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Bose–Einstein condensation, as a fifth state of matter, can only occur under certain conditions. One of
those conditions is the spatial dimensions confining the bosonic systems. We investigated Bose–Einstein
condensation for a finite number of harmonically trapped bosons on fractal structures. The investiga-
tion involves two approaches; one belongs to standard Bose–Einstein statistics, and the other belongs
to the theory of q-deformed bosons. The properties of Bose–Einstein condensates in the two approaches
are computed by performing the sum over the energy states. From these two approaches, we attempt
to gain insight into the possibility of using q-numbers to assign fractal dimensions via Bose–Einstein
condensation. In this endeavor, the bosons are considered ideal to emphasize that the parameter q only
represents the fractal dimension of the structures confining the bosons. The results reveal that a con-
densate of q-deformed bosons with q = 0.74 is adequate to represent a condensate of standard bosons
on a Sierpiński carpet. The results also reveal that a condensate of q-deformed bosons with q = 0.33
is adequate to represent a condensate of standard bosons on a Menger sponge. We also suggest an
expression for using the parameter q to measure the interaction between bosons harmonically trapped
on fractal structures, which may also help to study the effect of porosity or fractal dimension on the
interaction between bosons.

topics: Bose–Einstein condensation, q-deformed bosons, Tsallis nonextensive parameter, fractal
dimensions

1. Introduction

The abrupt collapse of a system of bosons into the
ground state energy below a certain temperature is
known as Bose–Einstein (BE) condensation. This
abrupt collapse was understood as a phase transi-
tion of matter. This phase transition is responsible
for several phenomena like superfluidity and super-
conductivity [1]. There are different aspects restrict-
ing the occurrence of this phase transition according
to the conditions of the bosonic system. The spatial
dimension of the space confining the bosons is one
of the major aspects of BE condensate (BEC) for-
mation. Historically, Einstein’s prediction of BEC
was for an ideal, homogeneous Bose gas within the
thermodynamic limit [2]. The formation of BEC on
an ideal bosonic system is possible for a gas with
uniform spatial density (homogeneous) and within
the thermodynamic limit. This formation of BEC
is for a 3D bosonic system because the bosonic gas
occupies a volume (3D space).

At low dimensions (D < 3), statistical mechanics
excluded the occurrence of BEC if the ideal gas is
homogeneous and confined in a space of dimensions
D ≤ 2 [3]. This general result was also asserted [4]
for ideal homogeneous gases in two dimensions or

one dimension. Theoretical prediction of BEC for-
mation in one or two dimensions suggested inhomo-
geneous bosonic systems that can be attainable in
the presence of external fields or a rotational Bose
liquid [5]. Therefore, the research on the possibil-
ity of BEC occurrence in low dimensions mainly
concerned Bose systems trapped in external poten-
tials [6–12]. These theoretical works confirmed that
the occurrence of BEC in a gas confined in a cer-
tain dimension (D) can occur for sufficiently con-
fining potentials. About this concern, one can refer
to the general result (D/2 + D/η) > 1, where η is
the power-law exponent of the potential trap [13].
The aforementioned works also showed that when
the thermodynamic limit condition holds, inhomo-
geneous bosonic systems do not condense in low di-
mensions for some potential traps. The possibility
of BEC occurring in one dimension (D = 1) was
thought to be impossible even for a Bose gas in a
harmonic trap [7].

The role of a finite number of bosons was
revealed through the experimental realization of
BEC [14–16]. Those experiments revealed that the
theoretical value of condensation temperature in an
isotropic 3D harmonic potential when thermody-
namic limit holds
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T 3D
0 =

}ω
kB

(
N

ζ(3)

)1/3

, (1)

where N , kB, and ζ are, respectively, the total
number of bosons, Boltzmann constant, and Rie-
mann zeta function, is not accurate. This is because
the condensation temperature in those experiments
T 3D
c witnessed a downward shift. This downward

shift led theoretical works to adopt the treatment
of Bose gas with a finite number of particles [8–19],
and the relative correction of the downward shift
was determined by [8, 17]

T 3D
0 − T 3D

c

T 3D
0

= −0.7275 N−1/3. (2)

Concerning the case of a finite number of bosons
confined to an isotropic 2D harmonic trap, the con-
densation temperature was determined by [10, 12]

T 2D
c =

}ω
kB

(
N

Γ(2) ζ(2)

)1/2

=
}ω
kB

√
6N

π2
. (3)

These corrections, (2) and (3), are indeed in ex-
cellent agreement with BEC experimental findings.
Consequently, all thermodynamic properties of BE
condensates, such as the condensate fraction and
the heat capacity, on a 3D or 2D harmonic trap
should follow the corrections (2) and (3), respec-
tively. The adoption of a finite number of parti-
cles also led to the prediction of BEC formation
in 1D harmonic trap [17]; BEC formation with
atomic gases in 1D was predicted to occur in highly
anisotropic harmonic traps [18], and the crossover
of BEC of the 3D confinement into BEC in 2D or 1D
confinement was observed in the highly anisotropic
potential trap [19].

BEC, as a phase transition, takes place not only
in Bose gases but also in other bosonic systems.
Signatures of a sharp heat capacity and tempera-
ture transition, similar to that of BEC formation
in Bose gases, were recorded in thin 4He films that
are adsorbed on porous structures [20]. More re-
cent works related to BEC in porous media concern
local BE condensates in nanopores [21] and positro-
nium BEC in micro-sized cavities [22]. The remark-
able observation concerning the surface of porous
glass was its fractal nature with fractal dimension
D > 2 [23]. The dimension of a fractal means that
D is non-integer. This fact led to the suggestion of
analyzing the fractal nature of such structures by
finding an analogy with fractal dimensions [24, 25].
A similar suggestion was also made for bosonic sys-
tems in external potentials [7, 13]. Different theo-
retical approaches were introduced to treat BEC
and its thermodynamic properties in fractal me-
dia; one of those approaches was the q-deformed
bosons [26–30].

In this work, BEC of a finite number of bosons
harmonically trapped in fractal structures is inves-
tigated via two approaches. Section 2 of this paper
is devoted to the first approach, which belongs to
the standard Bose–Einstein statistics and is suitable
to deal with bosons harmonically trapped in fractal

structures or non-integer dimensions. Section 3 is
devoted to q-deformed bosons trapped on isotropic
3D and 2D harmonic traps. In these two approaches,
the bosons are considered ideal or non-interacting,
for we aim to assign numerical values of q that are
counterpart to the fractal dimensions of Sierpiński
carpet and Menger sponge in Sect. 4.

2. Finite number of bosons harmonically
trapped on non-integer dimensions

(fractal structures)

BEC is generally characterized by the conden-
sation temperature Tc, which indicates the onset
of the phenomenon, and the two signatures, i.e.,
the condensate fraction and a sharp and continuous
heat capacity. In this section, we intend to evaluate
Tc and the two signatures of BEC starting with the
total number of particles N for an ideal Bose gas in
the framework of grand canonical ensemble given
by [31]

N = No +

∞∑
n=1

gn
z−1 e εn/(kBT ) − 1

,

No =
z

1− z
,

(4)
where No is the ground state occupation number,
and the sum term is the number of bosons in higher
energy states. The factor gn is the degeneracy of the
harmonic oscillator, while z and εn are, respectively,
the fugacity and the single-particle energy spec-
trum. In the case of isotropic harmonic traps, the
single-particle energy spectrum is εn = n}ω, where
n is a running integer (energy state label), and ω is
the trap frequency. The degeneracy of isotropic 1D,
2D, or 3D harmonic traps (D is a positive integer
number) is given by the discrete numbers [31]

gn =
(D + n− 1)!

(D − 1)!n!
. (5)

Generally, analytical treatments to evaluate Tc and
BEC thermodynamic properties use different tech-
niques. The most frequent technique was convert-
ing the sum of (4) into integration over the proper
expression of the density of states [8, 17, 26]
or using the Euler–Maclaurin summation tech-
nique [9, 31, 32].

Our treatment to evaluate Tc and BEC thermo-
dynamic properties for a finite number of parti-
cles consists in performing the sum over the energy
states. To introduce continuous or non-integer (frac-
tal) dimensions, generalizing the factorial function
to the Gamma function is required. Next, degener-
acy factors of (5) are generalized for continuous or
fractal dimensions by [31]

gn =
Γ(D+n)

Γ(D) Γ(n+ 1)
. (6)

Then, the total number of bosons harmonically
trapped in fractal dimensions is expressed by [31]
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N = No +
z

Γ(D)

∞∑
n=1

Γ(n+D)

Γ(n+ 1)

1

e εn/(kBT ) − z
.

(7)
Here, No is the ground state population, and the
sum term is the number of bosons in higher energy
states. The evaluation of Tc requires applying the
conditions No = 0 and z = 1 and solving (7) for Tc.
Once Tc is determined, fugacity temperature depen-
dence z(T ) can be determined by solving (7) for z.
The condensate fraction (No/N) and the total en-
ergy E are functions of temperature T and fugac-
ity z. The temperature dependence of No/N and E
for these Bose systems are obtained, respectively,
via
N0

N
= 1− 1

N

[
z

Γ(D)

∞∑
n=1

Γ(n+D)

Γ(n+ 1)

1

e εn/(kBT ) − z

]
(8)

and

Ez,T =
z

Γ(D)

∞∑
n=1

εn
Γ(n+D)

Γ(n+ 1)

1

e εn/(kBT ) − z
.

(9)
The total energy E computed via (9) has the units
of the harmonic oscillator energy (~ω), and the heat
capacity defined by CV = ∂E/∂T is obtained by
differentiating (9) numerically.

3. The q-deformed bosons on harmonic
traps

The approach of q-deformed bosons is based on
deforming creation and annihilation operators of
the standard algebra. The deformation parameter
q is a real positive number that represents the ex-
tent of deviation from a standard quantum mechan-
ical model. In this section, we deal with q-deformed
bosons (or q-deformed oscillators) whose commuta-
tion relation of the creation and annihilation oper-
ators bq and b†q [26] is[

bq, b
†
q

]
= bqb

†
q − q b†qbq = 1. (10)

This type of deformation is called mathematical or
non-symmetric because the deformation in (10) is
non-symmetric under the transformation q → q−1.
The mean value of the occupation number of the
s state of non-interacting free q-deformed bosons,
within the grand canonical ensemble treatment, is
given by [26]

Ns =
1

ln(q)
ln

(
z−1 e εs/(kBT ) − 1

z−1 e εs/(kBT ) − q

)
. (11)

When the conditions of BEC of q-deformed bosons
are established, the fugacity z reaches its maximum
value zq that satisfies the condition [26]

z ≤ zq =

{
q−2, q > 1,

1, 0 < q < 1.
(12)

BEC formation and its thermal properties of free
q-deformed bosons can be determined via the total
number of q-deformed bosons [26]

N = No +

∞∑
n=1

1

ln(q)
ln

(
z−1 e εn/(kBT ) − 1

z−1 eεn/(kBT ) − q

)
,

No =
1

ln(q)
ln

(
z−1 − 1

z−1 − q

)
,

(13)
where No is the ground state population and the
sum term is the number of bosons in higher en-
ergy states. The formalism of q-deformation pro-
vides that the q-deformed bosons system reduces
to the standard quantum mechanical model when
q → 1, i.e., all q-deformed bosons relations reduce
to the relations of standard bosons [26]. This also
means that the standard Bose–Einstein statistics is
a special case of the q-deformed bosons only when
q = 1. The theory and applications of q-deformed
analysis may represent different effects, like the in-
teraction between quantum particles, impurities, or
the fractality of space [26–30, 33–35].

Our adoption of q-deformed analysis aims to rep-
resent the fractality of the structure confining non-
interacting bosons. In this concern, we indicate
two remarkable proposals. One is the Tsallis pro-
posal [36], which directly connects the parameter
of Tsallis nonextensive statistical mechanics qT to
fractal dimensions given by qT = D/DE , where D
is the fractal dimension of a porous medium, and
DE is the Euclidean (integer) dimension in which
the fractal structure is embedded. Accordingly, frac-
tal structures or porous media have qT < 1 for
D < DE . The second proposal, [37] and references
therein, is that the deformation parameter q of the
deformed bosons theory is not only connected to the
parameter qT — it was also proposed that the two
parameters should be the same. Based upon these
two notable connections, we investigate the interval
0 < q < 1, whereas q may represent a measure of
the fractality of a fractal structure (porosity of a
porous medium).

When q-deformed bosons are on isotropic har-
monic traps, the degeneracy factors are the same
as of (5), and the single-particle energy spectrum
of the harmonic oscillator is the same as the non-
deformed (standard) bosons and is also expressed
by εn = n}ω. Hence, we can express the total num-
ber of q-deformed bosons in harmonic traps by

N = No +

∞∑
n=1

gn
ln(q)

ln

(
z−1 e εn/(kBT ) − 1

z−1 e εn/(kBT ) − q

)
.

(14)
The temperature dependence of condensate fraction
No/N and the total energy E of the condensate, in
~ω units, are determined, respectively, by

No

N
= 1− 1

N

∞∑
n=1

gn
ln(q)

ln

(
z−1 eεn/(kBT ) − 1

z−1 e εn/(kBT ) − q

)
(15)

and

Ez,T =

∞∑
n=1

εn
gn

ln(q)
ln

(
z−1 eεn/(kBT ) − 1

z−1 eεn/(kBT ) − q

)
.

(16)
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We evaluate the condensation temperature of the
q-deformed bosons, T (q)

c , using (14), the condensate
fraction No/N using (15), and the heat capacity via
performing the sums over the energy states with
the same procedure we illustrated in the previous
section for the standard bosonic system.

4. Results and discussion

Our results of condensation temperature and the
condensate properties are numerically computed by
performing the sum over energy states for a finite
number of bosons (N = 1000) in harmonic traps.

Figure 1 exhibits the evaluation of Tc using (7)
for a finite number of bosons harmonically trapped
on non-integer or fractal dimensions 1.8 ≤ D ≤ 3 in
(~ω/kB) units. This figure shows that the condensa-
tion temperature Tc is a decreasing function of the
dimensions D of the harmonic trap. It also shows
that the computed Tc on 3D and 2D harmonic traps,
are, respectively, T 3D

c = 8.7 and T 2D
c = 23.7. These

two results are in excellent agreement with the ex-
perimental corrections (2) and (3), and this can em-
phasize the robustness of Tc evaluation via perform-
ing the sum over the energy states for bosons har-
monically trapped on fractal or non-integer dimen-
sions (1.8 ≤ D ≤ 3).

Figure 2 shows the variation of the condensation
temperature of q-deformed bosons, T (q)

c in (~ω/kB)
units, on 3D and 2D harmonic traps against q
via (14). This figure shows that for 0 < q < 1,
T

(q)
c is a decreasing function of q, and T (q)

c reaches
minimum when q =1. These results are consistent
with the theory of q-deformed bosons and also with
the results of [26]. Figure 2 also shows that when
q = 0.999 (q → 1), the values of T (q)

c on 3D and 2D
harmonic traps are, respectively, 8.7 and 23.7.

It becomes clear that these results for the con-
densation temperature are the same as those we
determined for the standard bosonic system con-
fined on 3D and 2D harmonic traps shown in Fig. 1.
This agreement in results of the condensation tem-
perature in two bosonic systems, the standard and
the q-deformed, may emphasize the validity of the
thermal properties of the BE condensates we deter-
mined below for these two bosonic systems.

BEC formation of bosons harmonically trapped
on arbitrary fractal dimensions (D = 2.4, 2.6, 2.8)
are exhibited in Figs. 3 and 4 by computing the
sums in (8) and (9). Figures 3 and 4 show the depen-
dence of BEC formation of harmonically trapped
bosons on the fractal dimension D.

Figure 4 also shows the explicit dependence
of heat capacity on the degeneracy factors given
by (6); bosons harmonically trapped on fractal
structures with a larger fractal dimension D have
higher heat capacities.

Concerning q-deformed bosons on 3D and 2D
harmonic traps, the condensate fraction No/N de-
pendence on q, evaluated using (15), are exhibited,

Fig. 1. Condensation temperature of 1000 bosons
harmonically trapped on fractal dimensions.

Fig. 2. Condensation temperature of 1000
q-deformed bosons on a 3D harmonic trap. The
inset is for q-deformed bosons on a 2D harmonic
trap.

Fig. 3. Condensate fraction of 1000 bosons har-
monically trapped on fractal dimensions.
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respectively, in Figs. 5 and 6. These figures also
show results (dotted curves) of condensate fractions
of standard (non-deformed) bosons, which (8) gives
for D = 3 and D = 2, respectively. It is clear that
the plots we obtained for q-deformed bosons, whose
q = 0.999 (q → 1), via (15) are in excellent agree-
ment with the plots we obtained for non-deformed
(standard) bosons via (8).

The heat capacity plots on a 3D harmonic trap
and 2D harmonic trap are, respectively, exhibited
in Figs. 7 and 8. These figures show sharp signa-
tures of heat capacity for q-deformed bosons for ar-
bitrary values of q obtained by differentiating (16)
numerically. Figures 7 and 8 also show plots (dot-
ted curves) for heat capacities of standard (non-
deformed) bosons, which are obtained by differenti-
ating (9) numerically.

Fig. 4. Heat capacity of 1000 bosons harmonically
trapped on fractal dimensions.

Fig. 5. The condensate fraction of 1000
q-deformed bosons for arbitrary values of q
on a 3D harmonic trap.

Fig. 6. The condensate fraction of 1000
q-deformed bosons for arbitrary values of q
on a 2D harmonic trap.

Fig. 7. Heat capacity of 1000 q-deformed bosons
on a 3D harmonic trap.

Fig. 8. Heat capacity of 1000 q-deformed bosons
on a 2D harmonic trap.
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It is clear that the plots of the heat capac-
ity of q-deformed bosons, whose q = 0.999, ob-
tained by differentiating (16) numerically, excel-
lently agree with the plots of the heat capacity of
non-deformed bosons obtained by differentiating (9)
numerically. This agreement in the heat capacity for
q-deformed bosons with standard bosons is also con-
sistent with q-deformed bosons theory. From Figs. 7
and 8, we also notice that the plots of heat capacity
of q-deformed bosons on a 3D harmonic trap are
higher than those on a 2D harmonic trap. This is
directly ascribed to the value of the harmonic oscil-
lator degeneracy factors given by (5) because gn on
a 3D harmonic trap (D = 3) are larger than those
on a 2D harmonic trap (D = 2).

The plots of the condensate fraction and the heat
capacity that belongs to q-deformed bosons in har-
monic traps (Figs. 5–8) explicitly show the utility
of using the deformation parameter q to represent
the fractality of the confining structures or media
such as Sierpiński carpet and Menger sponge.

Now, our approach to assigning the values of q
that may represent the fractal dimensions of the
Sierpiński carpet and the Menger sponge is based
upon the agreements in condensation temperature
and thermal behavior of the two bosonic systems,
i.e., the standard (non-deformed) system harmon-
ically trapped on the Sierpiński carpet and the
Menger sponge with the q-deformed bosonic sys-
tem.

The Sierpiński carpet is a fractal structure that
covers an area (2D space), and its Hausdorff frac-
tal dimension is D = log(8)/ log(3) ≈ 1.89, while
the Menger sponge is a fractal structure that fills
a volume (3D space), and its Hausdorff fractal di-
mension is D = log(20)/ log(3) ≈ 2.72. Accord-
ingly, the fractal dimension of a fractal structure
(or porous medium) is less than the Euclidean (in-
teger) dimension in which the fractal structure is
embedded [31, 32].

Fig. 9. Condensate fraction of 1000 bosons har-
monically trapped on Sierpiński carpet.

Fig. 10. Condensate fraction of 1000 bosons har-
monically trapped on Menger sponge.

Concerning our attempt to assign a value of q
that may represent the fractal dimension of the Sier-
piński carpet (D = 1.89), we consider the case of
q-deformed bosons on a 2D harmonic trap (D =2).
To assign a value of q that may represent the frac-
tal dimension of the Menger sponge (D = 2.72), we
consider the case of q-deformed bosons on a 3D har-
monic trap (D = 3). In this context, our results of
the condensation temperature Tc, plotted in Fig. 1,
show that standard bosons harmonically trapped on
Sierpiński carpet (D = 1.89) and Menger sponge
(D = 2.72) are, respectively, 27.7 and 10.8. From
the results in Fig. 2, and with two digits of accuracy
for the value of q, it is found that the condensation
temperature of q-deformed bosons on 3D harmonic
trap T

(q)
c = 10.8 corresponds to q = 0.33, while

the condensation temperature of q-deformed bosons
on 2D harmonic trap T

(q)
c = 27.7 corresponds to

q = 0.74. These two assigned values of the parame-
ter q (0.33 and 0.74) are used to examine the ther-
mal behavior of q-deformed bosons along with the
thermal behavior of the standard bosonic systems
on the Sierpiński carpet and Menger sponge.

Figures 9 and 10, respectively, exhibit results of
the thermal behavior of the condensate fraction on
the Sierpiński carpet and Menger sponge for the
standard (non-deformed) bosonic system and the
q-deformed bosonic system. These figures explicitly
show the agreement in the results of the thermal
behavior of the condensate fractions for the two
bosonic systems.

Figures 11 and 12, respectively, exhibit results
of the thermal behavior of the heat capacity on
the Sierpiński carpet and Menger sponge for the
standard (non-deformed) bosonic system and the
q-deformed bosonic system. These figures also show
that the heat capacities of q-deformed systems are
larger than those of non-deformed systems. This dis-
crepancy in the heat capacities is, indeed, due to the
differences in the degeneracy factors gn. According
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Fig. 11. Heat capacity of 1000 bosons harmoni-
cally trapped on Sierpiński carpet.

Fig. 12. Heat capacity of 1000 bosons harmoni-
cally trapped on Menger sponge.

to (6), gn for D = 3 are larger than those for
D = 2.72 and, similarly, gn for D = 2 are larger
than those for D = 1.89. Despite this discrepancy,
in our opinion, the thermal behavior of the heat ca-
pacities in these two bosonic systems is similar, for
the heat capacities of the two bosonic systems reach
maximum simultaneously.

5. Conclusions

This work is an attempt to determine a value of
q that can represent the fractality of a fractal struc-
ture or porosity of a porous medium. Our results
show that q-deformed bosons in a 2D harmonic trap
with q = 0.74 are adequate to represent conden-
sates harmonically trapped on the Sierpiński car-
pet. Similarly, the q-deformed bosons on the 3D har-
monic trap with q = 0.33 are adequate to represent

condensates harmonically trapped on the Menger
sponge. In other words, our results for the BEC
phenomenon reveal that q = 0.74 is adequate to
represent a Hausdorff fractal dimension D = 1.89,
and q = 0.33 is adequate to represent a Hausdorff
fractal dimension D = 2.72. Also, to the best of our
knowledge, this attempt is the first determination
of the Hausdorff fractal dimension via the parame-
ter q. Verification of the values of q obtained in this
work demands examining the formation of BEC on
the Sierpiński carpet and Menger sponge with ideal
free bosons or via phenomena other than BEC.

This work shows the utility of using q-deformed
bosons to represent the fractality of media or struc-
tures possessing fractal dimensions, and it may em-
phasize that porous media or fractal structures have
deformation values of q such that 0 < q < 1. This
result may show equivalence with the Tsalis non-
extensive parameter for defining the fractal dimen-
sion of a porous material [36] via qT = (D/DE),
which gives qT < 1. Consequently, our work as-
sists the connection between the q-deformation
parameter q and Tsalis non-extensive parameter
qT indicated by [37].

According to the later point, this leads to the
thought that the BEC phenomenon on rough sur-
faces (surfaces whose Hausdorff fractal dimension
D > 2) can be investigated with q-deformed bosons
for q > 1. In our opinion, such investigation may
have special significance on superconductivity and
surface physics via q-deformation theory. According
to [26], it is worth mentioning here that for q > 1,
the condensation temperature of q-deformed bosons
in harmonic traps T (q)

c is an increasing function of q.
It is also useful to mention that parameter q can

be also used to represent a parameter of interaction
for non-ideal bosons. In this context, (13) can be
used to determine the properties of interacting free
bosons, and (14) can be used to determine the prop-
erties of interacting bosons on harmonic traps of in-
teger dimensions. We also suggest an expression for
interacting bosons harmonically trapped on fractal
structures by inserting (6) into (14) to get

N = No +
1

ln(q)Γ(D)

×
∞∑

n=1

Γ(n+D)

Γ(n+ 1)
ln

(
z−1 e εn/(kBT ) − 1

z−1 e εn/(kBT ) − q

)
,

(17)
which may help to investigate the effect of the frac-
tal dimension on the interaction between bosons, es-
pecially for BEC in microcavities [21] or nanopores
structures [22].

Finally, this work exhibits the utility of using
the approach of performing the sum over the en-
ergy states to evaluate the physical properties of
systems of a finite number of particles. So, we do
recommend this technique for systems in microcav-
ities or nanopores for two reasons: (i) because these
micro- or nano-sized pores actually can confine a fi-
nite number of particles, (ii) because this approach
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is the exact statistical treatment and there is no
need to seek an appropriate density of states to ac-
complish the calculations.

Acknowledgments

This study did not receive any specific grant or
funding from any funding source.

References

[1] C. Yang, Rev. Mod. Phys. 34, 694 (1962).
[2] E. Pérez, T. Sauer, Arch. Hist. Exact Sci.

64, 561 (2010).
[3] K. Huang, Statistical Mechanics, 1st ed.,

Wiley, New York 1963.
[4] S. Coleman, Commun. Math. Phys. 31, 259

(1973).
[5] A. Widom, Phys. Rev. 176, 254 (1968).
[6] V. Bagnato, D. Pritchard, D. Kleppner,

Phys. Rev. A 35, 4354 (1987).
[7] V. Bagnato, D. Kleppner, Phys. Rev. A 44,

7439 (1991).
[8] S. Grossmann, M. Holthaus, Phys. Lett. A

208, 188 (1995).
[9] T. Haugset, J. Haugerud, J. Andersen,

Phys. Rev. A 55, 2922 (1997).
[10] R.K. Pathria, Phys. Rev. A 58, 1490

(1998).
[11] M. Li, L. Chen, J. Chen, Z. Yan, C. Chen,

Phys. Rev. A 60, 4168 (1999).
[12] F. Dalfovo, S. Giorgini, L. Pitaevskii,

S. Stringari, Rev. Mod. Phys. 71, 463
(1999).

[13] L. Salasnich, J. Math. Phys. 41, 8016
(2000).

[14] M. Anderson, J. Ensher, M. Matthews,
C. Wieman, E. Cornell, Science 269, 198
(1995).

[15] C. Bradley, C. Sackett, J. Tollet, R. Hulet,
Phys. Rev. Lett. 75, 1687 (1995).

[16] K. Davis, M. Mewes, M. Andrews, N. van
Druten, D. Durfee, D. Kurn, W. Ketterle,
Phys. Rev. Lett. 75, 3969 (1995).

[17] W. Ketterle, N. van Druten, Phys. Rev. A
54, 656 (1996).

[18] W. Ketterle, N.J. van Druten, Phys. Rev.
Lett. 79, 549 (1997).

[19] A. Gorlitz, J. Vogels, A. Leanhardt,
C. Raman, T. Gustavson, J. Abo-Shaeer,
A. Chikkatur, S. Gupta, S. Inouye,
T. Rosenband, W. Ketterle, Phys. Rev.
Lett. 87, 130402 (2001).

[20] K. Yamamoto, Y. Shibayama, K. Shira-
hama, Phys. Rev. Lett. 100, 195301 (2008).

[21] J. Bossy, J. Ollivier, H.R. Glyde, Phys.
Rev. B 99, 165425 (2019).

[22] M.X. Asaro, S. Herrera, M. Fuentes-
Garcia, G.G. Cecchini, E.E. Membreno,
R.G. Greaves, A.P. Mills Jr., Eur. Phys.
J. D 76, 107 (2022).

[23] A. Höhr, H.-B. Neumann, P.W. Schmidt,
P. Pfeifer, D. Avnir, Phys. Rev. B 38, 1462
(1988).

[24] S.-T. Nam, J. Korean Phys. Soc. 44, 464
(2004).

[25] J. Kou, F. Wu, H. Lu, Y. Xu, F. Song,
Phys. Lett. A 374, 62 (2009).

[26] Q.-J. Zeng, Z. Cheng, J.-H. Yuan, Physica
A 391, 563 (2012).

[27] A. Lavagno, A.M. Scarfone, P.N. Swamy,
Eur. Phys. J. C 47, 253 (2006).

[28] A. Lavagno, J. Phys. A: Math. Theor. 41,
244014 (2008).

[29] A. Lavagno, Rep. Math. Phys. 64, 79
(2009).

[30] Y. Wang X.-M. Kong, Mod. Phys. Lett. B
24, 135 (2010).

[31] A. Rovenchack, Acta Phys. Pol. A 118, 531
(2010).

[32] J.P. Chen, arXiv:1202.1274 (2012).
[33] F.G. Garaschenko, D.S. Kruchinin, V.E.

Novikov, Int. J. Mod. Phys. B 22, 3923
(2008).

[34] I.S. Sogami, K. Koizumi, Prog. Theor.
Phys. 107, 1 (2002).

[35] A.A. Marinho, F.A. Brito, C. Chesman,
Physica A 391, 3424 (2012).

[36] C. Tsallis, Fractals 3, 541 (1995).
[37] R.S. Johal, Phys. Lett. A 258, 15 (1999).

241

http://dx.doi.org/10.1103/RevModPhys.34.694
http://dx.doi.org/10.1007/s00407-010-0066-x
http://dx.doi.org/10.1007/s00407-010-0066-x
http://dx.doi.org/10.1007/BF01646487
http://dx.doi.org/10.1103/PhysRevA.35.4354
http://dx.doi.org/10.1103/PhysRevA.44.7439
http://dx.doi.org/10.1103/PhysRevA.44.7439
http://dx.doi.org/10.1016/0375-9601(95)00766-V
http://dx.doi.org/10.1016/0375-9601(95)00766-V
http://dx.doi.org/10.1103/PhysRevA.55.2922
http://dx.doi.org/10.1103/PhysRevA.58.1490
http://dx.doi.org/10.1103/PhysRevA.58.1490
http://dx.doi.org/10.1103/PhysRevA.60.4168
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1063/1.1322078
http://dx.doi.org/10.1063/1.1322078
http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1103/PhysRevLett.75.1687
http://dx.doi.org/10.1103/PhysRevLett.75.3969
http://dx.doi.org/10.1103/PhysRevA.54.656
http://dx.doi.org/10.1103/PhysRevA.54.656
http://dx.doi.org/10.1103/PhysRevLett.79.549
http://dx.doi.org/10.1103/PhysRevLett.79.549
http://dx.doi.org/10.1103/PhysRevLett.87.130402
http://dx.doi.org/10.1103/PhysRevLett.87.130402
http://dx.doi.org/10.1103/PhysRevLett.100.195301
http://dx.doi.org/10.1103/PhysRevB.99.165425
http://dx.doi.org/10.1103/PhysRevB.99.165425
http://dx.doi.org/10.1140/epjd/s10053-022-00427-1
http://dx.doi.org/10.1140/epjd/s10053-022-00427-1
http://dx.doi.org/10.1103/physrevb.38.1462
http://dx.doi.org/10.1103/physrevb.38.1462
http://dx.doi.org/10.3938/jkps.74.701
http://dx.doi.org/10.3938/jkps.74.701
http://dx.doi.org/10.1016/j.physleta.2010.09.046
http://dx.doi.org/10.1016/j.physa.2011.09.011
http://dx.doi.org/10.1016/j.physa.2011.09.011
http://dx.doi.org/10.1140/epjc/s2006-02557-y
http://dx.doi.org/10.1088/1751-8113/41/24/244014
http://dx.doi.org/10.1088/1751-8113/41/24/244014
http://dx.doi.org/10.1016/S0034-4877(09)90021-0
http://dx.doi.org/10.1016/S0034-4877(09)90021-0
http://dx.doi.org/10.1142/S0217984910022299
http://dx.doi.org/10.1142/S0217984910022299
http://dx.doi.org/10.12693/APhysPolA.118.531
http://dx.doi.org/10.12693/APhysPolA.118.531
http://arXiv.org/abs/1202.1274
http://dx.doi.org/10.1142/S0217979208048656
http://dx.doi.org/10.1142/S0217979208048656
http://dx.doi.org/10.1143/PTP.107.1
http://dx.doi.org/10.1143/PTP.107.1
http://dx.doi.org/10.1016/j.physa.2014.06.008
http://dx.doi.org/10.1142/S0218348X95000473
http://dx.doi.org/10.1016/S0375-9601(99)00314-X

