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In the current study, the dynamic viscosity has been established by the preceding viscosity correlation
equation in terms of thermo-occupancy function, Yh = Yh(h, T ), for three types of chemically differ-
ent pure substances between 283.15–398.15 K and up to 100 MPa. The thermo-occupancy function,
Yh = Yh(h, T ), comprises temperature T and hole (nano-void) fraction h = h(P, T ) estimated by the
Simha–Somcynsky equation of state through the published density data. The density fitting results were
found by this report to be from 0.026 to 0.051%. The predictive dynamic viscosity of dialkyl carbonates,
ethylene glycol dimethyl ethers, and di(2-ethylhexyl) sebacate was obtained with an overall uncertainty
of 0.29%, 0.40%, and 0.38%, respectively. The effects of the optimized volumetric and rheological pa-
rameters on the compounds’ molecular structure and architecture were investigated. The increase in
fraction h with an increasing temperature suggests a decrease in the rate of change in dynamic viscosity
(viscoholibility) of the samples over a computed hole fraction range.
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1. Introduction

There are quick advances in most aspects of in-
dustrial applications, from personal care to food
and from marine to aerospace. These applica-
tions promoted the interest in finding new en-
vironmentally benign chemical products and safe
processes. Among them, ethylene glycol dimethyl
ethers (glymes) and dialkyl carbonates (DACs)
have attracted widespread attention as working flu-
ids, lubricants, and solvents over the last several
decades. Because of their outstanding properties,
like low bioaccumulation, negligible vapor pressure,
low toxicity, low viscosity, heat absorbing capabil-
ity, nonflammability, high chemical stability, high
thermal stability, low melting point, excellent sol-
ubility, excellent blending property [1], they are
the potential contenders to supersede many haz-
ardous chemicals in various applications. Glymes
and DACs are treated as green absorbent fluids
in the application of absorption cycles for up-
grading waste heat and refrigeration cycles. For
this purpose, they are used in HFCs (hydrofluo-
rocarbons) [2, 3] instead of ozone-depleting sub-
stances, CFCs (chlorofluorocarbons) refrigerants, or

classical ammonia+water/water+lithium bromide
mixtures systems [4]. The latter have some draw-
backs and some toxic effects at high-temperature
applications where glymes and organic carbonates,
DACs, can be used due to their thermal stability. In
order to inhibit the wear and failure of compressor
elements of air conditioning systems and refrigera-
tions, both glymes and DACs are utilized in elasto-
hydrodynamic lubrication (EHL) for HFC refriger-
ants [2, 3]. Due to the increased depletion of fossil
fuels, destruction of the stratospheric ozone layer,
and the tremendous contribution of CFCs to the
greenhouse effect, these important linear carbonates
are promoted as the alternatives to diesel/gasoline
fuels or additives for conventional hydrocarbon fu-
els [1, 5–9]. DACs have outstanding blending prop-
erties and oxygen content as well as low bioaccumu-
lation properties, and as a result, they have higher
biodegradability and are environmentally friendly.
By reducing the vapor pressure of fuels due to their
own low vapor pressure, DACs curtail the emis-
sion of CO2 together with particulates/pollutants
from diesel engines to the atmosphere and, in this
sense, improve combustion [1, 6, 8, 9]. Besides be-
ing used as fuel constituents and absorbents, and
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being excellent CO2-expanded bio-sourced solvents
and inviscid materials, DACs are also introduced
as potential electrolytes in order to improve the
conductivity of the electrolyte for lithium ion (Li-
ion) cells in the energy storage from solar and
wind energy sources and in the rechargeable battery
technology for sophisticated electric vehicles [9–11].
They are also used for the synthesis of new chemi-
cals, for example, isocyanates and polycarbonates,
a type of engineering plastics, as well as for the
manufacture of agrochemicals (pesticides), fertiliz-
ers, antioxidants, adhesives, pharmaceutical prod-
ucts, dyestuffs, and so on [6, 9].

Besides the use of glymes and DACs for high-
pressure viscosity processes such as enhanced oil
recovery, polymer processing, and lubrications,
di(2-ethylhexyl) sebacate (DEHS) emerges as a con-
tender for many lubricant applications [12–14]. For
example, it enhances the mobility at lower temper-
atures in gearbox assemblies in which pressure is
brought in from the engine to a driving axle, like in
compressors, pumps, and so on. Bis(2-ethylhexyl)
sebacate (BIS) is ideally suited as a pressure trans-
mitting fluid (PTF) in multiple industries, includ-
ing civil aviation [15], automotive, military [16], and
food industry during the process of freezing and
sterilization [17]. DEHS is used to transmit pres-
sure in high-pressure processes involving hydraulic
pressure balances [16], pressure measuring instru-
ments (like piston gauges) [16, 18], hydraulically
operated devices [19], and other pressure transmis-
sion applications. These applications include the
working principles and operation processes of gears,
final drives processing equipment, piston pumps,
piston gauges, compressors, and combustion en-
gines [12, 20]. In recent years, pure DEHS, due to its
low compressibility, has become an alternative for
a high-viscosity reference lubricant in high-pressure
calibration processes for verification and optimiza-
tion of measurement standards as well as valida-
tion of the measuring apparatus [12, 21, 22]. DEHS
is mainly used as a plasticizer found in toys and
childcare items [23]. It has already found use in
our daily life as a personal care product, an au-
tomotive care product, an electronic product, and
a food product [23]. More precisely, in the food
industry, it is used in food control substances as
an indirect additive and a food packing film [23].
Because of its relatively low boiling point, low va-
por pressure, and low toxicity, it is utilized to pro-
duce nontoxic aerosols, including fragrances and
fresheners [23].

Improving the performance of the aforementioned
liquids, processes, and applications in comprehen-
sive designing, manufacturing, fabrication, devel-
opment, analysis, and characterization of high-
pressure instruments requires an understanding of
the interrelations between the microstructure and
mechanical characterizations of these fluids un-
der high pressure. For these practical concerns,
it is of vital importance to have knowledge of

several thermodynamic, thermophysical, and trans-
port properties, specifically viscosity. Data for lubri-
cant film thickness calculations, simple EHL mod-
els, and proximity equations utilized to estimate the
coefficient of friction between liquid film-lubricated
interfaces necessitate the rheology of the lubricant,
namely the temperature- and pressure-dependent
viscosity [22]. Inaccuracy in any of the mentioned
computations can produce wear and fatigue mech-
anisms, power losses in rolling bearings and gears,
etc. [22]. Viscosity relationship with some measur-
able volumetric properties such as density or its re-
ciprocal value, so-called specific volume, also occu-
pies a prominent place. The specific volume data
along various isotherms and isobars give a way
to produce free volume fraction by means of the
Simha–Somcynsky equation of state (SS-EoS) and
is required as an input to determine and model
the viscosity (see [24, 25] and the references given
therein).

Here, the author presents new inputs to theo-
retical dynamic viscosity in order to reduce the
unmeasured region for two dialkyl carbonates
(DACs), two ethylene glycol dimethyl ethers, and
a di(2-ethylhexyl) sebacate (DEHS) from 283.15 to
398.15 K up to 100 MPa. The results obtained by
the dynamic viscosity model established in earlier
studies [24, 25] are also compared with observa-
tions from the literature to assure theoretical reli-
ability. Subsequently, in this work, the author pro-
vides an overview regarding the attempt to inter-
pret the volumetric and rheological results in terms
of hole fraction.

2. Theory

2.1. The Simha–Somcynsky equation
of state (SS-EoS) in connection with zero-shear

viscosity correlation equation

In Eyring significant structure theory (ESS), the
viscosity of the solid part of liquid [26, 27] is deter-
mined to be

ηsp = (1− h) ηs, (1)

where ηsp and ηs correspond to the solid-part and
solid-like viscosities, respectively. The temperature-
and pressure-dependent hole fraction parameter is
denoted by h = h(P, T ).

The solid-like viscosity of a liquid ηs, in (1), can
be replaced with the Newtonian viscosity ηN =
3
√

2s
qzh

kBT
υ k′ , which is described as the dynamic vis-

cosity comprising the Eyring strain rate[28]. Thus,

ηsp = (1− h)
3
√

2 s

qzh

kBT

υ k′
, (2)

in which kB, s, and υ are referred to as the Boltz-
mann constant, the segment number, and the seg-
mental volume, respectively. The total number of
possible ligands available among s segments in a

181



F. Sahin-Dinc

lattice of the ligancy z is qz which is fixed at z = 12.
The Eying jumping frequency is represented by k′
and defined by

k′ = κ
kBT

hp

Z∗

Z
exp

(
− Ea
kBT

)
, (3)

where κ and hp denote the transmission coefficient
and the Planck constant, respectively. The frac-
tion Z∗/Z for a molecule characterizes the quo-
tient of the partition functions being in the flow-
activated condition to that at equilibrium and is
given as [28–31]

Z

Z∗
=

exp

(
− hpv

2kBT

)
1− exp

(
− hpv

kBT

) . (4)

In (4), it is assumed that during flow, one of the
vibrational modes in an equilibrium condition has
been transformed into a translational state in an ac-
tivated mode.

In (3), the flow-activation energy of a segment
needed for jumping is Ea of the form

Ea =
a′

2

(1− h)

h
qzΦ, (5)

where Φ is referred to as the Lennard–Jones poten-
tial energy arising from the segment–segment inter-
action, and a′ is the activation energy proportion-
ality constant.

Substituting (3), (4), and (5) in (2) and taking
the logarithm of both sides [24, 25, 29], one obtains

ln

(
h

1− h
1− e−hpv/(kBT )

e−hpv/(2kBT )
υηsp

)
=

ln(η∗) + α
(1− h)

h

1

T
. (6)

The right-hand side of (6) corresponds to the loga-
rithm of zero-shear viscosity, ln(η0), i.e.,

ln(η0) = ln (η∗) + α
(1− h)

h

1

T
, (7)

where η∗ stands for the viscosity extrapolation at
the maximum free volume fraction at the highest
temperature and lowest pressure. The measure of
activation energy is α. These parameters are ascer-
tained to be

η∗ =
3s
√

2NAhp

qzκ
and α = a′

qzΦ

2kB
. (8)

In (7), the quotient of the fraction 1−h
h to abso-

lute temperature (T ) is designated as the thermo-
occupancy function and represented by [32–35]

Yh =
1− h
hT

. (9)

The thermo-occupancy function, Yh, bridges the
equilibrium and transport properties of fluids
through the thermophysical characteristics of ma-
terials, specifically, hole fraction h = h(P, T ) at-
tained from the equilibrium condition in Simha–
Somcynsky equation of state (SS-EoS). The form
of SS-EoS is the following

P̃ Ṽ

T̃
= (1−β)

−1
+

2y

T̃
(yṼ )−2

[
A(yṼ )−2 −B

]
[
s− 1

s
+

ln(1− y)

y

]
s

3c
=
(
β−1

3

)(
1−β

)−1

+
y

6T̃
(yṼ )−2

[
2A− 3B(yṼ )−2

]
,

(10)
where the quantities with tilde P̃ , Ṽ , and T̃ signify
the reduced pressure, volume, and temperature pa-
rameters. They are respectively characterized using
three scaling parameters, P ∗, V ∗, and T ∗, appearing
as P̃ = P (P ∗)−1, Ṽ = V (V ∗)−1, and T̃ = T (T ∗)−1.
The detailed description about these parameters is
given in Appendix A. The occupied site fraction in
terms of hole fraction is y = 1 − h. The structural
flexibility quantity is 3c/s, where s corresponds to
the chain length and 3c is referred to as the number
of external degrees of freedom per molecule.

The “viscoholibility” notion is a portmanteau
word that originated in concepts of viscosity and
hole fraction, indicates the rate of change in vis-
cosity of a sample over a given temperature range,
and is derived from the differentiation of (7) with
respect to hole fraction at a constant absolute tem-
perature [32–35]

∂ ln(η0)

∂h

∣∣∣∣
T

= − α

h2T
. (11)

3. Calculations and discussion

3.1. The SS theory analysis of PV T data

The volumetric data of two dialkyl carbonates
and two polyethers (two glymes) examined in this
work were provided by Comunas et al. [3] for the
temperature range 283.15–353.15 K and for the
range of pressures from 0.1 to 60 MPa, as compiled
in Table I. The density measurement in terms of
pressure and temperature is performed with an An-
ton Paar DMA 60/512P vibrating tube densimeter.
The density observations of Paredes et al. [12] for
di(2-ethylhexyl) sebacate (DEHS) are determined
with the aid of a vibrating tube densimeter at tem-
peratures from 298.15 to 398.15 K and pressures
from 0.1 to 60 MPa. Technical details are provided
in [3, 12].

The density data of three dissimilar chem-
ical classes were investigated in this study.
The sample liquid constituents tested are di-
alkyl carbonates (DACs): dimethyl carbon-
ate (carbonic acid dimethyl ester) (DMC)
and diethyl carbonate (carbonic acid di-
ethyl ester) (DEC) [(CH3–(CH2)n−1–O)2CO
with n = 1, 2, respectively]; two polyethers
(two alkylene glycol dialkyl ethers)
[CH3O–((CH2)2O)n–CH3 with n = 3, 4]: triethy-
lene glycol dimethyl ether (triglyme) (TriEGDME)

182



Dynamic Viscosity of Some Lubricants in Terms of Local. . .

TABLE ICharacteristics of materials.

Materials Hill (emprical) formula MW [g/mol] Temp. rangea [K] Pressure rangeb [MPa]
DMC C3H6O3 90.08 283.15–353.15 0.1–100

DEC C5H10O3 118.13 283.15–353.15 0.1–100

TriEGDME C8H18O4 178.222 283.15–353.15 0.1–100

TEGDME C10H22O5 222.281 323.15–353.15 0.1–100

DEHS C26H50O4 426.682 298.15–398.15 0.1–60
aTemperature range used for PV T and viscosity data
bPressure range used for PV T and viscosity data

Fig. 1. Structural formulae of samples.

[CH3OCH2(CH2OCH2)2CH2OCH3] and tetraethy-
lene glycol dimethyl ether (tetraglyme) (TEGDME)
[CH3OCH2(CH2OCH2)3CH2OCH3]; and a di-
ester: di(2-ethylhexyl) sebacate (DEHS) or bis(2-
ethylhexyl) sebacate (BIS) (visualized in Fig. 1).

The SS-EoS given in (1) as PV T inputs to the
dynamic viscosity equation yields the characteris-
tic parameters V ∗, T ∗, P ∗, the structural flexibil-
ity quantity 3c/s, and Lennard–Jones interaction
measures (υ∗ and ε∗) together with hole fraction
h = h(P̃ , T̃ ) to estimate the viscosity and its deriva-
tion. The chain length s corresponds to the sum of
carbon and oxygen numbers, while the evaluation
parameter c is taken as a dispensable quantity in
structural flexibility parameter 3c/s.

The N number of equations incorporating the re-
ducing parameters V ∗ and T ∗ are obtained by pro-
jecting the N number of PV T observations on the
theory for the simultaneous analysis of the complete
data set. The equations also comprise P ∗ in terms
of V ∗ and T ∗ for the settled c and s values. Subse-
quently, each equation expands to the first power,
evaluated for the unspecified V ∗ and T ∗ param-
eters by employing the Newton–Raphson method
in the Mathematica program [36]. The ultimate

best-fit parameters, together with the computed V ∗
and T ∗, for the tested chemicals were obtained and
revealed in Table II. Further details can be found
in Appendix A. The hole fraction, h(P, T ), was also
evaluated in order to use it to predict the dynamic
viscosity and its parameters discussed in Sect. 3.2.
The minimum relative mean absolute percentage
error (rMAPE) between theoretical and reported
specific volume determined by fitting (10) to PV T
literature data of five materials varies from 0.026
to 0.051. The SS-EoS fit result for rMAPE is deter-
mined by

∆V [%] =
100

N

∑
i

∣∣V exp
i − V calc

i

∣∣
V exp
i

. (12)

Lennard–Jones average energetic, 〈ε∗〉, and volu-
metric, 〈υ∗〉, quantities are evaluated and recorded
in Table II. The 〈ε∗〉 values range from 133.362
to 156.219 for the studied species. The magnitude
of the mean characteristic repulsive molar volume
〈υ∗〉, which has opposite trends to the mean char-
acteristic attractive interaction energy 〈ε∗〉, ranges
from 12.71 to 15.25 for the constituents under in-
vestigation. The ester and the ethers (glymes) with
longer chained structures are denser and have in-
creasing effects in 〈ε∗〉 compared to short-chain

183



F. Sahin-Dinc

TABLE IIPhysicochemical characteristic parameters based on the PV T results.

Parameter DMC DEC TriEGDME TEGDME DEHS
m0 (×103) [kg] 15.01 14.77 14.85 14.82 14.22
s 6 8 12 15 30
c 0.9 1.06 1.78 2.17 2.72
〈−Φ/k〉∗ [K] 198.55 191.11 220.36 223.76 199.80
V ∗ (×103) [m3/kg] 0.84645 0.93945 0.95289 0.93635 1.07255
T ∗ [K] 9549.01 10316.7 10544.2 10942.5 15479.3
P ∗ [MPa] 937.125 819.271 918.836 948.555 764.928
〈υ∗〉 (×106) [m3/mol] 12.71 13.87 14.15 13.88 15.25
〈ε∗〉 [K] 138.615 133.362 153.841 156.219 139.417
∆V [%] 0.026 0.038 0.028 0.027 0.051
max ∆V [%] 0.091 0.38 0.064 0.065 0.136

Fig. 2. Variation in h with T at atmospheric pres-
sure for each sample.

carbonates, i.e., DMC and DEC. In addition, the
two glymes show the highest 〈ε∗〉 of all because of
the strong dipole–dipole interactions induced by the
polar ether groups (CH3–O–CH2–CH3). When com-
paring the outcomes acquired for glymes with those
of the corresponding alkanes examined in the previ-
ous study [25], the molar masses of the alkanes are
scarcely lower than the corresponding glyme values.
Further, the density of the glymes [3] is noticeably
higher than that of alkanes [37, 38]. Therefore, the
characteristic molar volume of alkanes, 〈υ∗〉, is ap-
preciably higher, but 〈ε∗〉 is lower than the glycol
ethers studied [3] since 〈υ∗〉 and 〈ε∗〉 are inversely
related to each other.

The molecular structure influence on nano-void
fraction for the tested materials at each T and 1 atm
computed from (10) is delineated in Fig. 2. The col-
ored geometrical shapes designate the theoretical
h values, and the solid lines represent the best-fit
lines through each evaluation set. The h values in-
crease with temperature, and more free volume is
produced since the molecules acquire more kinetic
energy and thus move apart from each other. In the

Fig. 3. Variation in Yh with T−1 at atmospheric
pressure for each sample.

figure, while DMC (carbonic acid dimethyl ester)
has the highest hole fraction, the sample with the
lowest hole fraction is DEHS.

The thermo-occupancy function, Yh, for which
transport properties are specified, was obtained
from the SS-EoS model fit. The variations of Yh of
samples with the reciprocal temperature at ambient
pressure are depicted in Fig. 3. The fits are desig-
nated as colored geometrical shapes together with
the curves for eye guiding. The magnitude of Yh
ascends as temperature dwindles for each material
in Fig. 3. At a fixed Yh value, DEHS has the greatest
transport stability of all samples in terms of Yh. The
two glycol ethers (TEGDME and TriEGDME) have
greater transport stability than dialkyl carbonates
(DEC and DMC). DEC (carbonic acid diethyl es-
ter) has greater transport stability than DMC and
TEGDME than TriEGDME. Subsequently, as the
increased number of CH2 (methylene) groups are
available from DMC to DEC and from TriEGDME
to TEGDME, the stability goes up.

The extrapolated values at 0◦C for h and Yh in
Figs. 2 and 3, respectively, are compiled for each
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Fig. 4. A graph of the variation of h (at 1 atm and
0◦C) and the slope of the lines in Fig. 2 at 1 atm
with respect to s.

Fig. 5. Variation in Yh with s at atmospheric pres-
sure and 0◦C for each sample.

Fig. 6. Variation in Ỹh with 1/h at atmospheric
pressure and 0◦C for each sample.

TABLE III

The slope of h and the values extrapolated at 0◦C for
h and Yh at 1 atm for the tested compounds.

Materials
h

at 0◦C

Slope of
h(T ) (×10−3)

[K−1]

Yh (×10−3)

[K−1]
at 0◦C

DMC 0.124 1.05 26.15

DEC 0.116 0.994 29.27

TriEGDME 0.096 0.844 40.94

TEGDME 0.090 0.804 46.22

DEHS 0.067 0.718 49.42

liquid in Table III. The slopes of the dynamic vis-
cosity fitting lines in Fig. 2 are also included in
Table III. For the studied two dialkyl carbonates,
polyethers and the ester, the computed h values
vary with the decreasing values from DMC to DEC
and from TriEGDME to TEGDME and DEHS. As
the chain length increases and the molecule becomes
more compact, the fractional hole fraction (h) de-
creases. The thermooccupancy functional behavior
of the materials is the opposite of the h results, as
evident in Table III.

The slope of the lines (temperature coefficient of
hole fraction) in Fig. 2 also demonstrates the same
reduction pattern with hole fraction effects while
going from short to long-chain materials. One more
evaluation inferred from Table III is that the diester
(bis(2-ethylhexyl) sebacate), at similar temperature
and pressure ranges with dialkyl carbonates and
glycol ethers, has less free volume as a vacancy de-
fect and hence more viscous behaviour compared to
the organic carbonates and glymes.

Figure 4 visualizes the results in Table III as
a graph of the variation of hole fraction at 1 atm and
0◦C along with the slope of the lines in Fig. 2 with
segment number s. Both h and the slope of h de-
scend with a growth in the chain length of the sam-
ple in Fig. 4. It means that while the chain length
and the number of CH2 groups (that gives increased
stability to the molecule) increase, both the fraction
h and the slope of it decrease. From the figure, it is
obvious that both h and the slope of h values are
higher for dialkyl carbonates than for polyalkylene
glycol dimethyl ethers and the ester with the cor-
responding segment number, since the latter have
more stable structures.

The changes in the magnitude of Yh regarding
segment number, s, are delineated in Fig. 5 for the
individual materials. It is visible in the figure that
Yh values get higher with the increasing s for all
chemical groups. The ester and polyethers (glymes)
have higher transportation stability compared to di-
alkyl carbonates for the corresponding s number.
From dialkyl carbonates to ethylene glycol dimethyl
ethers and ester, stability increases as the molecules
are tightly packed due to the increased number
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TABLE IVHole fraction correlation to viscosity (see (7)) together with data fit statistics.

Materials ln(η∗) α a′ (×10−2) κ ∆η [%] R2

DMC −18.90 44.85 0.75 0.027 0.28 0.99999

DEC −18.71 44.70 0.59 0.022 0.30 0.99999

TriEGDME −18.51 55.98 0.42 0.018 0.37 0.99998

TEGDME −18.34 61.26 0.37 0.016 0.42 0.99997

DEHS −18.27 83.43 0.28 0.014 0.38 0.99998

Fig. 7. Correlations between ln(η0) and Yh by
means of (7) and (9) for each sample.

of CH2 (methylene) or C2H4 (ethylene) groups.
DEHS exhibits the highest transportation stability,
while dialkyl carbonates represent the lowest one.
The order of the computed values of Yh at 1 atm
and 0◦C for both the dialkyl carbonates and glymes
along with ester is as follows: DEHS > TEGDME >
TriEGDME > DEC > DMC.

Figure 6 illustrates the estimated hole fraction de-
pendence of the thermo-occupancy function in a re-
duced temperature, Ỹh(h, T̃ ), versus the reciprocal
value of h, at ambient pressure. The universal curve
represents the best-fit line through the predicted
points for all the samples researched. The curve in-
dicates that the Ỹh function of occupancy typically
increases with decreasing h as a measure of configu-
rational stability. The more thermodynamic trans-
portation stability in the structure is represented by
Ỹh and ultimately indicates the more viscous effect.

3.2. Fitting the zero-shear viscosity model

Section 3.1, titled “The SS theory analysis of PVT
data,” is about the prediction of the SS theory pa-
rameters alongside the hole fraction for the corre-
sponding pressure and temperature. In the present
section, using the hole fraction results, we predict
the viscosity of the materials under study via the
earlier reported zero-shear viscosity model. More

precisely, the discussion is about the viscosity pre-
diction with the fitting parameters and its relation
to the vacancy fraction as a particular type of free
volume fraction.

The database regarding viscosity is acquired from
the open literature [3, 12]. Temperature and pres-
sure range for viscosity is similar to PV T data
given in Table I: 283.15 ≤ T ≤ 353.15 K and
0.1 ≤ P ≤ 100 MPa for two dialkyl carbon-
ates and two polyethers (glymes). The viscosity
of these samples at atmospheric pressure is deter-
mined with a Ubbelohde-type glass capillary-tube
viscometer. For the high-pressure viscosity mea-
surement, a falling body viscometer is used. For
bis(2-ethylhexyl) sebacate (BIS), the viscosity at at-
mospheric pressure was measured with a rotational
automated viscometer Anton Paar Stabinger SVM
3000. The viscosity measurements at high pressure
were performed in a rolling-ball viscometer in the
range of 298.15 to 398.15 K and 0.1 to 60 MPa.
The technical details and the procedure of the mea-
surements can be found in [3, 12].

The measured viscosity observations have been
fitted in terms of thermo-occupancy function, Yh,
through (7). The predicted thermo-occupancy
function, Yh, incorporating temperature and the
hole fraction, allows estimating the viscosity
in (7). The regression quantities produced by (7)
and (8), i.e., κ and ln(η∗) together with α and
a′, are compiled in Table IV. The data statistics,
namely the coefficient of determination, R2, and
the relative mean average percentage error in
viscosity (rMAPE), ∆η (%), listed in Table IV, are
determined from an equation of the type

∆η [%] =
100

N

∑
i

∣∣∣∣1− ηcalci

ηexp
i

∣∣∣∣. (13)

Values for rMAPE, ∆η (%), were calculated for
the zero-shear viscosity model fits of the viscos-
ity data. The viscosity–hole fraction equation given
in (7) is found to represent the measured viscosity
data of five species with mean percentage errors of
0.35%. The results are shown in Table IV. The ex-
pository procedure of viscosity prediction is given
in Appendix B.

In an effort to elaborate the logarithmic viscosity-
thermooccupancy correlation, in Fig. 7 ln(η0)
vs Yh is plotted for the tested materials. As dis-
played in Fig. 7, (7) provides good linearization of
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Fig. 8. Variation in a′ and α with s at atmospheric pressure and 0◦C for each sample in Table I.

Fig. 9. Variation in ln(η∗) and κ with s at atmospheric pressure and 0◦C for each sample from Table I.

ln(η0) vs Yh data. The lines correspond to the best
approximation of the data set for each species. On
the line, the pressure goes up from the lower to the
upper part for each temperature, while regarding
any fixed pressure data, temperature drops as it
goes higher. In the lower part of the lines, where
pressure drops and temperature rises, the lines con-
verge, whereas at the upper part, they diverge. Go-
ing down the line, higher temperature and lower
pressure increase the amount of hole fraction and
result in the accumulation of molecules readily into
the nano-voids. Conversely, going to a lower temper-
ature and higher pressure, the decrease in free vol-
ume and hole fraction produces less transportation
of molecules, specifically those with longer chain

lengths and an increased number of CH2 groups,
since they occupy a larger free volume. In Fig. 7,
at a given Yh value, the viscosity of the samples
are in the following order: DEHS > TEGDME >
TriEGDME > DEC > DMC. The most inviscid ma-
terial is DMC, with the lowest segment number.

The proportionality constant of the activation en-
ergy, a′, listed in Table IV and illustrated in Fig. 8a,
was found to decrease with segment number, s. The
activation energy coefficient, a′, is expected to have
a similar tendency as α, the measure of activation
energy. However, while comparing Fig. 8a to Fig. 8b,
one can easily observe that they present the oppo-
site trend because of the factor Φ, segment–segment
interaction potential in (8). Concerning a′, the order
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of the magnitude is as follows: DEHS < TEGDME
< TriEGDME < DEC < DMC. According to
Table II, the sequence of the absolute value of Φ
across the materials is TEGDME > TriEGDME >
DEHS > DMC > DEC. This is caused by the fact
that the introduction of polar ether groups produces
stronger dipole–dipole interaction in glymes [2, 3].
Ultimately, the sequence of the a′ value may differ
from that of the value of α depending on the value
of Φ, as expected.

The slopes of fitting lines in Fig. 7, yielding
the values of α, are the measure of activation
energy. The slope of the lines can give informa-
tion on the viscous degree of the materials. From
Table IV, we can say that the order of the materials
concerning the measure of activation energy, α, is
DEHS > TEGDME > TriEGDME > DMC > DEC.
This points to the fact that the introduction of po-
lar methylene groups enhances the viscosity except
for DMC, which has a slightly higher α value than
DEC. This inverse variation for dialkyl carbonates
is seen in the internal pressure data for the same
samples in the work of Comunas [3]. The contrary
behavior concerning the α values in Table IV is il-
lustrated in Fig. 8b in the form of the graph of α
vs segment number s. It is visible that as the chain
length of the species goes up, the materials exhibit
larger slopes, α. The behavior of α is inverse to that
of a′ and of h and the slope of h in Fig. 4. In other
words, the viscosity augments as the number of CH2

groups increases.
Table IV shows that the transmission coefficient

κ and ln(η∗), derived from (7) and (8) are inversely
related to each other (see (8)). It can be seen from
Table IV and Fig. 9 that κ decreases with chain
length, whereas ln(η∗) increases with segment num-
ber across the materials. In other words, the one
with a higher viscosity has a lower transmission co-
efficient, and vice versa. High temperature and low
pressure give rise to the hole fraction, and the con-
tribution to the viscosity from Yh is diminished, as
observed in (7) and (9). In this case, ln(η0) would be
equal to viscosity intercepts ln(η∗). The materials
with higher viscosity have produced less free volume
at elevated temperature and low-pressure states and
ultimately have the more viscous effect (or viscosity
intercepts ln(η∗)). This hinders the molecules from
moving into the holes and results in a reduction in
the feasibility of the transmission with κ, values of
which range from 0 to 1. According to Fig. 9, DMC
has the lowest viscosity but the maximum transmis-
sion coefficient at the highest hole fraction due to
the high temperature and low pressure.

Using (7), it is simple to obtain the differen-
tiation of the logarithm of viscosity (viscoholibil-
ity). Figure 10 delineates a typical plot of viscoholi-
bility divided by the structure-related parameter,
−α, in the linear equation vs hole fraction. The
figure elucidates the viscosity alteration in accor-
dance with the vacancy fraction function, h, at con-
stant T as the fraction h shifts on the abscissa axis.

Fig. 10. Variation in (−1/α)(∂ ln(η0)/∂h)
∣∣
T

with h using (11) for each sample.

Fig. 11. Variation in (−T/α)(∂ ln(η0)/∂h)
∣∣
T

with h using (11) for each sample.

The full data are overlapped on the ordinate axis
when multiplying the viscoholibility given in (11)
by −1/α, where α is the structure-related parame-
ter specified in (8). The solid curve epitomized by
∂ ln(η0)

∂h

∣∣∣
T

=−α
{

1.575− 0.757
[
1−e−(h+0.157)/0.175

]
−0.849

[
1− e−(h+0.556)/0.0284

]}
(14)

stands for the exponential fit through the theoret-
ical results. In Fig. 10, it is clearly seen that at
the reduced values of h, the absolute value of the
derivative function for logarithmic viscosity drasti-
cally changes to lower points. Specifically, the vis-
coholibility falls by a factor of four with a small
negative curvature when the hole fraction is al-
most twofold. Along with this, the diminution of
viscoholibility is systematically less and less pro-
nounced and dwindles almost linearly with rising
hole fraction. After a point h ' 0.18, we notice
only a nominal change in the derivative function,
and the (−1/α)(∂ ln(η0)/∂h)

∣∣
T

value scales down
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Fig. 12. Variation in (a) (−1/α)(∂ ln(η0)/∂h)
∣∣
T

and (b) (−T/α)(∂ ln(η0)/∂h)
∣∣
T

with ln(η0) using (7) and
(11) for DMC.

Fig. 13. Variations in (−T/α)(∂ ln(η0)/∂h)
∣∣
T

with ln(η0) by means of (7) and (11), for (a) DECs, (b)
TriEGDME, (c) TEGDME, (d) DEHS.

monotonically with h. It plateaus at a hole fraction
of about ' 0.031α and remains nearly unchanged in
the range where the hole fraction is in excess. The
multiplication of viscoholibility on the vertical axis
by temperature T results in a vanish of the scatter
in Fig. 10 (see Fig. 11).

Graphical representation of
(−1/α)(∂ ln(η0)/∂h)

∣∣
T
and (−T/α)(∂ ln(η0)/∂h)

∣∣
T

with respect to zero-shear viscosity is shown
in Figs. 12 and 13. These functions increase in
proportion to the logarithm of the zero-shear
viscosity. At the lower parts, the curves converge
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since the change in a small amount of viscosity as a
function of hole fraction is not so different in terms
of zero-shear viscosity values. In both mentioned
figures, ln(η0) increases as temperature decreases.

4. Conclusions

A pressure–volume–temperature (PV T ) correla-
tion with the predictive dynamic viscosity of di-
alkyl carbonates, two alkylene glycol dialkyl ethers,
and a diester was probed by the using a zero-shear
viscosity model. The equation bridges the Simha–
Somcynsky equation of state via the nano-void frac-
tion parameter. The outline of the present contri-
bution is sketched as follows:

• The diester and polyeters (glymes) with
longer chained structures and polar
CH2(methylene) groups or non-polar
C2H4(ethylene) groups are denser and
have increasing effects in the mean char-
acteristic attractive interaction energy 〈ε∗〉
compared to short-chain carbonates, DACs.
It is found that in glymes, the 〈ε∗〉 values are
increasing due to the strong dipole–dipole
interactions induced by the presence of ether
groups. TEGDME (tetraglyme), the higher
member of the polyether series, has higher
〈ε∗〉 values.

• The comparison between the published and
theoretical values revealed by the earlier re-
ported physically-based zero-shear viscosity
correlation equation reports excellent consis-
tency. The model incorporating the thermo-
occupancy function, Yh, verifies that the vis-
cosity is inversely interrelated to the hole frac-
tion. In general, the logarithmic viscosity of
the individual materials exhibits a linear de-
pendency on the thermo-occupancy function,
Yh, which is a function of T and h. The vis-
coholibility with a factor of −1/α, the rate of
change in dynamic viscosity of a sample over
a computed hole fraction range, steps down
with fraction h.

• Dialkyl carbonates with a decreased number
of CH2 groups, appear with the lower activa-
tion energy measure, α, which is the slope of
the lines in the logarithm of viscosity against
the Yh plot. DEHS — the longer chained ma-
terial with an increased number of CH2 groups
— has the higher α values. The results ac-
quired for α are akin to ε∗ since both of the
parameters have inverse relevance to the dis-
tance between molecules.

• The computed hole fraction, h, values are
higher but Yh values are lower for dialkyl
carbonates. Hereof, lower hole fraction val-
ues increase viscosity while reduced Yh dwin-
dles it. Consequently, longer chained samples
with an increased number of polar groups

have higher viscosity effects than samples with
fewer carbon numbers, possessing fewer CH2

groups.
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Appendix:
Viscosity prediction procedure

Appendix A: Computing hole fraction (h) through
Simha–Somcynsky equation of state (SS-EoS)

Hole fraction parameter (h) can be determined by
the well-known Simha–Somcynsky equation of state
(SS-EoS) of the form

P̃ Ṽ

T̃
=

1

1− β
+

2y

T̃
Q (AQ−B) , (15)

s

3c

[
s−1

s
+

ln (1−y)

y

]
−
β − 1

3

1− β

− y

6T̃
Q (2A−3BQ) = 0, (16)

where Q = (yṼ )−2 and β = 2−1/6y(yṼ )−1/3, and
A and B correspond to the constants 1.011 and
1.2045, respectively. The occupied (filled) site frac-
tion, y, can be given in terms of hole fraction, h, as
y = 1−h. The scaled parameters P̃ , Ṽ , and T̃ are re-
duced by the characteristic parameters P ∗, V ∗, and
T ∗ as P̃ = P/P ∗, Ṽ = V/V ∗, and T̃ = T/T ∗. The
characteristic scaling parameters P ∗, V ∗, and T ∗

are given as qzε∗/(sυ∗) , NAυ∗/m0, and qzε∗/(ck),
respectively.

The relation between the characteristic scaling
parameters is

P ∗V ∗

T ∗
m0 =

c

s
R. (17)

Once the characteristic parametric quantities
(P ∗, V ∗, T ∗) are ascertained alongside the struc-
tural flexibility quantity, 3c/s, and Lennard–Jones
interaction quantities (υ∗ and ε∗), outputs for h =

h(P̃ , T̃ ) can be yielded.
In order to evaluate the parameters P ∗, V ∗, T ∗ in

the Mathematica program, it is necessary to have
(15) in an employable format. With some adjust-
ments, (15) takes the following form

0 = T̃ − (1−β)
(
P̃ Ṽ − 2yQ[AQ−B]

)
. (18)

To adapt the governing equations to the Mathe-
matica code [36], (15) and (16) take the form

eos = T − (1− β)
(
PV − 2yQ(AQ−B)

)
, (19)
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eqlb = (1/cs)(sratio + Log[1− y]/y)

−(β − 1/3)/(1− β)− [y/(6T )]Q(2B − 3AQ),

(20)
where P , V , and T refer to P̃ , Ṽ and T̃ . The terms
“cs” and “sratio” correspond to the ratios 3c/s and
(s− 1)/s in (16), respectively. The function “Log” in
the Mathematica program code corresponds to “ln”
function in (16), which gives the natural logarithm
of (1− y) (logarithm to base e).

Each of the measured pressure–volume–
temperature (P–V –T ) data [2], respectively,
in MPa, m3/kg, and K units, is fitted to the model,
namely (19) and (20). In order to have (19) with
a solvable formatting, we need to reduce the un-
known parameters and supply an initial adjustable
value for c in (20). With the help of (20), y can be
found in terms of V ∗ and T ∗ and inserted into (19).
Thus, the latter becomes an equation with two
unknown parameters, V ∗ and T ∗.

Let us take diethyl carbonate (DEC) as an ex-
ample and list the PV T data in the form below. To
reduce data overflow, it is demonstrated only for
a single temperature:
In [•] = TPV exp =

{{283.15‘, 0.1‘, 0.0010140959334753068‘},
{283.15‘, 5.‘, 0.00100999899000101‘},
{283.15‘, 10.‘, 0.0010058338362502516‘},
{283.15‘, 15.‘, 0.001002004008016032‘},
{283.15‘, 20.‘, 0.000998302885095338‘},
{283.15‘, 25.‘, 0.000994826900119379‘},
{283.15‘, 30.‘, 0.000991375037176564‘},
{283.15‘, 35.‘, 0.0009880446596186147‘},
{283.15‘, 40.‘, 0.0009848335631278313‘},
{283.15‘, 45.‘, 0.0009817396426467701‘},
{283.15‘, 50.‘, 0.0009786651008025053‘},
{283.15‘, 55.‘, 0.0009758953840148336‘},
{283.15‘, 60.‘, 0.0009731413001167769‘}, ...

With N number of PV T data, (19) becomes N
number of nonlinear equations with two unknown
parameters, V ∗ and T ∗. From simultaneous fitting,
V ∗ and T ∗ will be computed by (19). The root
of (20), y, is found by the Mathematica built-in
function FindRoot that implements the Newton–
Raphson method:

In [•] = rooty =

FindRoot[eqlb == 0, {y, 0.999, 0.7, 0.9999}];

The output of the FindRoot command is stored
in the variable “rooty.” The arguments are the
model, eqlb == 0, to be fitted, and the indepen-
dent variable, y. The function FindRoot searches
for a numerical root of eqlb == 0, starting from
the point y = 0.7 between the points of 0.999
and 0.9999.

Reducing the unknowns in (20) allows (19) to
be written as N number of equations with two

unknown parameters (V ∗ and T ∗), where each
equation containing different temperature and pres-
sure data. Then, the N number of the nonlinear sys-
tem of equations with V ∗ and T ∗ denoted by V S
and TS, can be illustrated as follows

eos1 = eos1 (V S, TS) = 0

eos2 = eos2 (V S, TS) = 0

eos3 = eos3 (V S, TS) = 0
...
eosN = eosN (V S, TS) = 0

,

(21)
where eos is the abbreviated form of “equation of
state.” Here, (21) is a set of nonlinear transcen-
dental equations with two unknowns, V S and TS.
These equations can be solved using the Newton–
Raphson method [36]. According to this method,
it starts by giving appropriate initial values to the
parameters, V S and TS. The following is an input
for two initial guesses for V S(0), TS(0) and an ar-
bitrary value given for c used in the Mathematica
program:

In [•] = VS = 0.9× 10−3; TS = 9000.; c = 1.03;

If the constituents of one iteration are denomi-
nated to be V S(i), TS(i), the Taylor expansion of
the first expression in (21) near these constituents
is written as (ignoring the second and upper terms)

eos1

(
V S(i+1), TS(i+1)

)
≈ eos1

(
V S(i), TS(i)

)
+
∂eos1

∂V S

∣∣∣∣
V S(i)

(
V S(i+1) − V S(i)

)
+
∂eos1

∂TS

∣∣∣∣
TS(i)

(
TS(i+1) − TS(i)

)
. (22)

In the same manner, the rest of the equations in
(21) are obtained as

eos2

(
V S(i+1), TS(i+1)

)
≈ eos2

(
V S(i), TS(i)

)
+
∂eos2

∂V S

∣∣∣∣
V S(i)

(
V S(i+1) − V S(i)

)
+
∂eos2

∂TS

∣∣∣∣
TS(i)

(
TS(i+1) − TS(i)

)
...

eosN

(
V S(i+1), TS(i+1)

)
≈ eosN

(
V S(i), TS(i)

)
+
∂eosN
∂V S

∣∣∣∣
V S(i)

(
V S(i+1) − V S(i)

)
+
∂eosN
∂TS

∣∣∣∣
TS(i)

(
TS(i+1) − TS(i)

)
. (23)

Being the constituents of the vector V S(i+1) and
TS(i+1), the following system of linear equations
with two unknowns is provided
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eos1

(
V S(i+1), TS(i+1)

)
eos2

(
V S(i+1), TS(i+1)

)
...
eosN

(
V S(i+1), TS(i+1)

)

=


eos1

(
V S(i), TS(i)

)
eos2

(
V S(i), TS(i)

)
...
eosN

(
V S(i), TS(i)

)

+


∂eos1
∂V S

∣∣
V S(i)

∂eos1
∂TS

∣∣
TS(i)

∂eos2
∂V S

∣∣
V S(i)

∂eos2
∂TS

∣∣
TS(i)

...
∂eosN
∂V S

∣∣
V S(i)

∂eosN
∂TS

∣∣
TS(i)


(
V S(i+1)−V S(i)

TS(i+1)−TS(i)

)
,

(24)

where V S(i+1), TS(i+1) and V S(i), TS(i) are the
root estimates in the (i+ 1)-th and i-th iterations,
respectively.

Besides entailing an initial guess, the Newton–
Raphson method necessitates determining the
derivatives of the functions, eos1, eos2, . . . , eosN .
In the following Mathematica code the derivative
of the governing equation in the linear system
of equations “eos” with respect to the parameters
V S(i), TS(i) in (24) is taken and solved:

In [•] = eosVS = D[eos,VS];

In [•] = eosTS = D[eos,TS];

and “D” gives the partial derivative ∂(eos)/∂(V S).
We assume that the values of V S(i+1) and

TS(i+1) in (24) are close to the root of the
equations. Thus, by setting the left-hand side of
(24) to zero, a coveted quantity for the func-
tions eos1, eos2, . . . , eosN , (24) can be recorded
as


∂eos1
∂V S

∣∣
V S(i)

∂eos1
∂TS

∣∣
TS(i)

∂eos2
∂V S

∣∣
V S(i)

∂eos2
∂TS

∣∣
TS(i)

...
∂eosN
∂V S

∣∣
V S(i)

∂eosN
∂TS

∣∣
TS(i)


︸ ︷︷ ︸

A

(
V S(i+1) − V S(i)

TS(i+1) − TS(i)

)
︸ ︷︷ ︸

∆S

=


−eos1

(
V S(i), TS(i)

)
−eos2

(
V S(i), TS(i)

)
...
−eosN

(
V S(i), TS(i)

)


︸ ︷︷ ︸

EOS

. (25)

By setting Aab = ∂eosa
∂Sb

∣∣∣
S(i)

, (25) can be compactly
rewritten in matrix format as

A∆S = EOS, (26)

where A is an N × 2 matrix. Both ∆S and
EOS are 1-dimensional matrices. While ∆S is a
two-dimensional vector, EOS is an N -dimensional
vector ofN components. The former has the compo-
nents of (V S(i+1) − V S(i)) and (TS(i+1) − TS(i)),
whereas the latter has eos1

(
V S(i), TS(i)

)
,

eos2

(
V S(i), TS(i)

)
, . . . , eosN (V S(i), TS(i)).

From (26), the searched ∆S can be computed.
Due to the fact that A is not a square matrix,
the inverse of matrix A can be found by the
pseudo-inverse matrix technique

∆S = PseudoInverse [A]EOS ⇒

⇒ S(i+1) = S(1) + ∆S, (27)

where S denotes either V S or TS. Hence we can
write the following

V S(i+1) = V S(i) + ∆V S(i),

TS(i+1) = TS(i) + ∆TS(i). (28)
The argument by which we gain the differences

between the values of V S and TS for two sequential
iterations in the Mathematica code is:
In [•] = δPVT = PseudoInverse[eosdiff].eosvalue;

In order to find the roots (V S and TS) the iter-
ation is done until reaching the specific criteria for
∆S, which are ∆V S < 10−8 and ∆TS < 0.1. Func-
tion δPV T summarizes this criteria:
In [•] = δPVT

Out [•] = {−1.24388× 10−9, 0.050156}
The Mathematica code by which we perform

these criteria is:
In [•] = If[Abs[δVT][[1]]>10−8||Abs[δVT][[2]]>0.1,

Goto[start]];

For i = 0, the optimized initial values of V S(0) and
TS(0), together with the arbitrary value given for c,
are:

In [•] = VS = 0.9× 10−3; TS = 9000.; c = 1.03;

The following is a function evaluating the roots
based on the two initial guesses for VS(0) and TS(0):

In [•] = {VS,TS} = {VS,TS} −∆PVT;

where {VS, TS} is the function to extract the data:

In [•] = {VS,TS}
Out [•] = {0.000939452, 10316.7}
With the known V ∗ and T ∗, P ∗ can be directly

generated from (17). The results for a theoreti-
cal specific volume V , which appeared as Ve in
the Mathematica program, are extracted from the
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function below:
In [•] = rooty = FindRoot[{eos == 0, eqlb == 0},
{y, 0.999, 0.7, 0.9999], }
{Ve,Vexp, 0.8× 10−3, 1.4× 10−3}];

Here, as usual, we are storing the output of
the “FindRoot” command in the variable “rooty.”
The function “FindRoot” searches for a numeri-
cal solution to the simultaneous equations eos==0,
eqlb==0, starting from the point y = 0.7 between
the points 0.999 and 0.9999, while for Ve, i.e.,
Ve = Vexp, from a starting point between 0.8×10−3

and 1.4× 10−3.
The input and the last output of the function

“rooty” appearing in the Mathematica code are:

In [•] = rooty

Out [•] = {y→ 0.843389,Ve→ 0.0010356}

These output results indicate the last data of the
set. Some of the computed values for y, h, and Ve
are respectively listed as follows:
In [•] = ylist

Out [•] = {...,
0.8141393468196124‘, 0.8180487037355209‘,

0.8218272488133972‘, 0.8254139989885313‘,

0.828826946879309‘, 0.8320815829698343‘,

0.8351913497331729‘, 0.8381679956961274‘,

0.8410218550107478‘, 0.8437620707843877‘,

0.8463967753395603‘, 0.8489332371574052‘,

0.8513779816119692‘, 0.8037463389075111‘,

0.8079472927519048‘, 0.8119971640928816‘,

0.8158326090000432‘, 0.8194747452320005‘,

0.822941609773851‘, 0.8262487442219549‘,

0.8294096454511466‘, 0.8324361174298367‘,

0.8353385493172075‘, 0.8381261379057054‘,

0.8408070673435072‘, 0.8433886557359095‘}
In [•] = TPhlist

Out [•] = {. . . ,
{353.15‘, 0.1‘, 0.19625366109248887‘},
{353.15‘, 5.‘, 0.1920527072480952‘},
{353.15‘, 10.‘, 0.18800283590711842‘},
{353.15‘, 15.‘, 0.18416739099995683‘},
{353.15‘, 20.‘, 0.18052525476799952‘},
{353.15‘, 25.‘, 0.177058390226149‘},
{353.15‘, 30.‘, 0.17375125577804507‘},
{353.15‘, 35.‘, 0.1705903545488534‘},
{353.15‘, 40.‘, 0.1675638825701633‘},
{353.15‘, 45.‘, 0.16466145068279248‘},
{353.15‘, 50.‘, 0.16187386209429455‘},
{353.15‘, 55.‘, 0.1591929326564928‘},
{353.15‘, 60.‘, 0.1566113442640905‘}}

(In the above Mathematica code, the third term in
the curly bracket indicates the hole fraction.)

In [•] = PVTlst

Out [•] = {. . . ,
{353.15, 0.1, 0.00110348}, {353.15, 5., 0.00109615},
{353.15, 10., 0.00108911}, {353.15, 15., 0.00108248},
{353.15, 20., 0.00107621}, {353.15, 25., 0.00107027},
{353.15, 30., 0.00106462}, {353.15, 35., 0.00105924},
{353.15, 40., 0.0010541}, {353.15, 45., 0.00104918},
{353.15, 50., 0.00104447}, {353.15, 55., 0.00103995},
{353.15, 60., 0.0010356}}

(The second term in the curly brackets represents
the theoretical volume.)

In the process of altering c with the aim of esti-
mating the best-fit parameters, P ∗, V ∗, T ∗ together
with υ∗ and ε∗, the optimum values are obtained at
the least relative mean absolute percentage error,
(rMAPE):

Out [•] = s = 8., c = 1.06%, err = 0.0383687,

V∗ = 0.000939452,T∗ = 10316.7,P∗ = 819.271,

vs = 0.000013871968229837989‘,

εs = 133.36189186169878‘,

mo = 0.014766024999999999‘,

Max%Error = 0.37956267087386214‘

Here, vs and εs denote υ∗ and ε∗, respectively.
We have evaluated the roots of (19), y, so h

can be generated from (20). The generation of h
can support the experimental determinations of dy-
namic viscosity (η). Dynamic viscosity can be ob-
tained from the procedure described in the upcom-
ing Appendix B.

Appendix B: Non-linear fit data to zero-shear
viscosity (dynamic viscosity) model

The previously published zero-shear viscosity
model requires lubricant hole fraction extracted
from PV T measurements through SS-EoS. Once
the h values are obtained, the Newtonian viscosity
can be predicted through the viscosity model using
the published data [3, 12]. The raw viscosity inputs
for diethyl carbonate (DEC) (in the unit [Pa s])
together with the given temperature and pressure
are:
In [•] = Texη = {283.15, 293.15‘, 303.15‘, 313.15‘,

323.15‘, 333.15‘, 343.15‘, 353.15‘};
Pexη =

{{0.1‘, 20.‘, 40.‘, 60.‘, 80.‘, 100.‘},
{0.1‘, 20.‘, 40.‘, 60.‘, 80.‘, 100.‘},
{0.1‘, 20.‘, 40.‘, 60.‘, 80.‘, 100.‘},
{0.1‘, 20.‘, 40.‘, 60.‘, 80.‘, 100.‘},
{0.1‘, 20.‘, 40.‘, 60.‘, 80.‘, 100.‘},
{0.1‘, 20.‘, 40.‘, 60.‘, 80.‘, 100.‘},
{0.1‘, 20.‘, 40.‘, 60.‘, 80.‘, 100.‘},
{0.1‘, 20.‘, 40.‘, 60.‘, 80.‘, 100.‘}};
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η0List =

{{0.935, 1.130, 1.315, 1.500, 1.705, 1.925},
{0.810, 0.965, 1.115, 1.260, 1.425, 1.605},
{0.710, 0.840, 0.975, 1.110, 1.250, 1.395},
{0.625, 0.735, 0.860, 0.990, 1.130, 1.270},
{0.560, 0.665, 0.780, 0.900, 1.015, 1.125},
{0.495, 0.585, 0.685, 0.790, 0.895, 1.005},
{0.445, 0.540, 0.625, 0.720, 0.825, 0.935},
{0.405, 0.485, 0.560, 0.640, 0.730, 0.825}} × 10−3;

In Mathematica code, Texη, Pexη, and η0List sig-
nify the experimental temperature, pressure, and
viscosity data, respectively.

Dynamic viscosity is given a set of 48 data points
with 8 subsets having 6 data each. In the viscos-
ity data group, each subgroup corresponds to the
each temperature given in the set of Texη. In each
viscosity subgroup, each datum corresponds to each
pressure given in each Pexη subgroup.

The zero-shear viscosity model has the form
ln(η0) = ln (η∗) + αYh, (29)

where Yh is given as
Yh = (1− h)/(hT ). (30)
So the data in the set of η0List needs to be con-

verted to logarithmic form:
In [•] = ηlog

Out [•] =

{{−17.4745,−17.39,−17.3341,−17.2906,

−17.2444,−17.1999}, {−17.6121,−17.5442,

−17.4969,−17.4637,−17.4231,−17.3812},
{−17.7355,−17.6772,−17.627,−17.5875,

−17.5519,−17.5196}, {−17.8524,−17.803,

−17.7468,−17.6974,−17.6492,−17.6104},
{−17.9494,−17.8935,−17.837,−17.7868,

−17.7516,−17.7274}, {−18.0578,−18.0103,

−17.958,−17.9099,−17.8713,−17.8349},
{−18.1473,−18.0774,−18.0393,−17.9942,

−17.9455,−17.9007}, {−18.2226,−18.1703,

−18.1375,−18.1023,−18.0596,−18.0186}},

where ηlog represents the linearized data.
In (30), the hole fraction h is computed from SS

theory described in Sect. 2. Here, the h values are
extracted for the given temperature and pressure of
viscosity in the code below:
In [•] = rooty = FindRoot[{eos == 0, eqlb == 0},
{y, 0.99, 0.6, 0.99999},Ve, 1.1× 10−3, 0.8× 10−3,

1.7× 10−3}]
Out [•] = {y→ 0.861137,Ve→ 0.00100588}

These output results for y and Ve are the last
values of the “ylst” and “Velst” data, respectively.
The lists for “ylst” and “Velst” represent the occu-
pied site fraction and specific volume findings:
In [•] = ylst

Out [•] =

{{0.873216, 0.882771, 0.890997, 0.898159,

0.904475, 0.910104}, {0.863757, 0.874054,

0.882873, 0.890525, 0.897255, 0.903241},
{0.854143, 0.865223, 0.874661, 0.882818,

0.889974, 0.896325}, {0.844374, 0.856281,

0.866365, 0.875045, 0.882637, 0.88936},
{0.834452, 0.847233, 0.85799, 0.867211,

0.875251, 0.882355}, {0.824374, 0.83808,

0.849541, 0.85932, 0.86782, 0.875312},
{0.814139, 0.828827, 0.841022, 0.851378,

0.860349, 0.868238}, {0.803746, 0.819475,

0.832436, 0.843389, 0.852844, 0.861137}}
In [•] = Velst

Out [•] =

{{0.00101451, 0.000998757, 0.000985156,

0.000973252, 0.000962678, 0.000953175},
{0.00102577, 0.00100876, 0.000994184,

0.000981499, 0.000970283, 0.00096024},
{0.00103748, 0.0010191, 0.00100348,

0.000989962, 0.000978069, 0.000967461},
{0.00104965, 0.00102978, 0.00101304,

0.000998644, 0.000986037, 0.000974837},
{0.0010623, 0.00104082, 0.00102287,

0.00100755, 0.000994188, 0.000982367},
{0.00107547, 0.00105223, 0.00103299,

0.00101667, 0.00100252, 0.000990051},
{0.00108919, 0.00106402, 0.0010434,

0.00102602, 0.00101104, 0.000997889},
{0.00110348, 0.00107621, 0.0010541,

0.0010356, 0.00101974, 0.00100588}}

The following output is for the hole fraction pa-
rameter extracted from the occupied site fraction
list:
In [•] = 1− ylst

Out [•] =

{{0.126784, 0.117229, 0.109003, 0.101841,

0.0955246, 0.0898956}, {0.136243, 0.125946,

0.117127, 0.109475, 0.102745, 0.0967587},
{0.145857, 0.134777, 0.125339, 0.117182,

0.110026, 0.103675}, {0.155626, 0.143719,

0.133635, 0.124955, 0.117363, 0.11064},
{0.165548, 0.152767, 0.14201, 0.132789,

0.124749, 0.117645}, {0.175626, 0.16192,

0.150459, 0.14068, 0.13218, 0.124688},
{0.185861, 0.171173, 0.158978, 0.148622,

0.139651, 0.131762}, {0.196254, 0.180525,

0.167564, 0.156611, 0.147156, 0.138863}}

where “1-ylst” and “ylst” denote the list of h and
y values for each temperature and pressure, respec-
tively.
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A template for the linearized model of the vis-
cosity expression for (29) in the Mathematica code
program is defined as:
In [•] = model = a0 + a1Yh

where “model” is the function to extract the theo-
retical viscosity data:
In [•] = model

Out [•] = a0 + (yη a1)/(Tη(1.− yη))

where a0 and a1 are the model parameters and are
referred to as ln(η∗) and α in (29), respectively. The
occupied site function is yη = 1− h.

Fitting the experimental ηlog and h values to
(29), 48 equations are built with two unknowns: a0

and a1. In order to solve these equations (to find the
two parameters, a0 and a1), the following Nonlinear-
ModelFit command in Mathematica implementing
the Newton–Raphson method is run:
In [•] = ft = NonlinearModelFit[logηyT,model,

{a0, a1}, {yη,Tη}]

Here, the variable “ft” is used to keep the model
Mathematica constitutes as a product of the fit. Of
the arguments, “logηyT” is a list of viscosity, occu-
pied site fraction, and temperature data, “model”
is the function to be fitted, {a0,a1} is a list of the
parameters to change, and {yη,Tη}] are the inde-
pendent variables, occupied site fraction and tem-
perature.

The parameters are stored in the function ft[[1,2]]:

In [•] = ft[[1,2]]

Out [•] = {a0 → −18.705817075032986‘,

a1 → 44.69862360250618‘}

The predicted function for the viscosity expres-
sion is:
In [•] = Logη = −18.7058 + (44.6986yη)

/(Tη(1.− yη))

By substituting the parameters back into the ex-
pression (29) together with the computed Yh val-
ues, the theoretical dynamic viscosity data are cre-
ated. The Mathematica function for producing the-
oretical viscosity values is ηlogFitValue:
In [•] = ηlogFitValue = Flatten[model/.ft[[1,2]]

/.{yη → ylst,Tη → Tden}]

The equation above tells us that the values of the
parameters a0 and a1 stored in the function ft[[1,2]],
the occupied site fraction yη, and temperature val-
ues Tden are fitted to the model. In the following,
there are the outputs of the fit:
In [•] = ηlogFitValue

Out [•] =

{−17.6186,−17.5171,−17.4154,−17.3136,

−17.2111,−17.1076,−17.7391,−17.6476,

−17.5565,−17.4655,−17.3743,−17.2824,

−17.8424,−17.7593,−17.6769,−17.595,

−17.5132,−17.4311,−17.9314,−17.8554,

−17.7804,−17.7062,−17.6323,−17.5584,

−18.0086,−17.9387,−17.8701,−17.8025,

−17.7353,−17.6684,−18.076,−18.0114,

−17.9482,−17.8863,−17.8249,−17.7639,

−18.1352,−18.0751,−18.0167,−17.9596,

−17.9033,−17.8475,−18.1875,−18.1313,

−18.077,−18.0242,−17.9723,−17.9209}

The variable organized for the Yh function ap-
pearing in (29) and its values in certain tempera-
tures and pressures are, respectively:
In [•] =

YhValue = Flatten[Yh/.{yη → ylst,Tη → Tden}]
Out [•] =

{0.0243244, 0.0265949, 0.0288682, 0.0311467,

0.0334399, 0.0357549, 0.0216266, 0.0236736,

0.025713, 0.0277485, 0.0297897, 0.0318437,

0.0193173, 0.0211765, 0.0230195, 0.0248515,

0.0266823, 0.0285188, 0.0173261, 0.0190261,

0.0207028, 0.0223627, 0.0240159, 0.0256693,

0.0155981, 0.017162, 0.0186965, 0.0202096,

0.0217115, 0.0232094, 0.0140895, 0.0155363,

0.0169483, 0.0183351, 0.0197071, 0.0210717,

0.0127652, 0.0141106, 0.0154165, 0.0166938,

0.0179535, 0.0192028, 0.0115969, 0.012854,

0.0140673, 0.0152491, 0.0164109, 0.0175601}

The reliability of the model is checked on rMAPE
and coded as below. The variable “errinlogη” stores
the rMAPE results, and ηlogFlat[[3]] is the function
that signifies theoretical viscosity data. The statis-
tics done on the parameter for this regression sug-
gest a reasonable fit:
In [•] = errinlogη =

100(ηlogFitValue− ηlogFlat[[3]])/ηlogFlat[[3]];

meanerr = Mean[Flatten[Abs[errinlogη]]]

Out [•] = %Error =

{0.824417, 0.730934, 0.469471, 0.133247,

−0.193279,−0.536676, 0.721249, 0.589717,

0.3406, 0.0105538,−0.280167,−0.568163,

0.602273, 0.464355, 0.282752, 0.0426175,

−0.220622,−0.505335, 0.442264, 0.294256,

0.189642, 0.0496961,−0.095517,−0.295125,

0.329998, 0.252628, 0.185505, 0.0879191,

−0.0917127,−0.332908, 0.101009, 0.00570812,

−0.0541786,−0.132184,−0.259588,−0.397717,

−0.0665901,−0.0127551,−0.125205,−0.192123,

−0.235159,−0.297469,−0.192869,−0.214727,

−0.333149,−0.431369,−0.483377,−0.542175}
The mean error organized into the Mathematica

function is:
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In [•] = meanerr = Mean[Flatten[Abs[errinlogη]]]

Out [•] = 0.296687
The theoretical viscosity results deviate from the

literature by nearly 0.3%.
To justify the performance of the model, another

regression error metric, the R-squared of the model,
R2, is calculated as shown in the code below:
In [•] = Print[”R2 = ”, ft[”RSquared”]]

Out [•] = R2 = 0.999987
This means that the thermooccupancy function,

Yh, accounts for 99.9% of the variation in the vis-
cosity.
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