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We demonstrate the ability to control the scattering properties of a two-dimensional wave-chaotic mi-
crowave billiard through the use of tunable metasurfaces located on the interior walls of the billiard.
The complex reflection coefficient of the metasurfaces can be varied by applying a DC voltage bias
to varactor diodes on the mushroom-shaped resonant patches, and this proves to be very effective at
perturbing the eigenmodes of the cavity. Placing multiple metasurfaces inside the cavity allows us to
engineer desired scattering conditions, such as coherent perfect absorption, by actively manipulating
the poles and zeros of the scattering matrix through the application of multiple voltage biases. We
demonstrate the ability to create on-demand coherent perfect absorption conditions at a specific fre-
quency, and document the near-null of output power as a function of four independent parameters
tuned through the coherent perfect absorption point. A remarkably low output-to-input power ratio
Pout/Pin = 3.71× 10−8 is achieved near the coherent perfect absorption point at 8.54 GHz.
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1. Introduction

We consider bounded complex scattering envi-
ronments, coupled to the outside world through
a finite number of scattering channels. Examples
include enclosed three-dimensional spaces such as
rooms, cabins in a ship or aircraft, or larger en-
closed spaces such as warehouses. Other examples
include two-dimensional microwave billiards and
one-dimensional cable graphs with multiple prop-
agation paths between any two points in the bil-
liard or nodes of the graph. Scattering channels
can be coupled to the system through antennas,
probes, apertures on the walls of the enclosure, or
any means by which wave energy can leave the en-
closure and propagate outside it. We assume that
these systems are reverberant in the sense that the
waves propagate across the length and breadth of
the system multiple times before significantly de-
caying in amplitude. Such systems are character-
ized by a scattering (S) matrix that relates the
set of in-going wave excitations on the channels
to the corresponding set of out-going waves on the
same channels. Because the scattering environment
is complicated and typically lossy, the S-matrix

is sub-unitary and has complex matrix elements
that are rapid and irregular functions of wave
frequency.

The question arises how to control or tame the
complex scattering environment so that it can be
harnessed to perform specific and useful tasks. Ex-
ample tasks include establishing and maintaining a
robust communication link between two points in-
side the enclosure, or transferring wave energy to
a specific object inside the enclosure with high ef-
ficiency and minimal interference. It is our belief
that active and tunable metasurfaces can be used
to alter the scattering properties of complex struc-
tures, thus creating new opportunities to manipu-
late complex waves. Active metasurfaces have the
property that they can alter the reflection coeffi-
cient of one portion of the boundary of a scatter-
ing environment [1, 2]. This establishes a degree of
control of the walls of the enclosure, creating the
opportunity to alter the waves everywhere in the
enclosure, due to its reverberant nature.

The majority of work on active metasurfaces con-
cerns single-pass reflection or transmission interac-
tions between the waves and the metasurface, or in-
volves metasurface antennas that launch the waves
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but do not interact with them again [3]. Here we
are concerned with the more challenging situation
in which the same waves interact with the same ac-
tive metasurface multiple times during their prop-
agation. Efforts to control the wave properties of
enclosures active and tunable metasurfaces are rel-
atively few in number. Gros et al. [4] showed that
three programmable metasurfaces on the walls of
a regular six-sided enclosure could be used to ef-
fectively stir cavity modes to create a set of un-
correlated cavity configurations. Frazier et al. [5]
placed a 240-element tunable binary metasurface
inside a 1 m3 reverberant three-dimensional sys-
tem, but taking up only 1.5% of the surface area,
and demonstrated the ability to create “cold spots”
(minima in transmission S21) between two arbitrary
points inside the enclosure. That work showed that
coherent perfect absorption (CPA) could also be
achieved through variation of the metasurface pixel
states, as long as the system was already near the
CPA condition at the baseline [5]. Earlier, one-port
perfect absorption was demonstrated in a reverber-
ant environment using a programmable metasur-
face [6]. Wavefront shaping with a large number of
scattering channels and the creation of CPA states
have also been demonstrated in three-dimensional
enclosures [7, 8]. The 240-pixel metasurface exper-
iment also utilized a machine learning algorithm
that could find the pixel settings on the metasurface
required to generate the desired transmission S21

spectrum as a function of frequency over a substan-
tial bandwidth [9]. Most recently, an elegant formal-
ism has been created to model the effects of tunable
metasurfaces in reverberant environments [10].

The ultimate goal of our experiment is to demon-
strate control over all of the scattering parameters
of a given microwave billiard system. Often, the
functional properties of a cavity are designed into
the shape and structure of the cavity, usually in-
cluding symmetries to help meet the design goals.
In our experiments, by contrast, we use a chaotic
cavity, which represents the most general wave scat-
tering setting possible, containing no geometrical or
hidden symmetries. To gain control over the system,
we instead place active metasurfaces inside the cav-
ity, which effectively allow electronic manipulation
of the boundary conditions of the cavity. Scatter-
ing environments encountered in the real world are
usually very complex and lack any symmetries. By
demonstrating control over this complex and low-
symmetry system, we are moving one step closer to
actively controlling the scattering environments of
arbitrary real-life systems.

2. Experimental setup

A quasi-two-dimensional wave chaotic quarter
bow-tie billiard is loaded with three tunable non-
linear metasurfaces. The billiard has a height of
7.9 mm and an area of 0.115 m2. Therefore, as

Fig. 1. Quarter bow-tie billiard with three tunable
metasurfaces (MS1-3) along the interior walls of the
cavity. Panel (a) is a schematic of the quarter bow-
tie billiard with the three metasurfaces inside, and
the lid lifted off the base. Two antennas are con-
nected to the billiard through the lid and are at-
tached to coaxial transmission lines, representing
the scattering channels, and these are connected to
the VNA. Panel (b) is a perspective photograph of
the interior of the base of the cavity, with the lid
removed, showing the three metasurfaces.

long as the cavity is excited at frequencies below
approximately 19 GHz, the system supports only
one propagating mode, with the electric field po-
larized in the vertical direction. This billiard has
been used before to demonstrate the crossover from
Gaussian Orthogonal to Gaussian Unitary ensemble
statistics, in both level spacings [11] and eigenfunc-
tions [12, 13], and more recently has been loaded
with microwave diodes to act as a reservoir com-
puter [14]. The metasurfaces used in this work were
fabricated by the Johns Hopkins University Ap-
plied Physics Laboratory [15] and were designed to
be used for reflection amplitude variation between
11–18 GHz and reflection phase variation between
14–16 GHz. The metasurfaces are a linear array of
18 varactor-loaded mushroom-shaped resonant el-
ements, where each element is sub-wavelength in
size [16]. The PCB material of the metasurfaces is
Rogers 5880 and the diode part number is MACOM
MAVR-011020-1411. Each metasurface is 1.8 mm
thick, 7.9 mm high, and 185 mm long, and is flex-
ible enough to conformally attach to a curved in-
terior wall. The diodes on a given metasurface can
be tuned simultaneously with a globally applied DC
voltage bias to the metasurface through thin insu-
lated wires that exit the cavity underneath the lid.
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As the applied voltage bias increases from 0 to 15 V,
the capacitance of the varactor diodes varies from
0.24 to 0.03 pF, thus increasing the resonant fre-
quency of the patches. Note that as the voltage
varies, the reflection magnitude and phase of the
metasurface changes, in general. Thus, the tuned
perturbation has a complex effect on the modes of
the cavity. The metasurfaces are placed along three
different walls of the billiard and are connected to a
Keithley 2230G-30-1 triple channel programmable
DC power supply, as shown in Fig. 1. Each of the
three metasurfaces cover approximately 12% of the
perimeter of the billiard. The quality factor of the
billiard with the 3 metasurfaces present is approxi-
mately 250 at 9 GHz.

An Agilent Technologies model N5242A or
Keysight model N5242B microwave vector network
analyzer (VNA) is connected to two ports of the
billiard through coaxial cables that support a sin-
gle mode of propagation, and the 2 × 2 complex
scattering matrix (S) is measured over a chosen fre-
quency range. Through the variation of the reflec-
tion coefficient of the metasurfaces, we can manip-
ulate the poles and zeros of the scattering matrix
to create conditions for coherent perfect absorption
(CPA), among other things. CPA occurs when the
zero of the scattering matrix is brought to the real
frequency axis [17, 18]. When the system is excited
with the S-matrix eigenvector, which corresponds
to zero eigenvalue, all of the injected energy is ab-
sorbed inside the scattering system and none is re-
flected or transmitted through any of the scattering
channels. The perfect absorption condition requires
this very specific type of coherent eigenvector ex-
citation of the billiard, and any deviation causes
significant reflection and/or transmission.

CPA requires that the system contain non-zero
loss, either in a distributed or localized manner,
or both. Waves sent into the system reverberate
in such a way as to be completely absorbed, and
in addition, so that no energy emerges from any
of the ports of the system, either in transmission
or reflection. This condition is achieved by excit-
ing all of the ports simultaneously at the (single)
CPA frequency, but with appropriate relative am-
plitudes and phases on the incident waves on all
of the ports. With these precise coherent excitation
conditions, one can achieve the above-stated out-
comes. However, if any of the excitation conditions
are modified, the CPA condition is lost — this situa-
tion is explored experimentally in detail below. For
an arbitrary scattering system, it is very difficult
to find coherent excitation conditions for CPA by
analytical or numerical methods. We rely on mea-
surements of the scattering matrix and our ability
to strongly modify the scattering properties of the
cavity using the embedded metasurfaces to estab-
lish the CPA conditions. In fact, our approach is so
successful that CPA conditions can be established
at almost any frequency in the bandwidth of the
operation of our experiment.

To establish CPA experimentally, we first choose
the frequency range of interest and measure the
scattering matrix with the VNA, and with each suc-
cessive measurement the applied voltage bias of a
particular metasurface is increased, usually with a
step size of 0.01 V. During a set of measurements,
the other metasurfaces in the cavity are held at a
fixed applied voltage bias. From this set of mea-
sured S-matrices, the complex Wigner–Smith time
delay [19] is calculated as a function of frequency at
the various applied biases to the metasurface. The
conditions for CPA are found by identifying para-
metric settings where the magnitude of the complex
time delay diverges.

Once the conditions for a CPA state are found,
the scattering matrix is diagonalized to determine
the eigenvalue λS = 0 + i0 and the corresponding
eigenvector |ψCPA〉. For our system, the scattering
matrix has two eigenvalues λS and eigenvectors |ψ〉
whose elements are two complex numbers represent-
ing the amplitudes of the waves injected at the two
ports, but we can determine which one is the CPA
excitation by finding the one that has an identically
zero eigenvalue. From the CPA eigenvector, the rel-
ative amplitude and phase of the required excitation
that must be simultaneously injected into the two
ports is determined. With this information, the 2-
port dual source mode of the VNA is used to inject
the CPA eigenvector into the billiard to verify that
the conditions for coherent perfect absorption are
achieved. For S-parameter measurements, the VNA
is calibrated up to the antennas on the billiard. But
when the 2-port dual source mode is activated, the
calibration is no longer valid. This causes the nec-
essary parameters determining the CPA excitation
to be slightly different than those for the calibrated
S-parameter measurement. During the CPA injec-
tion, we measure the ratio of the outgoing power
Pout,j to the incident power Pin,j on each port j as
a function of several parameters near the CPA con-
dition. To do this, the receivers on each VNA port
are used to measure both the power that goes into
the cavity and the power that comes back out.

3. Complex Wigner–Smith time delay

The Wigner–Smith time delay τW is a rough
measure of how long a wave lingers in a scattering
system before leaving. In unitary systems, the
time delay is a real quantity, but for subunitary
systems it becomes complex valued [8, 19, 20]. The
Wigner–Smith time delay is defined as

τW = − i

M

∂

∂f
log (det(S)) , (1)

where i is the imaginary number, M is the number
of ports connected to the system, f is the frequency,
and S is the scattering matrix. Experimentally,
the frequency derivative in the Wigner–Smith
time delay is calculated using a central difference
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formula. It is known that the determinant of S can
be written as a Weierstrass factorization extending
over the complex frequency plane as [2, 21–28]

det(S(f)) ∝
N∏
n=1

f + iη − zn
f + iη − εn

, (2)

where N is the total number of modes of the closed
system, η is the uniform attenuation, and zn and
εn are the zeros and poles, respectively, of the
scattering matrix. We further define zn and εn as

zn = Re[zn] + iIm[zn], (3)

εn = fn − iΓn, (4)
and adopt the convention that Γn > 0 in passive
lossy systems. It has been shown [19] that the
complex Wigner–Smith time delay associated with
each mode n can be written as a sum of two terms
for both the real and imaginary parts, one involving
the scattering poles and the other the scattering
zeros as follows

Re[τW ] =
1

M

N∑
n=1

[
Im[zn]− η

(f − Re[zn])2 + (Im[zn]− η)2

+
Γn + η

(f − fn)2 + (Γn + η)2

]
, (5)

Im[τW ] = − 1

M

N∑
n=1

[
f − Re[zn]

(f − Re[zn])2 + (Im[zn]− η)2

− f − fn
(f − fn)2 + (Γn + η)2

]
, (6)

Using this formalism, we can see that the Wigner–
Smith time delay is divergent at f = Re[zn] when
the imaginary part of the zero Im[zn] of the scatter-
ing matrix is equal to the uniform attenuation η of
the system. The diverging time delay for the wave
propagating inside a lossy system is an indication
that the S-matrix zero has crossed the real fre-
quency axis, which is an enabling condition for co-
herent, perfect absorption [8, 19]. Further, from the
measured Wigner–Smith time delay, poles and ze-
ros can be systematically extracted using fits to (5)
and (6), and their evolution with the metasurface
voltage bias can be visualized. For example, note
that the divergent term in the real part of τW has a
sign that depends on the sign of Im[zn] − η, which
changes as the imaginary part of the S-matrix zero
is varied. Using information such as this, we can
understand how a complex scattering system inter-
acts with incoming waves and use this knowledge to
engineer conditions for achieving CPA.

4. Experimental results

For a specific setup of the cavity, we perform mea-
surements in a particular frequency range and volt-
age bias applied to one of the metasurfaces. Then,
the applied bias is swept until the Wigner–Smith
time delay shows a near divergence. A typical result

Fig. 2. Real part of the Wigner–Smith time delay
Re[τW ]/(2π) vs frequency and metasurface 2V for
a particular cavity realization. We use a nonlinear
color scale to help distinguish the areas of small
time delay from the areas of very large time delay
due to the divergence of the Wigner–Smith time
delay at one point in this parameter space. With
this color scale, the majority of the colors between
blue and red (green–yellow) are concentrated near
the mean value of the time delay in this parame-
ter space (∼ 3 ns). The single largest value of the
Wigner–Smith time delay measured in this domain
has a value of 696.5 µs, but is excluded from this
plot for clarity. The Heisenberg time (τH = 2π/∆,
with mean mode-spacing ∆ = c2/(2πfA) for this
2D billiard of area A) at 9.66 GHz is τH ≈ 0.49 µs.
Note that τW is divided by 2π to convert to sec-
onds. (Left inset) Real Wigner–Smith time delay
vs voltage at 9.66 GHz. (Right inset) Real part of
Wigner–Smith time delay vs frequency at a fixed
voltage of 6.87 V.

is shown in Fig. 2 for the real part of the Wigner–
Smith time delay in a narrow range of frequency
and voltage. For the mode at 9.66 GHz, the time
delay becomes very large in magnitude around the
metasurface bias of 6.87 V. This indicates that a
CPA state is possibly located at the point of diver-
gence. The left inset of Fig. 2 shows the real part
of the time delay as the voltage bias is increased at
a fixed frequency of 9.66 GHz, through the point of
divergence. The dramatic increase can be explained
by the imaginary part of scattering zero (Im[zn])
decreasing in magnitude toward the value of the
uniform attenuation (η) of the system, causing the
Wigner–Smith time delay to increase. At the diver-
gence, Im[zn] is equal to η, and past the point of
divergence, Im[zn] has decreased below the value
of η, causing the sign of the Wigner–Smith time de-
lay to switch from positive to negative (see (5)). In
the right inset of Fig. 2, the voltage is kept fixed at
6.87 V while the frequency increased through the
point of divergence. Therefore, a similar increase of
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Fig. 3. Zeros and poles of the scattering matrix for
a particular mode of the bowtie billiard, extracted
from measured complex time delay, plotted in the
complex frequency plane as a function of voltage
bias applied to metasurface 1. For each successive
point from blue to red, the applied bias to metasur-
face 1 is increased while holding all other param-
eters fixed. The top curve shows evolution of the
S-matrix zero, and the bottom curve shows evolu-
tion of the pole.

the real part of the time delay is observed, except
that the sign of the Wigner–Smith time delay re-
mains positive through the divergence. The inter-
pretation is that at a fixed voltage bias of 6.87 V,
the values of Im[zn] and η remain essentially fixed as
the frequency is varied, while the divergence arises
from the frequency dependence indicated in (5).
The variation of Re[τW ] from +4 µs to −3.6 µs vis-
ible in Fig. 2 occurs diagonally across the frequency
and voltage bias because the bias voltage changes
both the real and imaginary parts of the S-matrix
zero simultaneously.

Using the Wigner–Smith time delay expression as
a sum of two terms for the real and imaginary parts,
the location of the poles and zeros of the scattering
matrix are extracted as functions of applied bias to
metasurface 1 for another mode of the bowtie bil-
liard, as shown in Fig. 3. This is accomplished by
fitting the Lorentzian expressions (see (5) and (6)
for a single mode) to the real and imaginary parts of
the experimental data simultaneously, and from the
best fitting we extract the pole and zero informa-
tion of that single mode for each voltage bias. Note
that the fit parameters for each mode n are Re[zn]
and Im[zn]− η for the zero, and fn and Γn + η for
the pole. Figure 3 shows that as the applied bias is
increased, the zeros are observed to move upward
in the complex frequency plane toward the real fre-
quency axis, and CPA is enabled at the point where
Im[zn]−η = 0. With this information, we now know
how to engineer the cavity to have a specific time
delay, degree of absorption, etc., for this frequency
range.

Fig. 4. Zeros of the scattering matrix
(Re[zn], Im[zn] − η) for a particular mode of
the bowtie billiard, plotted in the complex fre-
quency plane. Each successive point from left to
right is a 0.01 V step increase in the voltage applied
to metasurface 3 (MS3), and each color represents
a different fixed voltage of metasurface 1 (MS1).
During these measurements, metasurface 2 was
held at a fixed voltage bias. The inset shows a
zoomed in view of the real frequency axis near the
axis crossings.

Taking measurements of the cavity under dif-
ferent conditions, a particularly interesting case is
found where a single mode has a zero that crosses
the real axis twice as the voltage bias to metasur-
face 3 is varied (see Fig. 4). These real frequency-
axis crossings for the S-matrix zero correspond to
two CPA states in the voltage sweep of one metasur-
face. Then, using the other two metasurfaces in the
cavity, it is possible to raise and lower this parabolic
evolution of the zeros in the complex plane, as il-
lustrated in the inset of Fig. 4. This result demon-
strates control of the scattering zeros of the system
through the additional degrees of freedom that the
other metasurfaces offer.

Using the extracted pole and zero locations as
a function of voltage, we can use the Lorentzian
expression (see (5)) to examine in detail the real
part of the Wigner–Smith time delay for one of the
curves in Fig. 4. In Fig. 5 we see that there are two
locations where the time delay is nearly divergent,
and that between the divergences there is a signifi-
cant peak value of time delay, approximately 9 µs,
and its location can be finely tuned in frequency.
This delay corresponds to 2.7 km of free space
travel, and with the characteristic length scale of the
cavity being

√
A (with cavity area A = 0.115m2), it

corresponds to approximately 8000 bounces around
the cavity. It should be noted that at all bias values
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Fig. 5. Real part of the Wigner–Smith time delay
Re[τW ]/2π vs frequency recovered from a partic-
ular curve in Fig. 4 describing the S-matrix zero
evolution, and evaluated as a function of frequency
using (5). The sign changes of the extreme values of
time delay bracket the two CPA points. The lower
frequency CPA state has an extreme time delay
value around 60 µs, and the upper frequency CPA
state has an extreme time delay value near −500 µs,
not shown for presentation clarity. The gaps in be-
tween the peaks for each color result from the fi-
nite metasurface bias voltage resolution of the mea-
surement. The inset shows the real part of Wigner–
Smith time delay vs frequency for different fixed
values of the metasurface 1 and 2 voltage biases,
showing the two CPA points separated by a much
larger frequency.

the time delay-bandwidth product is on the order of
unity. In Fig. 5, from the inset we can also see that
we can move the scattering matrix zeros and push
apart the frequencies of the diverging time delay by
utilizing other metasurfaces inside the cavity. This
also causes the peak time delay between the two
zero crossings to decrease.

Once the conditions where the Wigner–Smith
time delay diverges are found, we see that the S-
matrix has at least one eigenvalue nearly equal to
λS = 0+ i0. We can calculate the eigenvector of the
S-matrix corresponding to this eigenvalue. To test
for the CPA condition, we must inject this eigenvec-
tor excitation into the billiard. The CPA eigenvector
can be defined as

|ψCPA〉 =

(
X e iθ

Y e iψ

)
, (7)

defining the amplitudes and phases of excitation at
the CPA frequency. Hence for CPA excitation, the
relative phase of the signal between ports 1 and 2 is
(ψ− θ), and the relative amplitude between ports 1
and 2 is 20 log10

(
X
Y

)
, when X and Y are measured

in linear voltage and need to be converted to dB.
The VNA is used to inject this specific excitation

into the system at the CPA frequency. The expec-
tation is that the output vector |ψout〉 = S |ψin〉 = 0
in this case, which means that all of the input en-
ergy is perfectly absorbed, and none is reflected or
transmitted.

To test this experimentally, we measure both the
injected and received powers from the cavity and
see how those powers vary as the parameters of the
system, and the excitation, are changed. In Fig. 6,
the four parameters we have control over are sys-
tematically varied to verify that the CPA state is
correctly identified. The four parameters are: the
voltage applied to the metasurface (which controls
the location of the S-matrix zero in the complex fre-
quency plane), the relative amplitudes of the signals
on the two input channels, the frequency f , and the
relative phase of the signals injected into the two
channels. For each parameter sweep, the other pa-
rameters are set to their optimal values. We mea-
sure the total input power delivered to the system
through the two channels, Pin = Pin,1 + Pin,2, and
the total power that emerges from the cavity, Pout =
Pout,1 + Pout,2, and form the ratio Pout/Pin. This
process is carried out in an iterative manner and
converges to a point very close to the CPA condition
for the system, which corresponds to Pout/Pin = 0.
For example, in the frequency sweep in Fig. 6c, the
ratio of output power to input power changes by
approximately seven orders of magnitude for small
changes in frequency, with a minimum output to in-
put power ratio of Pout

Pin
= 3.71 × 10−8. We observe

that the exact conditions of the CPA state slowly
drift over time, likely due to temperature fluctua-
tions of the laboratory. We believe this tempera-
ture drift to be the limiting factor on how precisely
we can measure the CPA state. This illustrates
how sensitive the CPA state is to small perturba-
tions to the system, making it attractive for use as
a sensor.

5. Discussion

Much of the prior work to controllably alter the
scattering matrix of complex systems has been done
by mechanical means, mainly for the purpose of per-
turbing the poles of the scattering matrix [29]. With
metasurfaces, the poles and zeros of the scattering
matrix can be smoothly varied in the complex fre-
quency plane and placed in determined locations,
purely by electronic means. By moving the zero of
the scattering matrix to the real frequency axis, we
can enable CPA and this is correspondingly seen as
a divergence in the real part of the Wigner–Smith
time delay. We can inject the zero-eigenvalue eigen-
vector and observe nearly complete absorption, but
this is a singular condition that is only possible at a
single point in the parameter space. Suwunnarat et
al. [30] have recently shown the creation of a non-
linear CPA by using exceptional point degeneracies
of the zeros of the scattering matrix. Work such
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Fig. 6. Evidence of coherent perfect absorption in the ray-chaotic quarter bow-tie microwave billiard, for four
independent parametric sweeps. We measure the ratio of the total output power to the total input power,
Pout/Pin as a function of parameter variation. The swept voltage bias to metasurface 2 is shown in (a). Small
parametric deviations from the CPA input eigenvector |ψCPA〉 are made through the relative power 20 log10

(
X
Y

)
(b), frequency (c), and relative phase (ψ − θ) (d) sweeps.

as [30] shows future possibilities of creating larger
parametric regions of coherent near-perfect absorp-
tion, which can be beneficial for a variety of ap-
plications in communications and wireless power
transfer.

6. Conclusions

In this paper, we show that using tunable meta-
surfaces inside a two-dimensional wave-chaotic cav-
ity, we can control the locations of the scattering
poles and zeros in the complex frequency plane. By
perturbing the system with metasurfaces, we can
drag the scattering zeros across the real frequency
axis to create a coherent perfect absorption condi-
tion. The demonstration of nearly complete absorp-
tion is illustrated in Fig. 6, by having approximately
seven orders of magnitude less power leaving the
system compared to that injected in the CPA eigen-
vector. We also demonstrated precise manipulation
of the location of the CPA state by applying voltage

biases to other metasurfaces in the cavity. This is
equivalent to controlling the scattering properties
of the system, and this control gives us the ability
to engineer specific conditions in the cavity, such as
having coherent perfect absorption at a particular
frequency, tuning a desired time delay for a signal,
having regions of high absorption for unwanted sig-
nals, and low absorption for desired signals, etc.
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