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Three identical, interacting with each other nonlinear oscillators are considered. In addition, they are
also externally driven by a coherent field of constant amplitude. The possibility of generating two-mode
squeezed states is analyzed in this system. The two-mode principal squeeze variance is used to study
the properties of the squeezed states of the system. The time evolution of this variance is analyzed,
as well as the effect of the strength of the interaction between the oscillators and the damping strength
on the generation of squeezed states.
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1. Introduction

The nonclassical properties of the states can man-
ifest themselves through various phenomena such
as entanglement or squeezing. These two phenom-
ena can often be observed in the same quantum
systems [1–3]. Therefore, the squeezed states have
found applications in various quantum technolo-
gies. These states are a resource in such quantum
branches as quantum teleportation [4], quantum
metrology [5], or quantum information process-
ing [6, 7].

This paper will study a model of three mutually
interacting nonlinear oscillators externally driven
by a coherent field. The model discussed here is a
source of the strongly entangled states [8]. There-
fore, we expect this system also to be a source of
two-mode squeezed states.

2. The model

We consider the model of three nonlinear Kerr-
like oscillators (subsystems) characterized by the
nonlinearity constant χ. The oscillators are mutu-
ally coupled by linear interaction in such a way that
they form a chain. In addition, the boundary oscil-
lators (the first and the last) are externally driven
by a coherent field (see Fig. 1). This system can be
described by the following Hamiltonian

Ĥ =

3∑
j=1

χ

2

(
â†j

)2
â2j +

2∑
j=1

ε
(
â†j âj+1 + â†j+1âj

)
+
∑
j=1,3

α
(
âj + â†j

)
, (1)
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Fig. 1. The model of three interacting nonlinear
quantum oscillators driven by an external coherent
field.

where the operators â†j and âj are the bosonic cre-
ation and annihilation operators for the mode j
(j = 1, 2, 3), respectively. The parameter ε de-
scribes the linear interaction between the subsys-
tems. For simplicity, we also assume that the ex-
ternal excitations in modes 1 and 3 have the same
strength and that two internal interactions (1 ↔ 2
and 2 ↔ 3) are equal to each other. Importantly,
under some conditions (α, ε � χ), our system be-
haves as the nonlinear quantum scissors [9–11], and
the system’s evolution is closed within eight three-
mode states (see [8] for details).

In our studies, we assume that the system is ini-
tially in a vacuum state. Furthermore, we analyze
two cases. In the first case, all damping processes are
neglected, and the system’s evolution is described
by the unitary evolution operator Û = e− i Ĥt (we
use units of ~ = 1). Then, the wave function describ-
ing the state of the system is obtained as follows
|ψ(t)〉 = Û |ψ(t = 0)〉. (2)

In the second case, the evolution includes a damping
process. We assume that the system is damped in all
three modes. Therefore, to describe the evolution of
our system, we apply the master equation approach.
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Fig. 2. Time-evolution of the parameter λij for
α = 0.001χ and (a) ε = 12α

10+
√
28
, (b) ε = 12α

10−
√
28
.

Time is measured in units of 1
χ
.

Thus, the time evolution of the density operator ρ̂
describing our model is given by

dρ̂

dt
= −1

i

(
ρ̂Ĥ − Ĥρ̂

)
+

3∑
j=1

[
Ĉj ρ̂Ĉ

†
j −

1

2

(
Ĉ†j Ĉj ρ̂+ ρ̂Ĉ†j Ĉj

)]
. (3)

The operators Ĉj (j = 1, 2, 3) describe the damping
in modes 1, 2, and 3, respectively. These operators
are defined as Ĉj =

√
2κ âj . The parameter κ is

the damping constant characterizing the interaction
with a zero-temperature bath. We assume here that
the damping constants corresponding to all modes
are identical (κ = κ1 = κ2 = κ3).

3. The results and discussion

We focus here on the possibility of generating
two-mode squeezed states. To analyze the squeezing
phenomena, we use the two-mode principal squeeze
variance [12–14]

Fig. 3. Time-evolution of the parameter λij for
α = 0.001χ, ε = 12α

10−
√
28
, and for various values

of damping parameter κ.

λij = 2

[
1+〈∆â†i∆âi〉+〈∆â

†
j∆âj〉+2Re〈∆â†i∆âj〉

−
∣∣〈(∆âi)2〉+〈(∆âj)2〉+2〈∆âi∆âj〉

∣∣], (4)

where 〈∆âi∆âj〉=〈âiâj〉−〈âi〉〈âj〉, and i, j de-
notes the modes. The two-mode squeezed states
are produced if the parameter λij does not
exceed two.

Figure 2 shows the time evolution of the squeez-
ing parameter λij for two values of the internal in-
teraction strength corresponding to the periodic so-
lution (see [8] for details). We see here that for all
pairs of subsystems, we can observe the two-mode
squeezing. Due to the geometry of the system, the
variances of λ12 and λ23 are equal to each other. The
degree of two-mode squeezing is weaker for pairs of
modes 1–2 and 2–3 than for modes 1–3. The char-
acter of the time evolution of the two-mode prin-
cipal squeezing variances depends on the values of
the coupling ε between the oscillators. By changing
the strength of the coupling, we can influence the
time over which two-mode squeezing is generated.
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Fig. 4. Steady-state solutions for the two-mode
principal squeeze variance vs the value of the
damping parameter κ, where ε = 12α

10−
√
28
,

and α = 0.001χ.

For example, by comparing Fig. 2a and Fig. 2b, we
can see that for stronger coupling, the squeezing for
modes 1–3 appears for longer periods of time.

In the next step, we will analyze the damped sys-
tem. In Fig. 3, we can see the time evolution of the
parameter λij for some values of the damping pa-
rameter κ. Since the results for the damped case
corresponding to the two previously considered val-
ues of the excitation strength ε are very similar,
in Fig. 3, we present results only for the stronger
internal interaction case, where ε = 12α

10−
√
28
. We

can see that, as in the case of the system without
damping and for the system with damping, we also
observe the two-mode squeezing for all pairs of sub-
systems. For weak damping, the values of the pa-
rameters λij oscillate. As the parameter κ increases,
the oscillatory character of the time-evolution of λij
disappears.

Importantly, for weak damping, the squeezed
states appear only for the initial period of the evolu-
tion. For the strongly damped system, the squeezed
states can be produced during the whole evolution
of the system. Moreover, it can be seen that for the
strongly damped systems, we obtain stable squeezed
states. Unfortunately, as the damping strength in-
creases, we observe that the degree of stable squeez-
ing decreases. This relationship is better illustrated
in Fig. 4, which shows the steady-state solutions for
various κ values. This figure also shows that the fi-
nal value of the two-mode squeezing parameter λij
depends on the strength of the damping. Further-
more, the final squeezing is the strongest for sub-
systems 1–3.

4. Conclusions

In this paper, the system containing three nonlin-
ear oscillators characterized by Kerr-type nonlinear-
ity was discussed. The oscillators were coupled with

each other in such a way that the system formed a
chain, and the first and the last subsystems were
coherently excited.

For such a system, the possibility of generating
the two-mode squeezed states has been investigated.
We have analyzed the time evolution of the two-
mode principal squeeze variances for the undamped
and damped systems. We have shown that in these
two cases (damped and undamped), the analyzed
system can be a source of two-mode squeezed states
and that the strength of damping influences the
produced squeezing. In addition, it has been shown
that stable two-mode squeezed states are generated
when the system is strongly damped.
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