifted Green’s function GA0 (x′, x, ε−~ω), where
ω � ε/~. To evaluate this object, we use the Taylor
expansions k±(ε−~ω) ≈ k± ∓ ω/v±, so that

GA0 (x′, x, ε− ~ω) =
i

~v+ e− i (k+−ω/v+)(x−x′), x− x′ > 0,

i
2~

(
1
v+

+ 1
v−

)
, x = x′,

i
~v− e− i (k−+ω/v−)(x−x′), x− x′ < 0. (9)

3.2. Mean free times

Before constructing the diagrammatic approach
based on the Hamiltonian H0 + V (x), let us intro-
duce a few important scattering parameters that
will be used in the following. The central one is
the concept of scattering mean free time, which
gives the average time scale between two consec-
utive scattering events. In the present case, how-
ever, two different mean free paths can be defined
due to the left–right asymmetry. To find them, let
us denote by |±〉 = |k±〉 ⊗ |χ±〉 the two eigen-
states of H0, where |χ+〉 and |χ−〉 are the spin
state components associated with the wave num-
bers k+ and k−, respectively. This leads us to define
τ+ and τ−, the scattering mean free times for the
processes |+〉 → |−〉 and |−〉 → |+〉, respectively.
At weak disorder, they can be evaluated from the
Fermi golden rule

1

τ±
=

2π

~
∣∣〈∓|V |±〉∣∣2 ρ(E−(k∓)

)
, (10)

where ρ(E−(k∓)) is the density of states evalu-
ated at the energy E−(k∓) of the final state. Us-
ing the fact that the disorder is uncorrelated, i.e.,
V (x′)V (x) = η δ(x′−x) (see Sect. 2), we infer

τ± =
~2v∓
2ηκ

, (11)

where κ ≡ |〈χ+| |χ−〉|2 is the overlap factor of the
two spin states. In the following, we will be also
led to use the mean free time associated with the
weighted sum of the two scattering processes

1

τ
=

1

2

(
1

τ+
+

1

τ−

)
, (12)

which turns out to be the relevant time scale gov-
erning the boomerang effect, as will be shown in
Sect. 4. Note that the validity of the Fermi golden
rule used above is only guaranteed in the weak dis-
order limit described in Sect. 3.3 by (15).

3.3. Vertices

At the core of the Berezinskii diagrammatic tech-
nique is the idea of transferring the propagating fac-
tors from the free Green’s functions to the scatter-
ing events, called vertices. For example, assuming
xi > xj , the free Green’s function can be split as

GR0 (xi, xj , ε) =

√
− i

~v+
e ik+xi

√
− i

~v+
e− ik+xj ,

(13)
where we formally associate the weights and expo-
nential factors to the vertices at points xi and xj .
The difference between the TRI system and the
TRI-broken case is that these factors depend on the
direction of propagation. For example, in the TRI
system, the opposite case xj > xi would result in
just a change of sign of the phase factors in (13),
whereas in the system with broken TRI, the veloc-
ities also change.

Initial vertices. We start by selecting the rele-
vant initial vertices effectively contributing to the
correlator GR(x, x′, ε)GA(x′′, x, ε− ~ω). In general,
scattering paths may start from any of the 4 vertices
shown with their weights in Fig. 2. The vertices with
advanced and retarded lines starting into opposite
directions, i.e., vertices c and d, carry exponential
factors with phases i(k±x

′′ − k∓x′). Upon integra-
tion over the starting points x′ and x′′ (see (29) in
Sect. 4.1), they typically yield negligible contribu-
tions. Thus, we can restrict the analysis to only two
classes of initial vertices — a and b. These classes,
in turn, correspond to two different types of initial
states for the dynamics: (a) with positive (v+) and
(b) with negative (v−) initial velocity.

A second simplification is based on the assump-
tion that no scattering happens between the ini-
tial points x′ and x′′ [15, 33]. This invites us to
introduce the Wigner variables r = x′−x′′ and
x̃ = (x′+x′′)/2. In the limit ω → 0, vertices a and b
are thus approximated by their counterparts start-
ing from a single point x̃. At the level of Green’s
functions, this simplification reads [26]

GR(x, x′, ε)GA(x′′, x, ε− ~ω) ≈

e− ikεr GR(x, x̃, ε)GA(x̃, x, ε− ~ω), (14)
where kε is the wave number satisfying the disper-
sion relation ε = E−(kε).
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Phaseless scattering vertices. Our ultimate goal
is to sum all significant contributions to the product
of Green’s functions GRGA. This formidable task
is, in general, out of reach except for the so-called
weak-disorder limit

kε`� 1, (15)

where ` = τ+v+ = τ−v− is the scattering mean
free path (see also Sect. 3.1). Under this condition,
only a limited set of scattering vertices that do not
accumulate any phase and, as such, are not van-
ishingly small upon disorder averaging, should be
considered when constructing correlation diagrams.
The procedure to identify this set is detailed in
Appendix A for clarity. It yields four families of ver-
tices that are listed in Fig. 3. One can easily check
that the phase associated with each vertex is zero.
For instance, the vertex a1 originates from a fac-
tor of the type ηGR0 (xi, xi−1)GR0 (xi, xi)G

R
0 (xi+1, xi)

in the disorder-average of the Born expansion (2).
With the help of the splitting procedure (13) and
of (8), this corresponds to a vertex weight

η

√
− i

~v+
e ik+xi × − i

2~

( 1

v+
+

1

v−

)
×

√
− i

~v+
e− ik+xi ,

(16)
whose phase is indeed zero. In turn, the weights of
all phaseless scattering vertices are

a1/2: −
η

2~2v±

(
1

v+
+

1

v−

)
,

b1/2: −
η

(~v±)2
,

b3: − η

(~v+)(~v−)
,

c: − ηκ

(~v+)(~v−)
,

d1/2:
η

(~v±)2
,

d3/4:
η

(~v+)(~v−)
,

e:
ηκ

(~v+)(~v−)
exp

[
iωx

(
1

v+
+

1

v−

)]
,

f:
ηκ

(~v+)(~v−)
exp

[
− iωx

(
1

v+
+

1

v−

)]
.

(17)

Notice that among all diagrams in Fig. 3, the ver-
tices families c, e, and f involve a “backscattering
event” in both the retarded and advanced parts.
This implies that, in the spin system described by
Hamiltonian (5), the associated weights include the
spin-state overlap factor κ = |〈χ+| |χ−〉|2.

3.4. Correlation diagrams

Knowing all possible phaseless scattering vertices
relevant to our problem, we now wish to write down
the equations describing the diagrams contributing

a1 a2

b1 b3b2

c

d1 d2 d3 d4

e f
Fig. 3. All possible phaseless scattering vertices to
be considered in the Berezinskii technique. Vertices
from a, b, and c families have dashed-line counter-
parts. The weights associated with the vertices are
indicated in (17).

to the correlatorGRGA. An example of such a corre-
lation diagram is shown in Fig. 1b. Its generic struc-
ture can be divided into three left, right, and central
blocks denoted by L, R, and Z, as illustrated in
Fig. 1b. These different blocks are characterized by
their total number of incoming and outgoing solid
(retarded) and dashed (advanced) lines.

We first consider the left blocks L. Because the
scattering vertices change the number of lines by
at most 2, these blocks always have the same even
number 2m′ (with m′ being an integer) of re-
tarded and advanced lines attached. For instance,
L in Fig. 1b hasm′ = 1. With this property in mind,
let us denote by Lm′(x̃) the sum of contributions
from all L blocks that have their right boundary at
point x̃ with 2m′ lines. To calculate Lm′(x̃), we con-
sider how it changes with an infinitesimal change
of the boundary position, x̃ → x̃ + δx, by count-
ing all possibilities of adding new scattering vertices
to Lm′(x̃). This counting is detailed in Appendix B
for clarity. Taking the limit δx → 0, it yields the
following differential equation [34]
dLm′

dx̃
= − 2m′η

~2v+v−
Lm′ (1 + (m′−1)κ) +

m′2ηκ

~2v+v−

×
[
Lm′+1 e

iωx̃( 1
v+

+ 1
v−

)
+ Lm′−1 e

− iωx̃( 1
v+

+ 1
v−

)
]
.

(18)

433



J. Janarek et al.

x~ Γ+,·
x~Γ ,·–

x Γ·,–
xΓ·,+

a b c d
Fig. 4. List of possible initial and final phase-
less vertices. They are associated with the follow-
ing weights (for ω → 0): (a) Γ+,· = (~v+)−1,
(b) Γ−,· = (~v−)−1, (c) Γ·,+ = (~v+)−1, and (d)
Γ·,− = (~v−)−1.

This equation is solved by an ansatz Lm′(x̃) =
Lm′ exp [− im′ωx̃ (1/v+ + 1/v−)], which leads to an
iterative equation for Lm′

sLm′ +m′
(
Lm′+1 − Lm′−1 + 2Lm′

)
= 0, (19)

where s = 2−2/κ+ iν with ν = ω(v++v−)~2/(κη).
The explicit solution of (19) is
Lm(s) = −sΓ (m+ 1)Ψ(m+ 1, 2;−s), (20)

with Ψ(a, b; z) being the confluent hypergeometric
function of the second kind. Note that in the usual
case of spinless TRI systems, Lm satisfies a similar
equation as (19), but with sTRI = 2iωv/η, where
v is the velocity of the state at energy ε [24]. The
main difference is that sTRI is fully imaginary, while
in our case, s has a finite real part.

The treatment of the right block R is fully analo-
gous. Denoting by Rm(x) the sum of all right-hand
blocks that have their left boundary at point x with
2m lines (with m an integer), we find that Rm(x) =
Lm(−x) and, with a similar ansatz, Rm = Lm.

Let us finally consider the central block Z. As
compared to L and R, this block has one additional
line which connects points x̃ and x, i.e., for the left
and right blocks that have 2m′ and 2m retarded and
advanced lines attached, the central block Zm′,m
connecting them has 2m′+ 1 lines at its left bound-
ary and 2m + 1 lines at its right boundary. For in-
stance, the diagram in Fig. 1b has 2m′ + 1 = 3 and
2m+ 1 = 1.

To derive a differential equation for Zm′,m(x̃, x),
we have to make an assumption on the direction
of the extra line. Its type depends on the sign of
x− x̃ and introduces a kind of asymmetry because
our problem differentiates left and right directions.
Here, we assume x̃ − x < 0, i.e., that the addi-
tional line is going from left to right, like in Fig. 1b.
The total derivative of Zm′,m(x̃, x) with respect to x
includes the contributions from scattering vertices,
but it also has to include the derivative of the final
vertex. These final vertices are analyzed analogously
to the initial vertices. Out of four possibilities, only
two are phaseless and thus contribute to the final
sum of diagrams. They correspond to vertices with
lines incoming only from a single direction, i.e., both
from left or both from right. The list of all phase-
less initial and final vertices is summarized in Fig. 4,

together with their corresponding weights, denoted
by Γ±,. and Γ.,± for initial and final vertices, re-
spectively.

Computing the total derivative of the central
block at the final point x, assuming x̃ < x, we find
that

dZm′,m(x̃, x)

dx
= ± iω

v±
Zm′,m(x̃, x)

− η

~2v+v−
(
2m2κ+ 2m+ 1

)
Zm′,m(x̃, x)

+
ηκ

~2v+v−

[
(m+1)2Zm′,m+1(x̃, x)e

iωx( 1
v+

+ 1
v−

)

+ m2Zm′,m−1(x̃, x)e
− iωx( 1

v+
+ 1
v−

)
]
. (21)

The sign of the first term on the right-hand side
depends on the final vertex type, i.e., Γ·,+ or Γ·,−.
It turns out, on the other hand, that this expres-
sion does not depend on the sign of x̃ − x. Note
that when v+ = v− and κ = 1, (18) and (21) re-
duce to the known spinless TRI case [24]. While
we are not aware of any analytic solution for the
differential-recursive equation (21), in general, the
direct knowledge of the full function Zm′,m(x̃, x) is
not required for the computation of observables. An
example of this will be given in the next section
when discussing the quantum boomerang effect.

We conclude this section by expressing the
Green’s function correlator in (14) in terms of the
blocks L, R, and Z described above. For x̃ < x, and
if we suppose that the initial wave function only
populates the state with initial velocity v+ (this is
the practical case that will be considered in Sect. 4),
the correlator

GR(x, x̃, ε)GA(x̃, x, ε− ~ω) =
Γ x̃<x+,+

~2v2+
+

Γ x̃<x+,−

~2v+v−
(22)

is the sum of two contributions corresponding to the
two possible final vertices c and d in Fig. 4, with

Γ x̃<x+,+ =

∞∑
m,m′=0

Lm′(x̃)Zm′,m(x̃, x)Rm(x), (23)

Γ x̃<x+,− =

∞∑
m,m′=0

Lm′(x̃)Zm′,m(x̃, x)Rm+1(x). (24)

Finally, in the opposite case, i.e., x̃ > x, (22) still
holds, but with Γ x̃<x+,± changed to

Γ x̃>x+,+ =

∞∑
m,m′=0

Lm′+1(x)Zm′,m(x, x̃)Rm+1(x̃),

(25)

Γ x̃>x+,− =

∞∑
m,m′=0

Lm′(x)Zm′,m(x, x̃)Rm+1(x̃). (26)

Together with the solution of (21), (22)–(26) consti-
tute the final solution of the localization problem.
In the next section, we will apply this formalism
to access the time evolution of a particular observ-
able, the mean position of wave packets, featuring
the quantum boomerang effect.
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4. Quantum boomerang effect without
time-reversal symmetry

We will now apply the above formalism to the
theoretical description of a concrete problem, the
quantum boomerang effect (QBE). We recall that
QBE describes a back-and-forth motion of the
mean position of a quantum particle launched with
nonzero initial velocity in a disordered potential.
Here, we describe this phenomenon based on the
TRI-broken Hamiltonian H0 +V , with the free part
H0 defined by (5).

4.1. Mean position

To describe QBE within the Berezinskii tech-
nique, we consider for definiteness a wave packet
initially launched in a disordered potential with the
mean eigen-wave-number k+ of the Hamiltonian (5)
in the corresponding spin state |χ+〉. We denote by
ε0 = E−(k+) the associated energy. We thus write
the initial wave function as

Ψ0(x) =
1

(πσ2)
1
4

exp

(
− x2

2σ2
+ik+x

)
|χ+〉,

(27)

where σ is the wave-packet width. As explained in
the previous sections, the ensuing dynamics of this
state in the disorder gives rise to a coupling with
the backward-propagating state of wave number k−
and spin component |χ−〉.

By definition, the disorder-average mean position
is

〈x(t)〉 ≡
∫

dx x|ψ(x, t)|2. (28)

Using ψ(x, t) =
∫

dx′GR(x, x′, t)Ψ0(x′), we can re-
late its Fourier transform 〈x(ω)〉=

∫
dt e iωt〈x(t)〉

to the Green’s function correlator as

〈x(ω)〉 =
1

2π~

∫
dxdx′dx′′dε Ψ0(x′)Ψ∗0 (x′′)

×x GR(x, x′, ε)GA(x′′, x, ε− ~ω), (29)

where we expressed the retarded and advanced
Green’s functions in the Fourier domain. To sim-
plify this expression, we make use of (14), which
leads to

〈x(ω)〉 =

∫
dxdx̃dε xW (x̃, kε)

× GR(x, x̃, ε)GA(x̃, x, ε− ~ω), (30)

with W being the Wigner distribution of the initial
state

2π~W (x̃, kε) =

∫
dr e− ikεrΨ0

(
x̃+

r

2

)
Ψ∗0
(
x̃−r

2

)
.

(31)

For an initial wave function (27) of spatial width
σ much smaller than the mean free path, we find
W (x̃, kε) ≈ ~−1δ(x̃)δ(kε − k+), such that, eventu-
ally,

〈x(ω)〉=v+

∞∫
−∞

d(∆x) ∆xGR(x, x̃, ε0)GA(x̃, x, ε0−~ω),

(32)

where for convenience we replaced the integral over
x by an integral over ∆x ≡ x − x̃, using that the
integrand depends only on x − x̃ due to statisti-
cal translational invariance. Equation (32) directly
connects the average mean position to the Green’s
function correlator, which we now compute using
the results of the previous section.

4.2. Time evolution of the boomerang effect

Inserting the general Berezinskii result (22)
into (32), we infer
〈x(ω)〉 = 〈x(ω)〉+ + 〈x(ω)〉−, (33)

where

〈x(ω)〉+ =
2`

v+

∑
m′

(
Lm′S0

m′ + Lm′+1S
1
m′
)

(34)

is the contribution of velocities v+ (technically, of
the final vertex c in Fig. 4), and

〈x(ω)〉− =
2`

v−

∑
m′

(
Lm′S2

m′ + Lm′S3
m′
)

(35)

is the contribution of velocities v− (final vertex d
in Fig. 4). Notice that we here introduced for con-
venience the mean free path ` = τ+v+ = τ−v−. In
(34) and (35), the two terms on the right-hand side
are the contributions of x̃ < x and x̃ > x, respec-
tively, with the coefficients Lm defined by (20). The
quantities Sim, on the other hand, are given by spa-
tial integrals of the block functions Rm and Zm′,m.
For instance, we have

S0
m′ =

1

2`

∑
m

∞∫
0

(d∆x) ∆xe
− im′ωx̃( 1

v+
+ 1
v−

)

× Zm′,m(x̃, x)e
imωx( 1

v+
+ 1
v−

)Rm. (36)

To compute the coefficients S0
m′ , we perform a par-

tial integration on the right-hand side and use (21)
to express the derivative dZm′,m′(x̃, x)/dx̃ in terms
of Zm′,m. This provides us with the iterative equa-
tion

2`Q0
m + iν

(
m+

v−
v++v−

)
S0
m − 2`ηβmS

0
m

+m2S0
m−1 + (m+1)2S0

m+1 = 0, (37)

where βm ≡ (2κm2 +2m+1)/(~2v+v−), and we re-
mind that ν ≡ ω(v+ + v−)~2/(κη). The coefficient
Q0
m is defined as

Q0
m =

1

2`

∑
m

∫ ∞
0

d(∆x) e
− im′ωx̃( 1

v+
+ 1
v−

)

×Zm′,m(x̃, x)e
imωx( 1

v+
+ 1
v−

)Rm (38)
and is deduced from an iterative equation similar
to (37)
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Lm + iν

(
m+

v−
v+ + v−

)
Q0
m − 2`ηβmQ

0
m

+m2Q0
m−1 + (m+1)2Q0

m+1 = 0. (39)
The coupled system of equations (37) and (39) is
closed, so that at a formal level, it can, in princi-
ple, be solved to find the coefficients S0

m and, in
turn, to compute the first sum on the right-hand
side of (34). The calculation of the coefficients S1

m,
S2
m, and S3

m that appear in (34) and (35) follows the
same lines. We provide the corresponding iterative
equations they obey in Appendix C for the sake of
completeness.

However, instead of exactly computing all the
Sim coefficients, the mean position can be con-
veniently evaluated from its short-time expansion
using a Padé approximant [33, 34]. The short-
time expansion of 〈x(t)〉+ and 〈x(t)〉− is system-
atically obtained by inserting the series Sim(ν) =∑
n s

i
m,n/(iν)n and Qim(ν) =

∑
n q

i
m,n/(iν)n in the

iterative relations (37) and (39) and also (46)–(51)
from Appendix C, and computing the sim,n and qim,n
coefficients at arbitrary order in 1/ν. This proce-
dure eventually yields the following short-time ex-
pansion for the mean position
〈x(t)〉
v+τ

=
t

τ
− t2

2τ2
+

t3

6τ3

−

[
1 + ∆

(
4 + ∆

(
8 + ∆(4 + ∆)

))]
t4

24(1 + ∆)4 τ4
+O(t5),

(40)

where ∆ ≡ v−/v+ and τ is defined by (12). In
Appendix D, we also provide the corresponding ex-
pansions for the partial components 〈x(t)〉+ and
〈x(t)〉− that respectively describe right- and left-
moving particles after the last scattering event.
In Fig. 5, we show a comparison between an ex-
act numerical calculation of 〈x(t)〉± based on a
temporal wave-packet propagation with the disor-
dered Schrödinger equation (details on the numeri-
cal simulations are given in the figure caption) and
the short-time expansion up to order 11 obtained
by solving the Berezinskii equations as explained
above. Numerical and theoretical results are in very
good agreement without any fit parameter up to
t/τ ≈ 3. This corresponds to a finite radius of con-
vergence in time, which is also present in the TRI
version of the quantum boomerang effect [15]. This
radius seems to be dependent on the ratio of veloc-
ities ∆. Most importantly, as indicated by (40), the
expression of 〈x(t)〉 is no longer universal because
it depends on the velocities’ ratio starting from the
4th order. This is a significant difference with the
TRI quantum boomerang effect, which solely de-
pends on the dimensionless time scale t/τ at all
times. The TRI solution is fully recovered when
v+ = v− = v.

It is also instructive to compare the exact,
quantum-mechanical short-time expansion (40)
with the classical prediction of the Boltzmann

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

Fig. 5. Numerical (solid lines with error bars) and
short-time diagrammatic solution (dashed lines) for
the mean position computed up to order O(t11) for
a disordered system whose free Hamiltonian part
is given by (5). The numerical simulations con-
sist of a temporal propagation of the initial state
(27) with the Schrödinger equation. For these sim-
ulations, we choose σ = 50 for the wave-packet
width, γ = 0.4, δ = Ω = 0.4 for the Hamil-
tonian parameters, and an energy ε0 = 0. This
energy is associated with the two eigen-momenta
k+ = 1.1850 and k− = −0.6453. The respective ve-
locities are v+ = 0.8014 and |v−| = 0.5307, and
the spin overlap is κ = 0.5050. We take a disorder
strength η = 0.0049, so that the mean free time is
τ = 129.4159. The simulations are done using a sys-
tem of length L = 10000 with a small discretization
∆x = 0.2, and numerical results are averaged over
40960 disorder realizations.

equation, which discards any interference in the
multiple scattering process. At a classical level,
the mean position is simply given by 〈x(t)〉class. =
τv+(1−e−t/τ ), which is essentially the same expres-
sion as in TRI systems (see the supplemental mate-
rial of [18] for details on the classical calculation).
This classical result has the short-time expansion
〈x(t)〉class.

v+τ
=
t

τ
− t2

2τ
+

t3

6τ3
− t4

24τ4
+O(t5),

(41)

which starts to deviate from the quantum-
mechanical prediction (40) starting from the 4th
order. For completeness, in Appendix D, we also
provide the short-time expansions for the classical
components 〈x(t)〉class.+ and 〈x(t)〉class.− .

With the short-time expansion (40) at hand, we
can infer the 〈x(t)〉 using a Padé approximant of
the full Taylor series [35]. To this aim, we use that,
at long time, 〈x(t)〉 ∝ 1/t2 (see below). With this
knowledge, we compute the mean position at any
time using

〈x(t)〉 = v+τ
(τ
t

)2
lim
n→∞

An(t), (42)

where An(t) is a diagonal Padé approximant [35]
whose coefficients are computed from the Tay-
lor expansion at a desired order n (e.g., (40) for
n = 4). In Fig. 6, we compare the exact numerical
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Fig. 6. Mean position as a function of time. The
main plot shows numerical data (points with error
bars) for 〈x(t)〉+, 〈x(t)〉− and 〈x(t)〉 = 〈x(t)〉+ +
〈x(t)〉−, together with the Berezinskii solutions
computed with a Padé approximant (solid lines)
and the classical solutions (54) and (55) given in
Appendix D (dashed lines). Note that no fit pa-
rameter is used. The inset shows a log–log scale of
〈x(t)〉 (points with error bars) and a fitting function
α log(βt/τ)/(t/τ)2 (black dashed line), with fitted
parameters α = 99.65 and β = 0.18. The initial
state and parameters of the system are the same as
in Fig. 5.

simulations for 〈x(t)〉+, 〈x(t)〉− and 〈x(t)〉 to the
corresponding Padé approximants constructed from
the Berezinskii technique. The plots reveal the QBE
— after a few mean free times, the mean position
exhibits a maximum and eventually decays to zero.
For all quantities, we find a very good agreement be-
tween the simulations and the Berezinskii approach
up to long times.

Let us finally come back to the long-time behav-
ior of 〈x(t)〉. The latter is best visualized in the inset
in Fig. 6, which shows the mean position obtained
from numerical simulations of the Schrödinger equa-
tion in the log–log scale. We find that its long-time
asymptotics is well approximated by a function scal-
ing as α log(βt/τ)/(t/τ)2, which is of the same form
as in spinless TRI Hamiltonians [33]. In the present
case of Hamiltonian (5), however, a direct deriva-
tion of this asymptotic limit appears to be much
more involved and is left for future work.

5. Conclusions

In this paper, we have extended the Berezin-
skii diagrammatic technique describing the dynam-
ics of Anderson localization in one dimension to
TRI-broken disordered Hamiltonians by including
a spin–orbit coupling term that induces an asym-
metry between right and left scattering processes.
Using the formalism, we have computed the time
evolution of the mean position of a wave-packet
launched in a given direction and recovered the

quantum boomerang effect discussed in [18]. As an
extension of this work, it would be interesting to
extract analytical long-time, asymptotic expansions
for the mean position in this system or to charac-
terize the dynamics of other observables such as the
mean square width 〈x2(t)〉 or the full density distri-
bution of the wave packet.
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Appendix

A: Identification of scattering vertices

In this appendix, we briefly explain the proce-
dure used to identify the set of phaseless scattering
vertices in Fig. 3. To this aim, let us consider the
diagram in Fig. 1a once more. The diagram can be
split into spatial intervals lying between consecutive
scattering events xi and xi+1. Each interval contains
a specific number of lines. There are in total 4 kinds
of lines: retarded lines and advanced lines (both in
two possible directions). The numbers of lines are
denoted as g+ and g− (for retarded lines), and (g+)′

and (g−)′ (for advanced lines), with the index ± in-
dicating their direction. For example, the interval
lying between the points x′ and x3 in the diagram
from Fig. 1a has g+ = 2, g− = 1, (g+)′ = 2, and
(g−)′ = 1 lines. Each scattering event induces a def-
inite change in the number of respective lines, which
we denote by ∆g± and (∆g±)′. These changes deter-
mine the phases associated with scattering vertices.
To find these phases, we first note that each incom-
ing and outgoing retarded propagator line at point
x carries a phase that depends on the direction of
the line and on its type:

• every incoming (outgoing) positive line, i.e.,
propagating to the right, carries a k+x
(−k+x) phase;

• every incoming (outgoing) negative line, i.e.,
propagating to the left, carries a −k−x (k−x)
phase.

For advanced lines, the phases have opposite signs.
For vertices involving only one type of lines, e.g.,

only retarded Green’s functions, the total phase φ
of a scattering vertex is then calculated from the
total change of the number of lines, i.e.,

φ = ±
(
∆g+k+ −∆g−k−

)
x. (43)

Hence, the phaselessness condition of the scatter-
ing vertex in the limit of ω → 0 is that the vertex
does not change the total number of incoming and
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Fig. 7. Schematic representation of (45). Note that Lm′(x̃ + δx) can be constructed with Lm′(x̃) and all
possible combinations of the scattering vertices. The figure shows one example for each scattering vertex.

outgoing lines, that is, ∆g± = 0. This condition is
very similar to the original TRI Berezinskii method,
although in our system k+ and k− do not cancel
each other. In the case of the mixed-line vertices
involving both GR0 and GA0 , the problem is slightly
different — lines from GR0 and GA0 may cancel each
other. The total phase of a vertex is

φ =
[

(∆g+−(∆g+)′) k+− (∆g−−(∆g−)′) k−

]
x.

(44)
This phase is zero only if ∆g± − (∆g±)′ = 0.

B: Differential equation for Lm blocks

In this appendix, we provide details about the
derivation of the differential equation (18) for the
left blocks of correlation diagrams. To calculate
Lm′(x̃), we consider how it changes with an in-
finitesimal change of the boundary position, say
x̃ → x̃ + δx, by adding all possible contributions
from different scattering vertices. For this purpose,
we have numbered the lines on the boundary by
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assigning consecutive numbers to the outgoing and
incoming lines, as presented in Fig. 7. The figure
also shows a schematic way of adding new vertices

to Lm′(x̃), bearing in mind that the lines cannot
create loops nor cross each other. We get the corre-
sponding equation

Lm′(x̃+ δx) = Lm′(x̃) + (−2m′)
ηδx

2
Lm′(x̃)

(
1

v+
+

1

v−

)2

+ ηδxLm′(x̃)

[
−m

′(m′−1)

v2+
− m′(m′−1)

v2−
− 2m′2

v+v−
− 2κm′(m′−1)

v+v−
+
m′2

v2+
+
m′2

v2−
+

2m′2

v+v−

]

+
ηδx κ

v+v−

[
(m′)2Lm′+1(x̃)e

iωx̃( 1
v+

+ 1
v−

)
+ (m′)2Lm′−1(x̃)e

− iωx̃( 1
v+

+ 1
v−

)
]
. (45)

After taking the limit δx → 0 and some simplifica-
tions, we finally obtain (18) from the main text.

C: Iterative Berezinskii equations

In this appendix, we provide the coupled equa-
tions for the Sim coefficients (i = 1, 2, 3) that ap-
pear in the expressions of the mean position, i.e.,
(34) and (35) in the main text.

Using the same procedure as for S0
m, explained in

the main text, we find the following coupled itera-
tive equations for the Sim, Qim (i = 1, 2, 3)

−2`Q1
m + iν

(
m+

v+
v+ + v−

)
S1
m − 2`ηβmS

1
m

+m2S1
m−1 + (m+ 1)2S1

m+1 = 0, (46)

Lm+1 + iν

(
m+

v+
v+ + v−

)
Q1
m − 2`ηβmQ

1
m

+m2Q1
m−1 + (m+1)2Q1

m+1 = 0, (47)

2`Q2
m + iν

(
m+

v−
v+ + v−

)
S2
m − 2`ηβm S

2
m

+m2S2
m−1 + (m+1)2S2

m+1 = 0, (48)

Lm+1 + iν

(
m+

v−
v+ + v−

)
Q2
m − 2`ηβmQ

2
m

+m2Q2
m−1 + (m+1)2Q2

m+1 = 0, (49)

−2`Q3
m + iν

(
m+

v+
v+ + v−

)
S3
m − 2`ηβm S

3
m

+m2S3
m−1 + (m+1)2S3

m+1 = 0, (50)

Lm+1 + iν

(
m+

v+
v+ + v−

)
Q3
m − 2`ηβmQ

2
m

+m2Q3
m−1 + (m+ 1)2Q3

m+1 = 0. (51)

D: Partial components 〈x(t)〉±

We finally provide the short-time expansions
for 〈x(t)〉+ and 〈x(t)〉−, and the exact expressions
(valid at any time) of their classical counterparts
〈x(t)〉class.+ and 〈x(t)〉class.−

〈x(t)〉+
v+τ

=

[
t

τ
− 1

1+∆

t2

τ2
+

3−∆

6(1+∆)

t3

τ3

−∆(∆+1)[∆(∆2 + ∆− 3)− 7]− 2

12(∆+1)5
t4

τ4

]
+O(t5),

(52)

〈x(t)〉−
v+τ

=

[
1−∆

2(1+∆)

t2

τ2
− 1−∆

3(1+∆)

t3

τ3
+

−∆(9−∆(∆(3∆(∆ + 3) + 8)− 8)) + 3

24(∆+1)5
t4

τ4

]
+O(t5), (53)

〈x(t)〉class.+

τv+
=

[
2∆

1+∆

(
1−e−t/τ

)
+

1−∆
1+∆

t

τ
e−t/τ

]
,

(54)

〈x(t)〉class.−
τv+

=
1−∆
1+∆

(
1−e−t/τ − t

τ
e−t/τ

)
. (55)
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