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In the framework of the variational Monte Carlo and the Hartree–Fock methods, the four-electron
system is investigated to calculate several properties of the beryllium atom. For the beryllium atom
and its isoelectronic ions, we calculated the ground-state energy eigenvalues and the energy of the
compressed ground state beryllium atom in an impenetrable spherical box at different radii of the
spherical box. Furthermore, the correlation energies are calculated as well. Moreover, the pressure and
the kinetic energy of the confined beryllium atom are also calculated at certain radii of the spherical
box. A good agreement between the calculated values and the corresponding available previous results
is shown. The results obtained using the variational Monte Carlo method are slightly better than those
obtained using the Hartree–Fock method.
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1. Introduction

The equations of correlated many-body quan-
tum systems, such as the Coulombic system, which
are described mainly by the Schrödinger equation,
are not possible to solve analytically. The prob-
lem arises with the integrals in the calculation of
the expectation values of energy, namely that the
integrals generally are multi-dimensiona and can
seldom be calculated analytically. For this reason,
one must use an appropriate approximation method
to solve the Schrödinger equation. For the four-
electron system, A.G.H. Barbosa and M.A.C. Nasci-
mento [1] used a proper independent particle model
at the generalized valence bond and generalized
multi-structural levels (GMS) for the ground state
of the beryllium atom. The used wave functions
showed that the correlation energy of the valence
shell is small. Also, it was found that by including
the 1s22p2 configuration, the stabilization happened
neither due to non-dynamic nor dynamic correla-
tion effects. Feng Wu and Lijuan Meng [2] used the
double-parameter double-fold perturbation scheme
by considering the spin–spin interaction of electrons
to calculate the ground state energy of the beryllium
atom. It was found that the effective nuclear charge
seen by the outer shell electrons is optimized by the
repulsion of the inner shell electrons.

Also, A.D. Sañu-Ginarte et al. [3] studied the ef-
fect of pressure on the ground and the low-lying
excited states of the beryllium atom inside a box
with spherical symmetry and impenetrable walls us-
ing the variational method. They used a trial wave
function based on Slater’s determinant using spin–
orbital hydrogen functions for the 1s and the 2s
orbitals multiplied by a cut-off factor to achieve
the Dirichlet boundary conditions using different
variational parameters for each hydrogenic wave
function.

When using appropriate methods for such sys-
tems, the quantum Monte Carlo (QMC) techniques
are used to solve the Schrödinger equation of many-
body quantum systems. The QMC techniques are
classified as variational Monte Carlo (VMC) [4–6],
diffusion Monte Carlo [7], and Green’s function
Monte Carlo methods [8].

The VMC is based on a combination of two ideas,
namely the variational principle and the Monte
Carlo evaluation of integrals using importance sam-
pling based on the Metropolis algorithm [9]. Using
the VMC method, the lithium atom and its isoelec-
tronic ions up to Z = 10 in a strong magnetic field
are studied by S.B. Doma et al. [10]. The calcula-
tions of the ground and some excited states of the
lithium atom under the presence of magnetic field
strengths up to 100 a.u. have been provided in that
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study. Moreover, the VMCmethod was used by S.B.
Doma et al. [11] to evaluate the ground state of the
beryllium atom, the mean distance of the electrons
from the nucleus, and the mean distance between
the electrons, where two different kinds of orbital
functions and correlated functions were used in the
calculations.

The self-consistent field approximation (Hartree–
Fock) [12] is known to be an accurate description
of many of the properties of multi-electron atoms
and ions. In this approximation, each electron is
described by a separate single-particle wave func-
tion (as distinct from the many-electron wave func-
tion) that solves a Schrödinger-like equation. The
potential appearing in this equation is that gener-
ated by the average motion of the other electrons,
so it depends on their single-particle wave functions.
The rest is a set of non-linear eigenvalue equations,
which can be solved by the methods of solving the
eigenvalue problems, such as the shooting method.
The calculated total energies can be compared di-
rectly with experimental values.

Accordingly, the aim of this work is to apply
the VMC method using trial wave functions in-
cluding the correlation term, and the Hartree–Fock
(HF) method to evaluate the ground state of the

beryllium atom and its isoelectronic ions, and to
study the ground state of beryllium atom as a con-
fined system in an impenetrable spherical box with
varying radii.

2. The ground state of the beryllium atom
and its isoelectronic ions

The Schrödinger equation for the beryllium atom
and its isoelectronic ions is written as

H ψ (r1, r2, r3, r4) = E ψ (r1, r2, r3, r4) . (1)

The Hamiltonian operator in (1) using the Born–
Oppenheimer approximation, where the nucleus has
an infinite mass, in atomic units [a.u.] (e = } = m =
4πε0 = 1), is given by

H = −1

2
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where Z is the nuclear charge (here, Z = 4, 5, and
6 for Be, B+, and C++, respectively), ri is the dis-
tance between the i-th electron and the nucleus, and
rij are the inter-electron distances. In the present
work, the Hamiltonian was introduced using the
Hylleraas coordinates [13] as
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The ground state energy of the lithium atom was
calculated using the following spatial wave func-
tion [14]

ψ (r1, r2, r3) =
(z′)3(z′′)3/2

2π
√
2π

(
1− z′′r3

2

)

× exp

(
−z′ (r1+r2)−

z′′r3
2

)
. (4)

In our calculations of the ground state energy
of the beryllium atom and its isoelectronic ions
by using the VMC method, we used a modified
trial wave function with the spin part and corre-
lation factor, constructed from the function (4) as
follows

ψ (r1, r2, r3, r4) =

A

[
ϕ (r1, r2, r3, r4)χ (1, 2, 3, 4)

∏
i<j

f (rij)

]
, (5)

where A is the antisymmetrization operator [15]
which takes the form
A = ê− P̂12 − P̂13 − P̂14 − P̂23 − P̂24 − P̂34

+P̂123 + P̂132 + P̂124 + P̂142 + P̂134 + P̂143

+P̂234 + P̂243 − P̂1234 − P̂1243 − P̂1324 − P̂1342

−P̂1423 − P̂1432 + P̂12P̂34 + P̂13P̂24 + P̂14P̂23.
(6)
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Here, ê is the identity permutation, while P̂ij is the
permutation of the i-th and j-th particles. Anal-
ogously, the operators P̂ijk and P̂ijkl are the per-
mutations of three particles i, j, and k and four
particles i, j, k, and l, respectively. The spin part
(χ(1, 2, 3, 4)) of the wave function is given by
χ(1, 2, 3, 4) =

α(1)β(2)−α(2)β(1)√
2

α(3)β(4)−α(4)β(3)√
2

,

(7)
where α, β are the spinor indices. The spatial part
of the trial wave function is introduced as

ϕ (r1, r2, r3, r4) =
(z′z′′)

3

8π2
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2
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2
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× exp
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and f(rij) is the Jastrow correlation function [16]
given by

f (rij) = exp

(
rij

n (1 + µrij)

)
. (9)

Here, z
′
and z′′ are the variational parameters of

the orbital part, while µ is the variational parame-
ter of the correlation part. In (9), one has n = 2 for
unlike spins and n = 4 for like spins, which makes
the function f(rij) satisfy the cusp conditions [17].
The three variational parameters z′, z′′, and µ are
varied in order to obtain the best fit to the energy
eigenvalues of the beryllium atom and its isoelec-
tronic ions by using the VMC method.

3. The confined ground state of the
beryllium atom

The VMC method was applied here to study the
compressed beryllium atom placed at the center of
an impenetrable spherical box (hard walls), which
is a repulsive cavity to avoid the eccentricity of
the atom to be an orbit within the cavity. The
Schrödinger equation of this confined system is
given by

HC ψC = EC ψC . (10)
Here, HC = H + VC(r1, r2, r3, r4), and
VC(r1, r2, r3, r4) is the confined potential due
to the box of radius rC , which is given by

VC (r1, r2, r3, r4) =

 0, r1, r2, r3, r4 < rC ,

∞, r1, r2, r3, r4 ≥ rC .
(11)

The trial wave function ψC is taken in the form

ψC = ψ (r1, r2, r3, r4)
∏
i

(
1− ri

rC

)
. (12)

In the above equation, the cut-off factor
∏

i(1−
ri
rC

)
satisfies the Dirichlet boundary conditions for
which ψC = 0 at ri = rC .

In addition, the pressure exerted on an atom by
the system boundaries was evaluated at different
values of the box radius [18] from the equation

p(rC) = −
1

4πr2c

dE

drC
=

1

4πr3c

(
2E − 〈V 〉

)
. (13)

Here, E is the ground state total energy of the atom,
and 〈V 〉 is the expectation value of the potential at
various radii of the spherical box. Besides this, the
kinetic energy K [19] of the system, as a function
of the box radius, was calculated from the following
equation

K (rC) = 4πr3c p(rC)− E (rC) . (14)

4. Results and discussions

4.1. The ground state energy of the beryllium
atom and its isoelectronic ions

To calculate the ground state energy eigenvalues
of the beryllium atom and its isoelectronic ions B+

and C++, we applied the VMC method with a num-
ber of points equal to 107, using the trial wave func-
tion of (5). This trial wave function contains three
variational parameters, namely z′, z′′, and µ. Our
computational program enables us to vary the pa-
rameters successively in loops until the minimum
energy eigenvalue is obtained. The values of the pa-
rameters, which produced the best energy eigenval-
ues of Be, are given in Table I.

TABLE I

The values of the best parameters of the trial wave
function (5).

z′ z′′ µ

3.9925 3.984 0.459

Fig. 1. The variation of the ground state energy of
the beryllium atom with respect to the variational
parameters z′ and z′′ for µ = 0.459.
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TABLE IIGround-state energies, standard deviations (S.D.), and relative errors of Be, B+, and C+ in [a.u.]

VMC S.D. HF Exact Relative error
Be −14.667219 5.3× 10−6 −14.57302316 −14.6674 [21] 1.36× 10−5

B+ −24.349122 1.78× 10−5 −24.23757517 −24.3490 [23] 4.11× 10−6

C++ −36.950641 2.73× 10−5 −36.40849530 −36.9505 [21, 22] 2.71× 10−6

TABLE III

Energies of confined ground beryllium atom calculated using VMC and HF methods compared with results in [3].

Rc EVMC EHF −Ecorr. Ref. [3]
∞ −14.667219312200 −14.573023168447 0.094196143753 −14.55884
10 −14.667202032720 −14.572919271699 0.094282761021 −14.55671
9 −14.667123885053 −14.572603371025 0.094520514028 −14.55567
8 −14.666035778980 −14.571454779928 0.094580999052 −14.55355
7 −14.663462917823 −14.567504006202 0.095958911621 −14.54850
6 −14.654573702594 −14.554479994549 0.100093708045 −14.53455
5 −14.622133356984 −14.512476257762 0.109657099222 −14.49181
4 −14.498217115563 −14.374585118755 0.123631996808 −14.35212
3 −14.016365925571 −13.876096336455 0.140269589116 −13.84680
2 −11.702299344427 −11.541080322427 0.161219022000 −11.48950
1.5 −7.189354841901 −7.007112665778 0.182242176123 −6.92237

In Table II, we have reported the HF total en-
ergy values using the numerical HF code [20] with
8-decimal accuracy. Also, the obtained results of the
energy eigenvalues and the standard deviations, to-
gether with the relative errors and the exact values,
are given. It is to be noticed that the energies of
B+ and C++ were calculated by considering their
exact non-relativistic ground state energies [21] in
addition to the ionization energies [22]. It is seen
in Table II that our results showed good agreement
with the exact results [21–23]. The variations of the
ground state energy of the beryllium atom with re-
spect to the variational parameters z′ and z′′ are
given in Fig. 1 for µ = 0.459.

4.2. The confined ground state of the beryllium
atom

In this section, we present the obtained results
of the confined ground state of the beryllium atom
at different radii of the spherical box. In Table II,
we present the results of calculating the energy of
the confined beryllium atom placed at the center
of an impenetrable spherical box (hard walls) us-
ing the VMC method with 107 Monte Carlo inte-
gration points and the Hartree–Fock method. Also,
the results from [3] are given, which used six pa-
rameters in the trial wave function to improve the
results of the confined system. It is seen in Table III
that our results are more accurate than those in [3]
for all different radii of the spherical box. Fur-
thermore, the correlation energies of the system,
Ecorr. = EVMC − EHF are also given.

TABLE IV

The pressure (P ) and kinetic energy (K) of the con-
fined beryllium atom (Rc given in [a.u]).

Rc P K

1.63 0.0246 18.38173

1.68 0.0223 17.82091

2.7 0.0041 16.59168

3.45 0.0014 15.97331

3.51 0.0013 15.75598

3.58 0.0012 15.60422

4.08 0.0006 15.49422

Table IV shows the results of calculating the pres-
sure exerted on the beryllium atom and the kinetic
energy using (13) and (14) at certain radii of the
box. These radii are related to the energy values of
some excited states of the beryllium atom and its
ions [21, 22, 24, 25], which are shown in Table V.

In the last column of Table V, we present the re-
sults of calculating the energies of the states, which
are compared with the other works. Furthermore,
the correlation energy was plotted against the dif-
ferent radii of the spherical box, as shown in Fig. 2.
It is also seen, in Table III, that by decreasing the
radius of the box, the atom is more compressed, and
hence the energy of the system increases where the
kinetic energy becomes predominant perturbed by
the attractive Coulomb potential, and the absolute
value of the correlation energy increases at small
values of radii.
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Fig. 2. The energy of the beryllium atom as function of the box radius (Rc).

TABLE V

Energies of the confined states of the beryllium atom
(in [a.u.]) as functions of the box radius Rc.

Rc
Unconfined state
of similar energy

Energy of
the state

VMC

1.63 1s2s3s2 −8.6210 [24] −8.6211(1)

1.68 1s2s23s −9.1753 [24] −9.1743(1)

2.7 1s2 (Be++) −13.6603 [21, 22] −13.6607(3)

3.45 1s22s (Be+) −14.3182 [21, 22] −14.3272(6)

3.51 1s22s3p −14.3501 [25] −14.3400(7)

3.58 1s22s3s −14.3773 [24] −14.3774(7)

4.08 1s22s2p −14.5161 [25] −14.5112(3)

5. Conclusions

In the present paper, we applied the VMC
method and the HF method to study the ground-
state energy of the beryllium atom and its iso-
electronic ions by incorporating suitable trial wave
functions, which consider the correlation part, due
to the interactions between the electrons and the
cusp conditions. In addition, the confined beryllium
atom in an impenetrable spherical box was investi-
gated successfully at different radii. Also, good re-
sults for the pressure and the kinetic energy of the
confined beryllium atom at specific values of radii
have been obtained using the VMC method.

Moreover, the results obtained in the present pa-
per proved that the VMC and HF techniques pro-
vide a simple, robust, and efficient way to solve the
ground state energy of a quantum many-particle
system. Also, they have been proven to be very pow-
erful tools for studying quantum mechanical sys-
tems in the field of physics particularly atomic and
molecular structures. Since the VMC method is rel-
atively insensitive to the size of the system, it can be
applied to large systems where some other methods
are computationally not feasible.

Finally, the major advantage of the applied meth-
ods is the possibility to freely choose the analytical
form of the trial wave function, which may contain
highly sophisticated terms, in such a way that elec-
tron correlation is explicitly considered. This is an
important feature, valid for these methods, which
are therefore extremely useful for studying physical
cases where the electron correlation plays a crucial
role.

References

[1] A.G.H. Barbosa, M.A.C. Nascimento, Int.
J. Quantum. Chem. 99, 317 (2004).

[2] F. Wu, L. Meng, Chin. Phys. B 27, 9
(2018).

[3] A.D. Sañu-Ginarte, L. Ferrer-Galindo,
R.A. Rosas, A. Corella-Madueño,
R. Betancourt-Riera, L.A. Ferrer-Moreno,
R. Riera, J. Phys. Commun. 2, 015001
(2018).

[4] D. Ceperley, G.V. Chester, M.H. Kalos,
Phys. Rev. B 16, 3081 (1977).

[5] S.B. Doma, F.N. El-Gammal, M.A. Salem,
Eur. Phys. J. D 75, 1 (2021).

[6] S.B. Doma, F.N. El-Gammal,
A.A. AmerMol. Phys. 116, 1827 (2018).

[7] Z. Shao, Y. Tang, J. Phys. B 404, 217
(2009).

[8] S.C. Pieper, Nucl. Phys. A 751, 516c
(2005).

[9] N. Metropolis, A.W. Rosenbluth,
M.R. Rosenbluth, A.H. Teller, E. Teller,
J. Chem. Phys. 21, 1087 (1953).

[10] S.B. Doma, M.O. Shaker, A.M. Farag,
F.N. El-Gammal, J. Exp. Theor. Phys.
124, 1 (2017).

[11] S.B. Doma, H.S. El-Gendy, M.A. Abdel-
Khalek, M.E. Mohamed, Acta. Phys. Pol.
A 138, 6 (2020).

67

http://dx.doi.org/10.1002/qua.10866
http://dx.doi.org/10.1002/qua.10866
http://dx.doi.org/10.1088/1674-1056/27/9/093101
http://dx.doi.org/10.1088/1674-1056/27/9/093101
http://dx.doi.org/10.1088/2399-6528/aa9c55
http://dx.doi.org/10.1088/2399-6528/aa9c55
http://dx.doi.org/10.1103/PhysRevB.16.3081
http://dx.doi.org/10.1140/epjd/s10053-021-00040-8
http://dx.doi.org/10.1080/00268976.2018.1459000
http://dx.doi.org/10.1016/j.physb.2008.10.044
http://dx.doi.org/10.1016/j.physb.2008.10.044
http://dx.doi.org/10.1016/j.nuclphysa.2005.02.018
http://dx.doi.org/10.1016/j.nuclphysa.2005.02.018
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1134/S1063776117010034
http://dx.doi.org/10.1134/S1063776117010034
http://dx.doi.org/10.12693/APhysPolA.138.838
http://dx.doi.org/10.12693/APhysPolA.138.838


S.B. Doma et al.

[12] E.V. Ludeña, J. Chem. Phys. 69, 1170
(1978).

[13] M.B. Ruiz, Int. J. Quantum Chem. 101,
246 (2005).

[14] S.B. Doma, G.D. Roston, M.F. Ahmed,
Int. J. Sci. Res. Phys. Appl. Sci. 10, 1
(2022).

[15] A.M. Frolov, D.M. Wardlaw, Phys. Rev. A
78, 042506 (2008).

[16] C. Filippi, C.J. Umrigar, J Chem. Phys.
105, 213 (1996).

[17] Y. Hatano, S. Yamamoto, Comp. Phys.
Comm. 284, 108623 (2023).

[18] J.L. Marin, S.A. Cruz, J. Phys. B: At. Mol.
Opt. Phys. 25, 4365 (1992).

[19] E. Ludeña, J. Chem. Phys. 69, 1770
(1978).

[20] C.F. Fisher, Comp. Phys. Comm. 64, 431
(1991).

[21] C.A. Nicolaides, D.R. Beck, J. Phys. B: At.
Mol. Phys. 6, 535 (1973).

[22] D.R. Lide, Handbook of Chemistry and
Physics, 84 Ed., CRC press, USA 2004
p. 10, 178.

[23] M. Puchalski, J. Komasa, K. Pachucki,
Phys. Rev. A 92, 062501 (2015).

[24] M.J. Al-Sharaa, M.A. Mahmood,
N.C.H. Madhkoor, K.H. Al-Bayati,
AIP Conf. Proc. 1888, 020013 (2017).

[25] A.W. Weiss, Phys. Rev. A 6, 1261 (1972).

68

http://dx.doi.org/10.1063/1.436710
http://dx.doi.org/10.1063/1.436710
http://dx.doi.org/10.1002/qua.20197
http://dx.doi.org/10.1002/qua.20197
http://dx.doi.org/10.26438/ijsrpas/v10i4.17
http://dx.doi.org/10.26438/ijsrpas/v10i4.17
http://dx.doi.org/10.1103/PhysRevA.78.042506
http://dx.doi.org/10.1103/PhysRevA.78.042506
http://dx.doi.org/10.1063/1.471865
http://dx.doi.org/10.1063/1.471865
http://dx.doi.org/10.1016/j.cpc.2022.108623
http://dx.doi.org/10.1016/j.cpc.2022.108623
http://dx.doi.org/10.1088/0953-4075/25/21/006
http://dx.doi.org/10.1088/0953-4075/25/21/006
http://dx.doi.org/10.1063/1.436710
http://dx.doi.org/10.1063/1.436710
http://dx.doi.org/10.1016/0010-4655(91)90137-A
http://dx.doi.org/10.1016/0010-4655(91)90137-A
http://dx.doi.org/10.1088/0022-3700/6/3/022
http://dx.doi.org/10.1088/0022-3700/6/3/022
http://dx.doi.org/10.1103/PhysRevA.92.062501
http://dx.doi.org/10.1063/1.5004290
http://dx.doi.org/10.1103/PhysRevA.6.1261

