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Hydrocarbon compounds have recently been considered as highly promising materials for phonon-
mediated superconductors, exhibiting high values of critical temperature (TC) in ambient pressure. In
this study, we present a quantitative characterization of the superconducting properties of heavily-doped
cg-C4H4. By using the Migdal–Eliashberg formalism, we demonstrate that the critical temperature in
this material is relatively high (TC = 96.54 K) assuming that the Coulomb pseudopotential takes a
value of 0.1. Furthermore, the used theoretical model allows for the characterization of other essential
thermodynamic properties, such as the superconducting band gap, free energy, specific heat, and crit-
ical magnetic field. We observe that the characteristic thermodynamic ratios for the above-mentioned
parameters differ from the predictions of the Bardeen–Cooper–Schrieffer theory. Our analysis suggests
that strong-coupling and retardation effects play a crucial role in the discussed superconducting state,
which cannot be described within the weak-coupling regime.
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1. Introduction

In recent years, the pursuit of novel materi-
als with enhanced superconducting properties has
captivated the attention of the scientific commu-
nity, driven by the promise of potential technologi-
cal advancements and the fundamental understand-
ing of condensed matter physics. Among the var-
ious classes of materials explored for their super-
conducting potential, high-pressure hydrides have
shown the remarkable capability to exhibit super-
conductivity at TC values well above room temper-
ature [1]. However, they requite the application of
extreme pressures, often reaching several megabars,
to achieve such states [2, 3]. This requirement, al-
though scientifically fascinating, poses significant
engineering and practical challenges for technical
applications. In contrast, the emergence of heavily-
doped cg-C4H4 as a superconductor presents an ex-
citing departure from this paradigm [4]. This mate-
rial demonstrates the capacity to achieve relatively
high critical temperatures under ambient pressure
conditions. In this study, we delve into the su-
perconducting properties of heavily-doped cg-C4H4,
shedding light on its potential as a viable, ambient-
pressure superconductor. Additionally, we explore
the pivotal role of strong-coupling effects in shap-
ing the superconducting behavior of this remarkable
material. The numerical analysis was based on the
Eliashberg equations on the imaginary axis [5–7].

It is worth emphasizing that the Eliashberg for-
malism represents a significant extension of the fun-
damental concept originally proposed by Bardeen,
Cooper, and Schrieffer (BCS) [8]. This approach
goes beyond the BCS theory by explicitly account-
ing for the electron–phonon interaction. Within the
framework of the Eliashberg formalism, the magni-
tude of the strong coupling corrections to the BCS
predictions is intricately tied to the value of a key
parameter kBTC/ωln. The symbol ωln is called the
logarithmic phonon frequency

ωln ≡ exp

[
2

λ

∫ Ωmax

0

dΩ
α2F (Ω)

Ω
ln (Ω)

]
, (1)

and in this case, it is equal to 58.58 meV. For the cg-
C4H4 superconductor, an accurate determination
of its Eliashberg function (α2F (Ω)) was achieved
through the utilization of ab initio density func-
tional perturbation theory [9], as detailed in pa-
per [4]. This comprehensive analysis revealed cru-
cial parameters, specifically, the maximum phonon
frequency (Ωmax) and the electron–phonon coupling
constant (λ), to be 374.33 meV and 1.41, respec-
tively. In the case of the BCS limit, the Eliashberg
function is non-zero only for very high frequency, so
that kBTC/ωln → 0. In cg-C4H4, the value of the ra-
tio kBTC/ωln is equal to 0.14. This divergence from
the BCS limit necessitates alternative approaches
for the precise calculation of its thermodynamic pa-
rameters.
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2. The model

Directly solving the Eliashberg equations poses a
significant challenge due to the necessity of perform-
ing highly complex numerical integral calculations,
in addition to requiring substantial computational
resources. This process can be significantly stream-
lined by first solving the Eliashberg equations de-
fined along the imaginary axis and subsequently
conducting an analytical continuation to the real
axis.

The Eliashberg equations, specifically formulated
for a half-filled electron band and represented on
the imaginary axis, can be succinctly expressed as
follows [5]

∆nZn =
π

β

M∑
m=−M

K (n,m)− µ∗ θ (ωc−|ωm|)√
ω2
m+∆2

m

∆m

(2)
and

Zn = 1 +
π

βωn

M∑
m=−M

K (n,m)√
ω2
m+∆2

m

ωm, (3)

where the symbol ∆n ≡ ∆ (iωn) denotes the order
parameter and Zn ≡ Z (iωn) is the wave function
renormalization factor; n-th Matsubara frequency is
expressed by ωn ≡ π

β (2n− 1), where β ≡ 1/(kBT ).
The depairing electron effects are parameterized by
the Coulomb pseudopotential (µ∗). The symbol θ
denotes the Heaviside unit function, ωc is the cut-
off energy, and ωc = 5Ωmax. The electron–phonon
pairing kernel K (n,m) can be defined as follows

K (n,m) ≡ 2

∫ Ωmax

0

dΩ Ω

(ωn−ωm)
2

+Ω2
α2F (Ω) .

(4)

3. The numerical results

The Eliashberg equations have been solved for
2201 Matsubara frequencies (M = 1100) by using
the method presented in [10, 11] and recently tested
in [12]. In the considered case, the obtained Eliash-
berg solutions are stable for T ≥ 20 K.

In the calculations, a typical Coulomb pseudopo-
tential value for systems of this kind, set at µ∗ =
0.1, was employed. Taking into account the follow-
ing condition [∆m=1 (µ∗)]T=TC

= 0, it was demon-
strated that the critical temperature value for the
heavily-doped cg-C4H4 is 96.54 K.

Figure 1a presents the form of the order param-
eter on the imaginary axis for the selected values
of temperature. It can be seen that the maximum
value of the function ∆m is taken for m = 1. Fur-
thermore, successive Matsubara frequencies tend to
approach a constant value more rapidly as tem-
perature increases. Therefore, the conclusion can
be drawn that for temperatures close to absolute
zero, it is advisable to consider as many Matsub-
ara frequencies as possible, as they make a signifi-
cant contribution to the solutions of the equations.

Fig. 1. (a) The order parameter on the imaginary
axis for the selected values of temperature. The first
100 values of the function ∆m are plotted. (b) The
influence of temperature on the maximum value of
the order parameter. The symbols represent the nu-
merical results. The line was obtained by using (5).

In contrast, in the vicinity of the critical temper-
ature, the contribution from successive Matsubara
frequencies becomes negligibly small.

The temperature dependence of the order param-
eter is convenient to be traced by plotting the curve
∆m=1 (T ) (Fig. 1b).

In the case of cg-C4H4, the obtained numerical
data can be reproduced by the formula

∆m=1 (T ) = ∆m=1 (T0)

√
1−

(
T

TC

)κ
, (5)

where∆m=1 (T0) ≈ ∆m=1 (T = 20K) = 38.85 meV,
and κ = 3.09.

It should be emphasized that the determination
of the values of the function ∆m=1(T ) cannot be
adequately established within the confines of the
BCS theory, given that [κ]BCS = 3 [13].

The solutions of Eliashberg equations for the
wave function renormalization factor on the imag-
inary axis are visually depicted in Fig. 2a. Similar
to the behavior observed for the order parameter,
the function Zm attains its maximum value when
m = 1.

Conversely, the influence of temperature on Zm=1

remains relatively minor, as illustrated in Fig. 2b.
However, across the entire temperature range under
scrutiny, the wave function renormalization factor
consistently maintains elevated values. It is worth
mentioning that within the framework of the BCS
theory, there is [Zm]BCS = 1.

The notable elevations in the function Zm=1(T )
can be attributed to the significant influence of
strong-coupling effects inherent to the cg-C4H4 sys-
tem. Notice that from a physical perspective, the
first Matsubara frequency of the wave function
renormalization factor delineates the ratio of the
effective electron mass (m∗

e) to the electron band
mass (me), namely Zm=1 =

m∗
e

me
.
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Fig. 2. (a) The wave function renormalization fac-
tor on the imaginary axis for the selected values of
temperature. The first 100 values of the function
Zm are plotted. (b) The influence of temperature
on the maximum value of the renormalization fac-
tor. The symbols represent the numerical results.
The line was obtained by using (6).

Fig. 3. Real and imaginary part of the order pa-
rameter on the real axis for T = 20 K. The Eliash-
berg function [4] is present in the background —
the correlation between the course of the order pa-
rameter and the spectral function is clearly visible.

Remarkably, it is possible to reproduce the nu-
merical results obtained for the wave function renor-
malization factor employing the following formula

Zm=1 (T ) = Zm=1 (T0)

+
[
Zm=1 (TC)−Zm=1 (T0)

]( T

TC

)κ
, (6)

where Zm=1(T0) = 2.21, and Zm=1(TC) = 1+λ.
The determination of the physical value of the

order parameter necessitates an analytical contin-
uation of the solutions of the Eliashberg equations
onto the real axis, represented as (∆m → ∆(ω)). To
accomplish this, the following formula can be em-
ployed

∆ (ω) =
p1 + p2ω + · · ·+ prω

r−1

q1 + q2ω + · · ·+ qrωr−1 + ωr
. (7)

The values of the parameters pj and qj have been
determined according to the method presented in
publication [14]. Additionally, it has been assumed
that r = 50.

The results for the order parameter have been
visually represented in Fig. 3. It is evident that
the real part of the function ∆ (ω) assumes non-
zero values exclusively within the realm of low fre-
quencies. From a physical perspective, this signi-
fies the absence of significant damping effects. Con-
versely, as frequency values increase, both the real
part, Re [∆ (ω)], and Im [∆ (ω)] exhibit intricate be-
haviors. The distinct peaks and troughs observed
in these functions align with frequency ranges
characterized by notably high electron–phonon
coupling.

Subsequently, the next phase involves the deter-
mination of the physical value of the order param-
eter, which can be computed using the following
equation

∆ (T ) = Re
[
∆ (ω=∆ (T ), T )

]
. (8)

For T0 = 20 K, the following result has been ob-
tained: ∆(0) = 18.08 meV, while ∆(0) ≡ ∆(T0).

The free energy difference between the supercon-
ducting and normal state (∆F ) for the cg-C4H4 su-
perconductor as a strong electron–phonon coupling
system should be determined by using the expres-
sion [15]

∆F

ρ (0)
= −2π

β

M∑
n=1

(√
ω2
n+∆2

n− |ωn|
)

×
(
ZSn − ZNn

|ωn|√
ω2
n + ∆2

n

)
, (9)

where ZSn and ZNn represent the wave function
renormalization factors for the superconducting (S)
and normal (N) states, respectively, while ρ(0) sig-
nifies the electron density of states at the Fermi
level. In Fig. 4 (lower part), the dependence of ∆F
on temperature has been plotted. In the context
of physical interpretation, the presence of negative
values for ∆F provides compelling evidence that
the superconducting state remains stable below the
critical temperature.

The values of the thermodynamic critical field
were calculated in the next step (CGS units)

HC√
ρ (0)

=

√
−8π

∆F

ρ (0)
. (10)

The temperature dependence of HC/
√
ρ (0) has

been shown in Fig. 4 (upper part). As readily ob-
served, the thermodynamic critical field attains its
maximum value at T0 and diminishes as tempera-
ture increases, ultimately approaching zero at TC .

The specific heat difference between supercon-
ducting and normal state (∆C = CS−CN ) is given
by

∆C (T )

kB ρ (0)
= − 1

β

d2 [∆F/ρ (0)]

d (kBT )
2 . (11)
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Fig. 4. (Lower part) The free energy difference be-
tween the superconducting state and the normal
state as a function of temperature. (Upper part)
The thermodynamic critical field as a function of
temperature.

Fig. 5. The dependence of the specific heat in the
superconducting state and the normal state on tem-
perature.

The specific heat of the normal state is most conve-
niently estimated by the formula

CN (T )

kB ρ (0)
=
γ

β
, (12)

where the Sommerfeld constant is given by γ ≡
2
3π

2 (1 + λ). The relationship between temperature
and specific heat for both the superconducting and
normal states is illustrated in Fig. 5. A distinct
discontinuity associated with the phase transition
between superconducting and normal states is ob-
served just at the critical temperature, which is
marked with a vertical dashed line.

The thermodynamic functions outlined in this
study enable the calculation of the values for the
characteristic dimensionless ratios

R∆ ≡
2∆ (0)

kBTC
= 4.35, (13)

RC ≡
∆C (TC)

CN (TC)
= 2.01, (14)

RH ≡
TCC

N (TC)

H2
C (0)

= 0.146. (15)

It should be noted that the parameter (R∆−RH)
in the framework of the BCS theory take the uni-
versal values equal to 3.53, 1.43, and 0.168, respec-
tively [8, 15].

4. Conclusions

In this study, an in-depth exploration of the su-
perconducting phase in heavily-doped cg-C4H4 has
been conducted. The findings presented in this arti-
cle underscore the remarkable characteristics of this
material and its potential significance in the realm
of superconductivity.

One of the standout discoveries is the high criti-
cal temperature (TC) of 96.54 K that heavily-doped
cg-C4H4 exhibits even under ambient pressure con-
ditions. This observation is particularly promising
as it positions this hydrocarbon compound as a
strong contender among superconductors with prac-
tical applications.

In the case of heavily-doped cg-C4H4, very inter-
esting is its departure from the predictions of the
traditional Bardeen–Cooper–Schrieffer (BCS) the-
ory. Notably, the dimensionless parameters R∆, RC ,
and RH , with values of 4.35, 2.01, and 0.146, re-
spectively, significantly deviate from what the BCS
theory anticipates. This deviation underscores the
strong-coupling character of this superconducting
material.

The ratio of the effective electron mass (m∗
e) to

the bare electron mass (me) reaches its maximum
at 2.41 at the critical temperature, indicating a sub-
stantial enhancement in electron mass. This further
solidifies the strong-coupling nature of the super-
conducting state in heavily-doped cg-C4H4.

Crucially, our analysis demonstrates that the
BCS theory cannot adequately describe this ma-
terial. Instead, the superconductivity in heavily-
doped cg-C4H4 is governed by strong-coupling and
retardation effects. These effects play a pivotal role
in shaping its superconducting behavior.

The favorable thermodynamic properties exhib-
ited by heavily-doped cg-C4H4 in its superconduct-
ing state, in conjunction with its high TC , suggest
that it holds great promise for practical applications
in various technological domains.
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