
ACTA PHYSICA POLONICA A No. 5 Vol. 144 (2023)

Proceedings of “Applications of Physics in Mechanical and Material Engineering” (APMME 2023)

The Influence of Medium Movement on the Occurrence of
Band Gaps in Quasi Two Dimensional Phononic Crystals

S. Garusa,∗, W. Sochackia and J. Rząckib

aDepartment of Mechanics and Fundamentals of Machinery Design, Faculty of Mechanical
Engineering and Computer Science, Czestochowa University of Technology, Dąbrowskiego 73,
42-201 Częstochowa, Poland
bDepartment of Physics, Faculty of Production Engineering and Materials Technology,
Czestochowa University of Technology, Dąbrowskiego 73, 42-201 Częstochowa, Poland

Doi: 10.12693/APhysPolA.144.284 ∗e-mail: sebastian.garus@pcz.pl

Phononic quasi-two-dimensional structures, due to their properties, namely the lack of propagation
of selected frequency ranges of the mechanical wave, can be used as filters of acoustic waves. In the
paper, an analysis of the propagation of mechanical waves in these highly dispersive structures in the
conditions of a moving medium was carried out. The influence of the number of metaatom layers on
the transmission of a mechanical wave for different medium velocities was analysed.
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1. Introduction

Research on sound propagation in periodic struc-
tures and the formation of band gaps in phononic
crystals is conducted by many research centers
around the world. These are works in which the
authors, apart from describing the formation of the
band gap [1, 2], point to the practical application of
this phenomenon in periodic structures. They there-
fore indicate the possibility of using phononic crys-
tals as acoustic wave filters [3–6], waveguides [7] or
acoustic diodes [8]. These studies most often con-
cern cases of sound propagation without movement
of the medium in which the sound propagates.

However, taking into account that the speed of
sound is only about 34–110 times higher than typi-
cal wind speeds in the atmosphere, it should be as-
sumed that wind and turbulence in the atmosphere
have a significant impact on sound propagation.

Among the many methods that can be used to
describe this issue, such as the curved ray trac-
ing method [9] or the transmission-line matrix
method (TLM) [10], the most promising is the
finite-difference time domain (FDTD) method. The
use of the FDTD method to describe the propaga-
tion of acoustic waves in a moving medium is the
subject of many works. In [11], the authors pro-
posed two sets of differential equations to describe
the propagation of sound in a moving atmosphere.
The sound propagation in a moving medium for the
case when the typical speed of movement in the

medium is slightly lower than the speed of wave
propagation through the medium was the subject
of work [12]. In turn, works [13, 14] present two-
dimensional FDTD calculations for the atmosphere,
taking into account the influence of motion (wind
and turbulence) in the propagation medium, as well
as the interaction with the ground. Extensive liter-
ature on a wide range of issues related to the linear
propagation of sound in a moving medium is pre-
sented in the review article [15].

Using a finite-difference algorithm in the time do-
main, the work analyzed the influence of medium
motion on the propagation and transmission of me-
chanical waves in quasi-two-dimensional phononic
structures with various numbers of layers.

2. Finite difference time domain algorithm
for a moving medium

The propagation of a mechanical wave in a mov-
ing medium is described by a system of first-order
differential equations

∂p

∂t
= −κ∇ ·w, (1)

∂w

∂t
= −b∇p, (2)

which for the two-dimensional case gives
∂p

∂t
= −κ

(
∂wx
∂x

+
∂wy
∂y

)
, (3)
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Fig. 1. Spatially staggered finite-difference grid
used for the calculations.

∂wx
∂t

= −b ∂p
∂x
, (4)

∂wy
∂t

= −b∂p
∂y
, (5)

where p is the acoustic pressure, w is the acoustic
particle velocity, t is the time. The adiabatic bulk
modulus κ [ kg

m s2 ] is defined by

κ = ρ c2, (6)
and the mass buoyancy b is defined by

b = 1/ρ, (7)
where ρ is the ambient medium density, and c is the
adiabatic speed of sound.

Assuming that the sound wave causes slight dis-
turbances in the medium, there is no turbulence of
the background velocity field, and due to the con-
sideration of sound propagation near the ground,
the background pressure gradient is omitted and
the medium is adiabatic. Then the propagation of a
mechanical wave in a moving medium is described
by
∂p

∂t
= − (v · ∇) p− ρ c2∇ ·w + ρc2Q, (8)

∂w

∂t
= − (w · ∇)v − (v · ∇)w − ∇p

ρ
+

F

ρ
. (9)

In equations (8) and (9), v is the wind velocity.
The sources are represented as F (a force acting
on the medium — dipole pressure source) and Q
(mass source — monopole pressure source).

Equations (8) and (9) for the two-dimensional
case gives
∂p

∂t
= −

(
vx
∂p

∂x
+vy

∂p

∂y

)
− κ

(
∂wx
∂x

+
∂wy
∂y

)
+κQ,

(10)

∂wx
∂t

= −
(
wx

∂vx
∂x

+wy
∂vx
∂y

)
−
(
vx
∂wx
∂x

+vy
∂wx
∂y

)
−b ∂p

∂x
+ bFx, (11)

∂wy
∂t

= −
(
wx

∂vy
∂x

+wy
∂vy
∂y

)
−

(
vx
∂wy
∂x

+vy
∂wy
∂y

)
−b∂p

∂y
+ bFy. (12)

Figure 1 shows the grid used in the calculations. The
spatial coordinates x and y are determined from the
product of the appropriate node coordinates i and
j and the appropriate grid spacings ∆x and ∆y by

(x, y) = (i∆x, j∆y) . (13)
The pressure p is stored in the nodes with the inte-
ger values of variables i and j, just like the values
of b, κ, Q and the component fp. The non-integer
nodes store the horizontal and vertical components
of w, v and F .

In order to take into account the division of time
and space, the notation p|ni,j was introduced, where
for the pressure p the coefficients “i”, “j” mean a
simplified notation of the position in space, which in
full form is defined by i∆x and j∆y, respectively,
while “n” is a simplified notation of the moment
n∆t in time, where ∆t is the value of a single time
step.

Expanding the derivatives into appropriate dif-
ferences and assuming that ∆x = ∆y, equations
(10)–(12) take the form

∂

∂t
p|ni,j = − 1

4∆x

(
vx|ni+0.5,j+vx|ni−0.5,j

)(
p|ni+1,j−p|ni−1,j

)
− 1

4∆x

(
vy|ni,j+0.5+vy|ni,j−0.5

)(
p|ni,j+1−p|ni,j−1

)
−
κ|ni,j
∆x

(
wx|ni+0.5,j − wx|ni−0.5,j + wy|ni,j+0.5 − wy|ni,j−0.5

)
+ κ|ni,j Q|

n
i,j , (14)

∂

∂t
wx|ni+0.5,j = −

wx|ni+0.5,j

2∆x

(
vx|ni+1.5,j − vx|ni−0.5,j

)
−
vx|ni+0.5,j

2∆x

(
wx|ni+1.5,j − wx|ni−0.5,j

)
−
vx|ni+0.5,j+1 − vx|ni+0.5,j−1

8∆y

(
wy|ni+1,j+0.5 + wy|ni,j+0.5 + wy|ni+1,j−0.5 + wy|ni,j−0.5

)
−
wx|ni+0.5,j+1 − wx|ni+0.5,j−1

8∆y

(
vy|ni+1,j+0.5 + vy|ni,j+0.5 + vy|ni+1,j−0.5 + vy|ni,j−0.5

)
− 1

2∆x

(
b|ni+1,j + b|ni,j

)(
p|ni+1,j − p|ni,j

)
+
b|ni+1,j + b|ni,j

2
Fx|ni+0.5,j , (15)

285



S. Garus et al.

∂

∂t
wy|ni,j+0.5 = −

wy|ni,j+0.5

2∆x

(
vy|ni,j+1.5 − vy|ni,j−0.5

)
−
vy|ni,j+0.5

2∆x

(
wy|ni,j+1.5 − wy|ni,j−0.5

)
−
vy|ni+1,j+0.5 − vy|ni−1,j+0.5

8∆x

(
wx|ni+0.5,j+1 + wx|ni+0.5,j + wx|ni−0.5,j+1 + wx|ni−0.5,j

)
−
wy|ni+1,j+0.5 − wy|ni−1,j+0.5

8∆x

(
vx|ni+0.5,j+1 + vx|ni+0.5,j + vx|ni−0.5,j+1 + vx|ni−0.5,j

)
− 1

2∆x

(
b|ni,j+1 + b|ni,j

)(
p|ni,j+1 − p|ni,j

)
+
b|ni,j+1 + b|ni,j

2
Fy|ni,j+0.5 . (16)

In order to simplify the notation, the functions
fp|ni,j , fx|ni+0.5 j and fy|ni j+0.5 are defined, respec-
tively, as
fp|ni,j =− 1

4∆x

(
vx|ni+0.5,j+vx|ni−0.5,j

)(
p|ni+1,j−p|ni−1,j

)
− 1

4∆x

(
vy|ni,j+0.5+vy|ni,j−0.5

)(
p|ni,j+1−p|ni,j−1

)
−κ|

n
i,j

∆x

(
wx|ni+0.5,j−wx|ni−0.5,j+wy|ni,j+0.5−wy|ni,j−0.5

)
+κ|ni,j Q|ni,j , (17)

fx|ni+0.5,j = −wx|ni+0.5,j

2∆x

(
vx|ni+1.5,j−vx|ni−0.5,j

)
−vx|

n
i+0.5,j+1−vx|

n
i+0.5,j−1

8∆x

(
wy|ni+1,j+0.5+wy|ni,j+0.5

+wy|ni+1,j−0.5+wy|ni,j−0.5

)
−vx|

n
i+0.5,j

2∆x

(
wx|ni+1.5,j−wx|ni−0.5,j

)
−wx|ni+0.5,j+1−wx|ni+0.5,j−1

8∆x

(
vy|ni+1,j+0.5+vy|ni,j+0.5

+vy|ni+1,j−0.5+vy|ni,j−0.5

)
+
b|ni+1,j+b|ni,j

2 Fx
∣∣n
i+0.5,j

− 1
2∆x

(
b|ni+1,j+b|ni,j

)(
p|ni+1,j−p|ni,j

)
, (18)

and
fy|ni,j+0.5 = −vy|

n
i+1,j+0.5−vy|

n
i−1,j+0.5

8∆x

(
wx|ni+0.5,j+1

+wx|ni+0.5,j+wx|ni−0.5,j+1+wx|ni−0.5,j

)
−wy|ni,j+0.5

2∆x (vy|ni,j+1.5 − vy|ni,j−0.5)

−wy|ni+1,j+0.5−wy|ni−1,j+0.5

8∆x

(
vx|ni+0.5,j+1+vx|ni+0.5,j

+vx|ni−0.5,j+1+vx|ni−0.5,j

)
+
b|ni,j+1+b|ni,j

2 Fy|ni,j+0.5

−vy|
n
i,j+0.5

2∆x

(
wy|ni,j+1.5 − wy|ni,j−0.5

)
− 1

2∆x

(
b|ni,j+1+b|ni,j

)(
p|ni,j+1−p|ni,j

)
. (19)

Using (17)–(19), the equations (14)–(16) with the
iteratively previous time step proceeding ∆t take
the form

p|n+1/2
i,j = p|n−1/2

i,j + ∆t fp|n−1/2
i,j , (20)

wx|ni+0.5,j = wx|n−1
i+0.5,j + ∆t fx|n−1

i+0.5,j , (21)

wy|ni,j+0.5 = wy|n−1
i,j+0.5 + ∆t fy|n−1

i,j+0.5 . (22)

Fig. 2. The influence of wind on the propagation
of the sound wave.

Figure 2 shows the pressure distribution for a
propagating Gaussian pulse after 3000 time steps
in air. The movement of the medium in both
horizontal and vertical directions is taken into
account. As can be seen, a wave propagating in the
direction opposite to the wind decreases in length
and at the same time increases in amplitude. An
increase in wavelength and a decrease in amplitude
occurs when the wind direction and the direction of
wave propagation match.

3. Research

The work analyzed the propagation of a Gaussian
pulse from a soft wave source marked with point “S”
in Fig. 3 through a regular structure composed of
metaatoms with a square cross-section and a lattice
constant of 2 cm and a fill factor of 68.75%.

The spatial step ∆x was 0.125 m, and the time
step ∆t ensuring simulation stability was 100 times
smaller than that resulting from the Courant sta-
bility condition for two-dimensional analysis and
amounted to 2.6 × 10−6 s. Two sizes of structures
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Fig. 3. Pressure distribution for 2×104 time steps
of impulse propagation in a 5-by-5 structure for the
medium velocity vx = 60 m/s.

Fig. 4. Pressure time series collected at point R
(a) with no structure, (b) for the 3-by-5 structure,
and (c) for the 5-by-5 structure for different values
of the medium velocity vx.

Fig. 5. Wave transmission at point R for different
values of the medium velocity (a) vx = 0 m/s, (b)
vx = 20 m/s and (c) vx = 60 m/s.

were analyzed in this study. The first one is 3
columns of 5 rows (3-by-5), and the second one is
5 columns of 5 rows (5-by-5). In order to determine
the transmission, a study of the propagation of a
wave pulse in a space without structures was also
carried out. The wave propagated in the air and the
metaatoms were simulated as a rigid wall.

At the point marked “R” in Fig. 3, the time se-
ries of pressure changes presented for the analyzed
cases in Fig. 4 were recorded. As shown in Fig. 4,
the velocity of the medium in the direction of wave
propagation shortened the time for the wavefront
to reach the receiver point R. The presence of the
phononic structure caused the wave to slow down
and significantly reduce its intensity the greater the
number of layers in the structure.

Figure 5 shows transmission graphs for various
medium velocities and structure sizes. The tests
carried out showed the occurrence of transmission
peaks whose frequency (345 Hz and 519 Hz) was

287



S. Garus et al.

independent of the speed of the medium. The in-
tensity of the peaks changed with the velocity of
the medium. These peaks were associated with the
emerging areas of local resonances inside the inter-
metaatomic spaces. The high-intensity peak occur-
ring in the absence of medium movement at 832 Hz,
with the increase in the vx velocity, moved towards
lower frequencies (676 Hz for vx = 60 m/s) while
decreasing its energy, which was related to the in-
crease in the wavelength due to the coincidence of
the medium movement speed with the direction of
wave propagation.

4. Conclusions

The work analyzed the influence of the motion of
the medium on the propagation and transmission of
a mechanical wave through a quasi-two-dimensional
phononic structure composed of metaatoms with a
square cross-section.

An increase in the propagation speed of the me-
chanical wave was demonstrated when the direction
of the medium’s velocity was consistent with it. The
phononic structure caused the wave propagation to
slow down, the greater the number of layers it con-
sisted of. The formation of transmission peaks was
demonstrated as a result of the formation of local
resonance areas in the intermetaatomic space, the
intensity of which was influenced by the velocity of
the medium. The occurrence of a peak was demon-
strated, the frequency of which decreased with the
increase in the velocity of the medium.
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