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A tunneling transistor without heterojunction as a theoretical design, or more precisely, the controlled
transmission of an electron current through barrier potential, is under consideration. Electrons from the
conduction band of the source tunnel through the forbidden gap Eg of the channel to the conduction
band of the drain. Calculations of the tunneling current J made at helium temperature for the exam-
ple structures InAs–InAs–InAs, Au–GaSe–Au, and Al–AlN–Al show that for a constant source–drain
voltage, VC , of several mV, changes in the gate voltage, VG, applied to the channel within the voltage
range of 0–Eg/2e, change J by even 10 orders of magnitude. Unlike existing solutions, such as the
tunnel field-effect transistor, the proposed device uses the change of VG (gate voltage), i.e., a change
in the electrostatic potential in the channel, to modify the imaginary wave vector kz of tunnel current
electrons. Consequently, the gate voltage controls the damping force of the electron wave functions and
thus the magnitude of the tunneling current, J . The effect of increasing temperature T on the relation
J(VG) is also tested. It is found that only in the structures with a wide forbidden channel gap this effect
is insignificant (at least up to T = 300 K).
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1. Introduction

The tunnel current in the metal–insulator–metal
(M-I-M) structure has been theoretically described
and experimentally tested for many years, starting
from 1930 [1] (see also, e.g., [2–7]). The theoreti-
cal problem of transmission of relativistic electrons
through the potential barrier of a controlled height,
described by the Dirac equation, called the Klein
paradox, was published [8] and resolved many years
ago, see review [9]. A similar theoretical problem, in
close analogy to the Dirac model, but for transmis-
sion coefficient of conduction electrons through the
potential barrier with the height depending on the
voltage applied to it, VG (gate potential), was solved
for graphene [10], for phosphorus [11], and for IV–VI
semiconductor compounds [12] in recent years. The
same mechanism for controlling the current density
depending on the amount of VG is used in the exist-
ing field-effect transistors (TFETs). Both of these
phenomena are the basis of the proposed theoreti-
cal tunneling transistor model, the general scheme
of which is shown in Fig. 1. Nevertheless, the design
under consideration, described below, differs from
the TFET solutions based on the fact that an in-
crease in VG means an increase in the bands bending
in the source–channel heterojunction and, as a re-
sult, an increase in the tunnel current J from the va-
lence band to the conduction band in the p+−i−n+

Fig. 1. Scheme of the proposed transistor model;
VC is the voltage applied between Source and Drain
and VG is the Gate voltage applied through the ox-
ide layer to the Channel.

or p++−n−−n+ configuration or from the conduc-
tion band to the valence band in the n+− i− p+ or
n++−p−p+ configuration (band-to-band tunneling
(BTBT)), see, e.g., [13–18].

2. Tunneling current
in metal–insulator–metal structure

Here we consider the details of the general for-
mula for the dependence of the current J on the ap-
plied voltage VC in the M-I-M structure (see [3]) as
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Fig. 2. Diagram of the metal–insulator–metal
structure with applied voltage VC between metal A
and metal B (see, e.g., [3]). The tunneling current
flows along the z-direction from metal A through
the forbidden gap of the insulator to metal B; V L

b

and V R
b are the band offsets between the conduction

band of the insulator and the Fermi energy EF in
metal A or metal B, respectively; Ea is the energy
of the electron.

the Source–Channel–Drain structure in our design.
The elements of this structure are selected so that
current electrons from the metal A tunnel along the
z-direction through the forbidden gap of the insu-
lator to the metal B, see Fig. 2. The trapezoidal
potential of the insulator used in the theoretical de-
scription is an effective approximation of the po-
tential, as is the two-band model for calculating the
energy E(k) of an electron, see, e.g., [4–7]. The wave
vector kz(z) of the tunneling electrons has a deci-
sive influence on the magnitude of the current J .
This vector has an imaginary value and determines
how much the electron wave function is damped in
the insulator area.

In order to determine the formula for |kz(z)|,
we proceed as follows. The energy of the elec-
tron in the insulator, E(k), counted from the bot-
tom of the forbidden gap, in the two-band model,
is

E(k) = Eg −
(
Φ(z)−Ea

)
=

Eg

2
±

√√√√(Eg

2

)2

+
Eg~2

[(
kiz
)2

+ k2⊥

]
2m∗0

, (1)

where Eg is the forbidden gap of the insulator;
k2 = k2⊥ + (kiz)

2, and the wave vector k⊥ is
real, and the wave vector kiz is purely imaginary
(kiz = kz = i |kz|); Ea is the energy of the electron
in metal A; m∗0 is the effective electron mass of mC

at the conduction-band edge or mV at the valence-
band edge, corresponding to the sign in front of the
square root in (1); and VC is the applied voltage.
As in Fig. 2, Φ(z) = ΦB(z) + EF is the energy of
the M-I-M barrier potential relating to the metal A
conduction band edge, where

ΦB(z) = V L
b +

(
V R
b −V L

b −eVc
)z
d
. (2)

Here, V L
b and V R

b are metal–insulator barrier ener-
gies, and EF is the Fermi energy.

Hence,

|kz(z)|=
[(

1−Φ(z)−Ea

Eg

)(
Φ(z)−Ea

) 2m∗0
~2

+ k2⊥

] 1
2

,

(3)
or

|kz(z)|=
[(

1− E(z)

Eg

)
E(z)

2m∗0
~2

+ k2⊥

] 1
2

. (4)

The next step is the general expression for the
elastic tunneling current J(VC) from metal A to
metal B (see, e.g., [5]),

J(VC) =
2eS

~

∞∫
0

dEa (fA(Ea)− fB(Ea))

∞∫
0

d2k⊥
(2π)2

exp

−2 d∫
0

dz
∣∣kz (z) ∣∣

 =

eS

π~

∞∫
0

dEa (fA(Ea)− fB(Ea))

∞∫
0

dk⊥ k⊥ exp

−2 d∫
0

dz
∣∣kz (z) ∣∣

 , (5)

or

J(VC)

S

[
A

cm2

]
=

7.7483

105

∞∫
0

dEa

(
fA(Ea)−fB(Ea)

)

×
kM
⊥∫

0

dk⊥ k⊥ exp

−2 d∫
0

dz
∣∣kz(z)∣∣

 ,
(6)

where kM⊥ = kF⊥ for EF and kz=0 in the M-I-M
system. Further, d is the insulator thickness, and
S is the area of the interface between the metal
and the insulator. The terms fA(Ea) and fB(Ea)
are the Fermi–Dirac (F-D) distribution functions
for metal A and metal B, respectively, fA(Ea) =
1/[1 + exp(Ea−EF

a )/(kBT )] and fB(Ea) = 1/[1 +
exp[Ea−(EF

a−eVC)]/(kBT )].
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For very low temperatures, one has

J(VC)

[
A

cm2

]
=

7.7483

105

EF∫
EF−eV

dEa

kM
⊥∫

0

dk⊥ k⊥ exp

−2 d∫
0

dz |kz(z)|

 . (7)

One can notice that the formula for J(VC) is dom-
inated by the element with the exponential decay,
which is a result of the imaginary value of kz in
the electron wave function for the insulator forbid-
den gap. It is also seen that all electrons in metal
A with energy in the range EF–(EF − eVC) form
a tunneling current from metal A to metal B. Fur-
thermore, the tunneling current of the electron is
the greater, the smaller |kz| it has.

3. Dependence of current electrons energy
on k2z in the forbidden gap of the channel

Henceforth, the term metal–insulator–metal is re-
placed by the term Source–Channel–Drain; Source
and Drain are metals or n-type semiconductors, and
Channel is a wide, medium, or narrow gap semicon-
ductor (see Fig. 1).

Comparison of experimental data with theoretical
calculations of J(VC) in the structure under consid-
eration shows that to describe the dispersion E(k2z)
of electronic states in the forbidden gap of a chan-
nel, for example, InAs, GaSe, or AlN, the two-band
model is good enough, see [4–6]. The knowledge of
the dependence of E on k2z for k⊥ = 0 is most im-
portant, because the greater k⊥, the greater |kz| to
keep the electron energy unchanged. On the other
hand, the tunnel current is determined by electrons
with |kz| as small as possible, i.e., with the damping
of their wave function as little as possible.

If the effective masses of electrons mC and holes
mV are not equal, the use of the two-band Franz
model for band-to-band tunneling (see [19] and [20])
allows for a more detailed description of the tunnel-
ing process. It means replacing m∗0 in (1) by mFr,
the value of which depends on the electron energy
E in the band forbidden gap. The form of mFr is
the following

mFr(E) =
mC

E

Eg

(
1− mC

mV

)
+
mC

mV

, (8)

where E = Eg−Φ(z)+Ea, see Fig. 2. It is seen that
for E = 0, one has mFr = mV , and for E = Eg —
mFr = mC .

To calculate the energy dispersion E(k2z) in the
forbidden gap of GaSe for k⊥ = 0, we used (3) with
m∗0 = mFr and the GaSe parameters: Eg = 2 eV,
mC/m0 = 0.35, and mV /m0 = 0.07 [5]. The
curves calculated for m∗0 = mFr, m∗0 = mC , and
m∗0 = mV are shown in Fig. 4. From the compari-
son of the curves, it follows that the use of mFr(E)

Fig. 3. Theoretical energy dispersion E(k2
z) in the

forbidden gap of InAs for k⊥ = 0 calculated
in the two-level model for Eg = 0.417 eV and
m∗0/m0 = 0.026.

Fig. 4. Theoretical energy dispersions E(k2
z) in

the forbidden gap of GaSe for k⊥ = 0. The blue
curve includes the electron mass mFr(E) calculated
in the two-level Franz model for mC/m0 = 0.35,
mV /m0 = 0.07 and Eg = 2 eV. The red curves
are calculated in the two-level model for mC/m0 =
mV /m0 = m∗0/m0 = 0.35 or 0.07.

is necessary. The results of similar calculations for
InAs and AlN are shown in Figs. 3 and 5, respec-
tively. The InAs parameters are Eg = 0.417 eV and
m∗0/m0 = 0.026 [21], while the AlN parameters are
Eg = 4.2 eV and m∗0/m0 = 0.45 [6]. Figures 3–5
show that a slight change in the energy of the elec-
tron in the band gap significantly changes the value
k2z of the electron, i.e., changes its importance in
the formation of the tunnel current.

4. Principles of operation of the proposed
tunneling transistor

The basis of the proposed transistor is the ob-
servation that the current that flows through the
Source–Channel–Drain structure biased with the
constant voltage VC can be changed depending on
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Fig. 5. Theoretical energy dispersion E(k2
z) in the

forbidden gap of AlN for k⊥ = 0 calculated in the
two-level model for Eg = 4.2 eV and m∗0/m0 = 0.45.

Fig. 6. Scheme of the proposed tunneling transis-
tor for the Source–Drain voltage VC and for two
different values of the gate voltage VG′ and VG′′ ap-
plied to the Channel. It is seen that the current elec-
trons with energy in the range EF–(EF−eVC) tun-
nel through a barrier with a VG-dependent height,
i.e., through energetically different parts of the for-
bidden gap of the Channel.

the magnitude of the gate voltage VG applied to the
channel by an electrode separated from the channel
by an oxide layer, see, e.g., [10]. In other words, by
increasing or lowering the potential energy of the
channel in relation to the source, we can control k2z
of the current electrons and thus the magnitude of
the tunneling current, see Figs. 3–5 and 6. So, the
modified formula for |kz(z)|2 of an electron in the
forbidden channel gap with the applied voltage VG
looks like this

|kz(z)|2 =
(
1−E(z)−eVG

Eg

)(
E(z)−eVG

)2m∗0
~2

+k2⊥.

(9)
The dependences J(VG) for structures InAs–

InAs–InAs, Au–GaSe–Au, and Al–AlN–Al calcu-
lated using (7) and (9), i.e., at helium temperature,

Fig. 7. Theoretical tunneling current J versus
gate voltage VG applied to the InAs barrier. The
curves are calculated for values of voltage VC =
30 mV and 10 mV applied to the InAs–InAs–InAs
structure with the barrier width d = 65 nm. For
VG in the range VC–(Eg/e−VC), the electrons tun-
nel through the whole width of the InAs forbidden
gap, see Fig. 2. A change of the value of VG shifts
the InAs barrier on the energy axis, thereby chang-
ing the value of energy, E(kz), and the value of the
wave vector, kz, of tunneling electrons in the for-
bidden gap (see Fig. 3), and, as a result, leads to
the exponential change in the value of the tunneling
current (see (6)). It is seen that a slight change of
VG can change the value of the tunneling current J
by a few orders of magnitude.

are presented in Figs. 7–9. A negative or positive
value of VG applied to the GaSe element in the Au–
GaSe–Au structure or to the AlN element in the
Al–AlN–Al structure means a reduction or increase
in the virtual shift of V L

b and V R
b of the GaSe bar-

rier with respect to the Au source or the AlN barrier
with respect to the Al source, thereby changing k2z
of current electrons. The obvious relationship that
the wider the channel, the smaller the minimum
tunnel current J , is shown in Fig. 9. Comparing
the relationship J(VG) with E(k2z) (Figs. 3–5) for
these structures, we see that the wider the channel
bandgap is, the greater range of kz values it has,
and thus a greater range of tunnel current changes
is possible.

The conclusion that can be drawn from the J(VG)
curves in Figs. 7–9 is as follows: the smaller VC , the
greater the ratio of the maximum tunnel current
Jmax to the minimum tunnel current Jmin. The rea-
son is that the smaller VC and, consequently, JC
are, the fewer electrons form the current, and the
smaller the difference between |kz|2 of these elec-
trons is. Thus, the highest ratio of Jmax to Jmin

for a given width d will occur when the voltage VC
is extremely small, i.e., when the tunneling current
is formed exclusively from electrons of the same en-
ergy E. In this case, it is convenient to calculate the
transmission coefficient TC of electrons tunneling
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Fig. 8. Theoretical tunneling current J versus
gate voltage VG applied to the GaSe barrier. The
curves are calculated for the voltage values VC = 50
and 10 meV applied to the Au–GaSe–Au structure.
The width of the GaSe barrier d = 15 nm and
V L
b = V R

b = 1.48 eV are used. The asymmetrical
shape of the curves is the result of the asymme-
try energy dispersion E(k2

z) in the forbidden gap of
GaSe (see Fig. 4).

Fig. 9. Theoretical tunneling current J versus
gate voltage VG applied to the AlN barrier. The
curves are calculated for the voltage value VC =
15 mV applied to the Al–AlN–Al structure. The
widths of the barrier d = 4, 7, and 10 nm and
V L
b = V R

b = 1.68 eV are used.

through the forbidden gap of the channel vs VG (the
procedure is included, e.g., in [12]). Such a depen-
dence TC(VG) for the InAs–InAs–InAs structure is
shown in Fig. 10. It can be seen that the ratio of
TCmax to TCmin, and therefore Jmax to Jmin, is in-
deed extremely large.

5. Dependence of the J(VG) characteristic
on temperature

With increasing temperature, according to the
Fermi–Dirac distribution function fF−D, the num-
ber of electrons with energy greater than EF

Fig. 10. Transmission probability TC for electrons
with a specific value of E within forbidden gap of
InAs versus barrier voltage VG. The curve is calcu-
lated for values of VG in the range 0–Eg/e.

Fig. 11. Theoretical tunneling current J versus
gate voltage VG, calculated for different values
of temperature for the structure InAs–InAs–InAs,
i.e., with narrow gap channel, for applied voltage
VC = 20 mV (solid lines), and for VC = 5 mV
(dashed lines). The InAs channel forbidden gap
Eg = 0.417 eV and its width d = 15 nm are used. It
is seen that the change in J(VG) characteristic with
increasing temperature above T = 50 K becomes
more and more significant.

increases. This means that the increasing number
of electrons passes through the channel of the in-
vestigated structure not through the bandgap, but
through its conduction band. This, in turn, means
that the contribution of tunneling electrons to the
total current, J , decreases the more, the narrower
the forbidden gap of the channel is. As a result,
the J(VG) characteristic calculated using (6) in the
example structure with a narrow band gap chan-
nel changes significantly for the temperature above
T = 50 K, see Fig. 11. In the structure with
a medium band gap, J(VG) changes significantly
for the temperature above about T = 200 K, see
Fig. 12. While in the structure with a wide band gap
studied up to T = 300 K, J(VG) changes slightly,
see Fig. 13.
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Fig. 12. Theoretical tunneling current J versus
gate voltage VG, calculated for different values of
temperature for the structure Au–GaSe–Au, i.e.,
with medium gap channel, for applied voltage VC =
20 mV (solid lines), and for VC = 5 mV (dashed
lines). The GaSe channel forbidden gap Eg = 2 eV
and its width d = 15 nm are used. It is seen that
the change in J(VG) characteristic with increasing
temperature above T = 200 K becomes significant.

Fig. 13. Theoretical tunneling current J versus
gate voltage VG calculated for different values of
temperature for the structure Al–AlN–Al, i.e., with
wide gap channel, for applied voltage VC = 20 mV
(solid lines), and for VC = 5 mV (dashed lines).
The AlN channel forbidden gap Eg = 4.2 eV and
its width d = 6 nm are used. It can be seen that the
very strong dependence of J on VG is preserved at
least up to the temperature of T = 300 K.

6. Conclusions

The presented theoretical project of controlled
transmission of electron current through the barrier
potential can be treated as a new type of tunnel
transistor without a heterojunction, unlike classic
TFET. It is a simple extension of the theoretically
and experimentally proven structure for studying
the dependence of the tunnel current on the applied
voltage (e.g., [2–7]). Its mechanism of operation

(see [10–12]) consists in controlling the height of the
barrier (channel) potential polarized with a voltage
VG, i.e., controlling the current density J that tun-
nels through this barrier. The J change for a chan-
nel with a specific band gap value is the bigger, the
bigger mC or mV or both, see Figs. 4 and 8. The
maximum change in J , formed by tunneling elec-
trons along the entire length of the channel, com-
puted at helium temperature, is due to a change in
VG in the range 0–(Eg/2e−VC). For example, for
VC = 10 mV in the InAs structure (d = 65 nm),
a 180 mV change in VG means a change in J by
9 orders of magnitude. For VC = 10 mV in the
Au–GaSe–Au structure (d = 15 nm), a change in
VG by 0.6 V means a change in J by at least 12
orders of magnitude. While for VC = 15 mV in the
Al–AlN–Al structure (d = 10 nm), a change in VG
by 2 V means a change in J by at least 24 orders
of magnitude. In addition, one can notice that de-
pendence J on VG can be adjusted by changing the
voltage VC and the width d of the channel.

Changes in the J(VG) characteristic with increas-
ing temperature depend on the width of the band
gap of the channel, and are the smaller, the wider
the band gap is. A channel band gap of the order
of 3 eV or more means that the relationship J(VG)
in the 4–300 K range is almost unchanged, because
even at the temperature T = 300 K, there are prac-
tically no electrons with energy about EF + EG/2,
i.e., almost all electrons tunnel.

It is worth noting that the principle of operation
of the described transistor model and traditional
TFETs, i.e., the dependence of the energy bands
of the channel on the applied voltage VG, is the
same. Similarly, the range of channel lengths used
in TFETs, i.e., 15–50 nm (e.g., [17]), and in the
three structures discussed above, is very similar.

The basis of this project is the invariant depen-
dence of the electron wave vector kz on its energy in
the band gap of the channel in the considered struc-
ture. This means that a possible slight deviation of
the actual shape of the barrier potential or the val-
ues of structure parameters from those adapted for
calculations† may cause minor quantitative changes
in the relation J(VG), but not qualitative ones.
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