
ACTA PHYSICA POLONICA A No. 4 Vol. 144 (2023)

Wakefield Excitation in Magnetized Quantum Plasma
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A study of the wakefield excitation in a magnetized quantum plasma is presented. The high-density
plasma has been magnetized through a magnetic field applied in the longitudinal direction. Using a
recently developed quantum hydrodynamic model and a perturbative technique, taking into account
the quantum effects of Fermi pressure and Bohm potential, electric and magnetic wakefields were
obtained for the Gaussian profile of the electromagnetic pulse. Electrons are trapped in the wakefields
and accelerated to extremely high energies. It is observed that the quantum effects significantly affect
the wakefield excitation. Quantum dispersive effects tend to reduce the acceleration gradient, whereas
the external magnetic field helps with self-focusing and also contributes to acceleration. The axial and
radial forces acting on a test electron have been calculated.
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1. Introduction

In the past two decades, the acceleration of
electrons by a laser wakefield [1] has been the
focus of scientists throughout the globe, thereby
leading to a number of theoretical and experimental
investigations. An intense electromagnetic pulse
can create a wake of plasma oscillations under the
action of ponderomotive force. The electrons are
then trapped in the wake and can thus be accel-
erated to extremely high energies. The pioneering
idea of Tajima and Dawson has been theoretically
explored and experimentally verified [2–23]. Intense
laser beams or bunches of relativistic electrons have
been used to excite plasma waves. High electric
field strengths (10–100 GV/m) were produced
by intense laser beams in the form of bunches of
relativistic electrons, thereby opening possibility
for compact GeV particle accelerators. Recently,
electron acceleration up to the TeV regime has
been proposed by plasma wakefield accelerators
using protons to drive plasma wakefield driven by
electron bunches [24].

The application of magnetic fields significantly
influences the laser–plasma interactions since
it affects the self-focusing property of the laser
beam. As the magnetic field increases, the extent
of self-focusing increases, thus a magnetic field
enhances the rate of self-focusing. Additionally, in
order to avoid phenomena such as electromagnetic
filamentation or slipping instability, it is worth to
apply a stabilizing external longitudinal magnetic
field [25], which not only suppresses instabilities
but also gives rise to a large number of new wave
branches, thereby substantially expanding the

possibilities of the wakefield acceleration scheme.
Numerous theoretical and simulation stud-
ies [26–37] have been performed on the wakefield
excitation in a magnetized plasma. Also experimen-
tal studies have been conducted on the wakefields
in a magnetized plasma [38].

Recently, studies concerning high-density plas-
mas (quantum plasma) gained great attention,
and pertinent research activities in this area
have been observed. Quantum effects appear in
ultra-small electronic devices [39], dense astro-
physical plasmas [40], ultracold plasmas [41], laser
plasmas [42], plasmonics [43], inertial confinement
fusion (ICF) [44], laser compression based plasma
experiments [45], quantum well [46], quantum
free electron lasers (FEL) [47], etc. The quantum
plasma has high density, low temperature, and
the particles follow the Fermi–Dirac distribution
as compared to the classical plasma having low
density, high temperature with particles following
the Maxwell–Boltzmann distribution.

The study of quantum effects becomes important
when the thermal de-Broglie wavelength associated
with the charged particle, i.e., λB=}/(2πmkBT ),
approaches the electron Fermi wavelength λF
and exceeds the electron Debye radius λDe (viz.,
λB∼λF > λDe). Furthermore, degeneracy and
quantum effects play a significant role when the
average inter-particle distance (∼n−1/30 ) becomes of
the same order or is smaller than λB, i.e., n0λ3B ≥ 1.
However, other condition for degeneracy is that
the thermal temperature (T ) of the system must
be less than the Fermi temperature (TF) which
is related to the equilibrium density (n0) of the
charged particles. In a quantum plasma, electron
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degeneracy leads to electron tunneling through the
quantum Bohm potential [48–51]. The quantum
effects of Fermi statistical pressure and the quan-
tum Bohm force influence the electron dynamics,
resulting in collective interactions [48, 52, 53].
Studies concerning the dispersion of nonlinear
propagation of waves in quantum plasma have
been carried out [54–60]. It has been demonstrated
that quantum effects can be important even in
the classical regime [61, 62]. The excitation of
electrostatic wakefields in a quantum plasma by
the ponderomotive force has been studied [63–66]
and it has been found that the plasma number
density plays an important role in the transition
from wakefield generation to soliton formation [67].

In the present paper, a detailed analytical study
of the plasma wakefield generation in a magnetized
quantum plasma was carried out. The interaction
picture was built up using a recently developed
quantum hydrodynamic (QHD) model, which con-
sists of a set of equations describing the transport
of charge density, momentum (including the Bohm
potential), and energy in a charged particle system.
The QHD model is a macroscopic model and its
application is limited to those systems that are
large compared to the Fermi length of the species
in the system. The advantage of the QHD model
over kinetic descriptions is its numerical efficiency,
direct use of the macroscopic variables of interest
such as momentum and energy, and the easy
way the boundary conditions are implemented.
This allows us to study of nonlinear phenomena
relatively easier, which is why the QHD approach
is preferred for describing such phenomena in
quantum plasma [39, 67]. A perturbative technique
involving orders of the incident electromagnetic
wave have been used to obtain explicit electric and
magnetic wakefields. Further, the accelerating force
acting on a test electron has been evaluated. The
results show that the accelerating force decreases
due to the collective effects of statistical pressure
and the quantum Bohm force. It is also observed
that the energy density of the wakefield is larger as
compared to the unmagnetized case. Such a study
has not been reported in literature so far.

In Sect. 2, the lowest order fast oscillating plasma
electron velocities and density perturbations have
been derived. By combining the time-averaged cur-
rent densities with Maxwell’s equations, the gener-
ated electric and magnetic wakefields were obtained
in Sect. 3. In Sect. 4, the axial and radial forces
acting on a moving test electron have been derived
and analyzed graphically. Section 5 is devoted to
summary and discussion.

2. Electromagnetic wave propagation

We consider the propagation of a linearly polar-
ized electromagnetic (e.m.) wave having an electric
field E = êxEo cos(kz−ωt) (êx is the unit vector of

polarization), where Eo, ω, and k are the amplitude,
frequency, and wave number of the e.m. wave, re-
spectively, in a uniform magnetized (b = bêz) quan-
tum plasma of density no. In a quantum plasma,
electrons obey the equations [69]
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where n (= no + n(1)) is the electron density, n(1)
is the perturbation term, m is the electron rest
mass, } is Planck’s constant divided by 2π, and vF
(=

√
2kBTF/m) is the Fermi velocity. The fourth

term on the right-hand side of (1) denotes the force
due to the Fermi electron pressure. The Fermi elec-
tron pressure for a one-dimensional Fermi gas at
zero temperature is given as PF = mv2Fn

3/(3n2o).
As we have mentioned in Sect. 1, for degeneracy the
thermal temperature must be less than the Fermi
temperature, which is possible only at zero temper-
ature, where all electrons have energies below the
Fermi temperature [69–71]. It is assumed that the
Fermi electron pressure dominates over the electron
thermal pressure — the pressure appropriate for a
high-density plasma with moderate or low electron
temperature. The fifth term of (1) is the quantum
Bohm potential and is due to quantum corrections
in density fluctuation. The classical equations may
be recovered in the limit } → 0. Ions form a neu-
tralizing background in the dense plasma. Pertur-
batively, expanding (1) and (2) up to the first order
of the electromagnetic field, we get
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where the subscript “o” signifies the unperturbed
quantities and the superscript “(1)” denotes the first
order perturbed quantities. Assuming the perturbed
density to vary as n(1) = η exp(i(kz − ωt)) and si-
multaneously treating (4) and (5), we arrive at
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where ωb = eb
mc is the cyclotron frequency of the

plasma electrons due to an applied external mag-
netic field in a collisionless quantum plasma. As a
solution of (6), we get the first-order perturbed par-
ticle density as

n(1) = −eknoEoΩq
m

[(
1 +

ω2
b

ω2−ω2
b

)
sin(kz−ωt)

− ωωb
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.

(8)
When a high-intensity short e.m. pulse interacts
with the magnetized quantum plasma, a pondero-
motive force associated with the wave field acts due
to which the plasma electrons oscillate with the
frequency of the electromagnetic wave. This high-
frequency fluctuation in charge density leads to the
generation of longitudinal electric field and velocity
given, respectively, by
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where ω2
po = 4πnoe

2/m is the electron plasma fre-
quency, a (= eEo

mcω ) is the normalized radiation field
amplitude, and Ωp = (ω2

po+ k2v2F + }2k4

4m2 ). The gen-
erated field and velocity critically depend on the
variation of ω with ωb and attain a maximum value
near the resonance ω ≈ ωb.

3. Wakefield generation

In order to study the wakefield generation in a
magnetized quantum plasma, it is assumed that the
e.m. wave does not evolve significantly as it tran-
sits a plasma electron [72]. The plasma fluid equa-
tions are written in terms of independent variables
ξ = z − ct and τ = t. The plasma electron experi-
ences a static e.m. field and hence the field varia-
tions with respect to τ are neglected in the plasma
fluid equations. In order to obtain the electric and
magnetic wakefields, the time-dependent Maxwell’s
equations are used
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Assuming the e.m. pulse to have a radial Gaussian
profile and the generated fields to be axisymmetric,
Maxwell’s equations in the cylindrical polar coordi-
nates are
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∂ξ
− ∂Ez

∂r
=
∂Bθ
∂ξ

, (13)

∂Er
∂ξ
− ∂Bθ

∂ξ
=

4π

c
Jr, (14)

∂Ez
∂ξ

=
4π

c
Jz −

1

r

∂(rBθ)

∂r
, (15)

where Jr and Jz are the transverse and axial cur-
rent densities, respectively. Substituting the first-
order quantities in the Lorentz force equation, one
gets the lowest (second) order slow components of
velocities
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(17)
where Ez and Er represent the axial and radial elec-
tric wakefields. The last term on the right-hand side
of (16) is obtained by substituting the value

[
v
(1)
z

]2
averaged over the polar angle θ. In deriving (16)
and (17), it is found that the ponderomotive non-
linear effects ∇(v ·v) contribute to the transverse as
well as longitudinal wakefield generation. However,
the nonlinear terms v×B and v×(∇×v) represent-
ing the vortex motion contribute only to the trans-
verse velocity components. Further, the ponderomo-
tive force is modified due to the contribution of the
first-order longitudinal velocity of plasma electrons.
Combining (15) and (16) gives(
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where k2p = k2po (1 + n(1)/no). Combining (13)
and (14), and substituting (17) gives
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Equations (19) and (20) are the governing
equations for the generation of axial and transverse
electric wakefields in a dense magnetized quantum
plasma. Perturbatively expanding (19) and equat-
ing orders, the lowest order axial wakefield is given
as (
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∂ξ2
+k2po

)
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z = −
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2
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2
p
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Let us assume a Gaussian pulse profile of the form

a2 = a2r sin
2
(πξ
L

)
, (22)

where a2r = a2o exp(−2r2/r2o). The energy density
of a high-frequency e.m. pulse is assumed to be
high enough such that the high-frequency e.m.
pulse is changing its shape on a longer timescale,
as compared to the wakefield generation process,
which is easily achievable for a short pulse [34]. The
solutions to (21) for lowest order axial wakefields
within (0 ≤ ξ ≤ L) and behind the e.m. pulse
(ξ < 0) are, respectively, given by
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where ε=mc2a2r/e and f=(1−k2poL2/(4π2))−1.

Similarly, from (19) the lowest (zeroth) order
transverse wakefields within (0 ≤ ξ ≤ L) and
behind (ξ < 0) the pulse are, respectively,
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The lowest order magnetic wakefield within the
pulse is B(0)

θ = 0, whereas behind the pulse the
field is given by

B
(0)
θ = −Ω2

q εrSΩ
2
p

2r2o

[
cos
(

2πξ
L

)
− 1
]
. (27)

This field is zero on the axis (r = 0).
The first-order equation for the axial wakefield is

obtained from (18)(
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The respective first-order longitudinal wakefields
(within the pulse and on the back of the pulse) are
obtained by substituting zeroth-order quantities
into (28), i.e.,
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where n′ = n(1)/no.

The first-order transverse electric wakefields
within and at the back of the pulse are obtained,
respectively, as
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The expressions for the first-order magnetic weak-
fields within and behind the pulse are, respectively,
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4. Electron acceleration

The maximum axial wakefields within and behind
the e.m. pulse in the limit L→ λp are obtained (by
using L’ Hospital’s rule) as
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Fig. 1. Variation of the normalized axial
Fz/(mcωpo) (solid line) and transverse Fr/(mcωpo)
(dashed line) forces acting on a test electron
within the pulse with ξ

L
(x-axis) for a2o = 0.9,

λp = 15.0 µm, ro = 15.0 µm, r = 4.0 µm, and
ωb/ω = 0.5.
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The maximum transverse electric wakefields are
given by
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and the maximum magnetic wakefields are given as
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The maximum longitudinal force acting on a test
electron is Fz = −eEzm, and the electron will only
be accelerated if Fz > 0. The maximum trans-
verse force Fr (= −eErm+eBθm) should be Fr < 0

Fig. 2. Variation of the normalized ax-
ial Fz/(mcωpo) (dashed line) and transverse
Fr/(mcωpo) (solid line) forces acting on a test
electron behind the pulse with ξ

L
(x-axis) for

a2o = 0.9, λp = 15.0 µm, ro = 15.0 µm, r = 4.0 µm,
and ωb/ω = 0.5.

to focus the electron towards the axis. In a high-
density quantum plasma, near the critical density,
the group velocity of the electromagnetic wave ap-
proaches zero, and the pump depletion and de-
phasing lengths become shorter than the plasma
wavelength. Consequently, the interaction primar-
ily occurs within one plasma wavelength, and the
wave significantly couples to the bulk motion of the
plasma [72].

While performing numerical analysis, we consider
the astrophysical plasma parameters, i.e., plasma
density 1026–1029 cm−3 and magnetic field strength
109–1011 Gauss. For a magnetic field of 1010 Gauss
and a plasma density no = 1026 cm−3, the value
of ωb comes out to be 1.4×1017 s−1, while ωp will
be 1.1×1018 s−1, thereby satisfying ωb<ωp. Such
a regime is prevalent in neutron stars, magnetars
and white dwarfs [73–80]. The present theory is
also applicable to semiconductor quantum plasmas,
solid density plasmas, compressed plasmas, iner-
tial confinement fusion experiments and to quantum
nanowires [81–88] for their respective parameters.

Variations of the normalized axial Fz/(mcωpo)
and transverse Fr/(mcωpo) forces acting on a test
electron within the e.m. pulse for a2o = 0.9, λp =
15.0 µm, ro = 15.0 µm, r = 4.0 µm, ωb/ω = 0.5
have been shown in Fig. 1. The axial force is greater
and leads in phase to the transverse force. Figure 2
depicts the variation of the normalized axial and
transverse forces acting behind the e.m. pulse for
similar parameters as in Fig. 1. It is seen that be-
hind the pulse, the transverse force is greater than
the force in the longitudinal direction.

A plot of the accelerating force with the normal-
ized frequency of the externally applied magnetic
field (denoting the strength of the applied magnetic
field) has been shown in Fig. 3. The force increases
with the applied magnetic field and a rapid increase
is observed for ωb/ω > 0.8. The force becomes
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Fig. 3. Variation of the normalized axial force
Fz/(mcωpo) with normalized frequency ωb/ω
(x-axis) of the external magnetic field for a2o = 0.9,
λp = 15.0 µm, ro = 15.0 µm, r = 4.0 µm, and
ξ/L = 4.0.

maximal near the resonance, i.e., when ωb → ω. At
the resonance ωb = ω, the accelerating gradient ap-
proaches infinity and the theory breaks down. Thus,
optimum gain is obtained near resonance.

The variation of the axial force (Fz/(mcωpo)) act-
ing within the pulse has been shown in Fig. 4 for
similar parameters as used in Fig. 1. The solid line
denotes the variation under the influence of quan-
tum effects, while the dashed line shows the force in
the absence of quantum effects in the limit } → 0.
It is observed that the force is reduced in quan-
tum plasma by about 10% compared to the classical
case. This reduction is due to quantum diffraction
effects.

5. Conclusions

We have studied in detail the wakefield genera-
tion by an intense electromagnetic pulse traveling
through a magnetized quantum plasma. We have
used the electron continuity and momentum equa-
tions, incorporating quantum statistical pressure
and quantum Bohm force, together with the Pois-
son equation to obtain the perturbed density and
velocity. The electric and magnetic wakefields have
been derived with the help of the time-dependent
Maxwell’s equations using a quasi-static approx-
imation for the radial Gaussian field amplitude.
It is found that ponderomotive nonlinear effects,
quantum force, and quantum statistical pressure
contribute to the transverse as well as longitudi-
nal wakefield generation. However, the nonlinear
terms representing the vortex motion contribute
only to the transverse velocity components. The
zeroth- and first-order electric and magnetic wake-
fields (both transverse and longitudinal) within
and behind the pulse have been obtained for a si-
nusoidal pulse profile. The energy density of the
wakefield in the present case is larger by a fac-
tor of ω2

b/ω
2
po compared to the unmagnetized case.

Fig. 4. Variation of the normalized axial force
Fz/(mcωpo) acting on an electron within the pulse
with ξ

L
for a quantum plasma (solid line) and for

the classical case in the limit } → 0 (dashed line).

The magnification is directly attributed to the ad-
ditional electromagnetic part of the wakefield.

The maximum axial and transverse forces acting
on a test electron due to the wakefields have been
evaluated. The variation of these forces with ξ/L
has been studied. It is found that even weak, short
pulses are capable of generating considerable wake-
fields. The force behind the pulse is greater than
within the pulse. Wakefields generated within the
pulse are of the same order, whereas behind the
pulse, the axial field is greater than transverse field.
Simultaneous acceleration focusing is observed in
the regime where Fz > 0 and Fr < 0. Quantum
effects suppress perturbation of the electron num-
ber densities and the electric field of the e.m. wake-
fields. In other words, quantum effects weaken the
wakefields and the accelerating field of wakefields.
It is found that quantum effects reduce the acceler-
ating force by about 10%, which is due to quantum
dispersive effects and may be considered as a clas-
sical manifestation of quantum decoherence. This
is due to the additional effective pressure created
in the plasmas by quantum fluctuations. The ad-
ditional pressure leads to a more dispersive plasma
wave, which weakens the wakefields. On the other
hand, the applied magnetic field increases the ac-
celerating gradient, whose effect is much greater
than quantum effects, and the optimum accelera-
tion can be achieved by exploiting resonance. The
optimum electron acceleration is obtained near res-
onance. Excited electrostatic wakefields can trap
electrons and accelerate them to high energies in the
nanoscales in dense plasmas, such as those in com-
pact astrophysical objects like in white dwarf stars,
neutron stars, magnetars, etc. The present theory
will be also applicable to thin metal films, in the
next generation intense laser–solid density plasma
experiments, in quantum nanowires, and can also
contribute to the development of ultrasmall wake-
field accelerators.
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