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A semi-classical anharmonic correlated Einstein model of hcp crystals is derived for the high-order
expanded Debye–Waller factors and extended X-ray absorption fine structure. The many-body effect is
included in this model based on the contributions of the first shell near neighbors of the absorber and
backscatter atoms. The analytical expressions of Debye–Waller factors presented in terms of cumulant
expansion up to the fourth order yield results based on the classical theory corrected for its absence of
zero-point vibration. The anharmonic many-body effect effective potential is derived which includes the
Morse potential for describing the single-pair atomic interactions. A method of providing all extended
X-ray absorption fine structure quantities is created, correcting the absence of zero-point vibration in
classical theory, combining it with the quantum one based on only the second cumulant. The derived
model has the advantage of including both classical and quantum effects. The numerical results of all
considered quantities of Zn (hcp) are found to be in good agreement with the experimental values.

topics: semi-classical anharmonic correlated Einstein model, Debye–Waller factor and extended X-ray
absorption fine structure (EXAFS), anharmonic effective potential and cunulant expansion, hexagonal
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1. Introduction

The thermal atomic vibrations and disorder in
extended X-ray absorption fine structure (EXAFS)
give rise to the Debye–Waller factor (DWF), which
damps EXAFS spectra with respect to increasing
temperature T and wave number k (energy). The
anharmonicity in atomic interaction potential yields
additional terms in DWF, which, when ignored,
can lead to non-negligible errors in structural pa-
rameters [1–26]. The formalism for including an-
harmonic effects in EXAFS is often based on the
cumulant expansion approach [1], where the even
cumulants contribute to the amplitude and the odd
ones to the phase of EXAFS spectra. The accurate
DWFs, due to their exponential damping, are cru-
cial to the quantitative treatment of EXAFS. Con-
sequently, the lack of precise DWFs has been one of
the biggest limitations to accurate structural deter-
minations (e.g., the coordination numbers and the
atomic distances) and specifying different physical
parameters [21, 26] from EXAFS data.

In order to overcome the above limitations,
several procedures based on classical and quan-
tum theories have been developed for studying
the DWFs, including anharmonic contributions or

phonon–phonon interactions for different mate-
rial systems using the cumulant expansion ap-
proach [1–26], where for small anharmonicities, it
is sufficient to keep the third and fourth cumu-
lants [2]. At high temperatures, the classical ap-
proaches, for example, the classical single-bond
model (CSBM) [3] and some methods for studying
the anharmonic effects in EXAFS [4–7], work well.
But they are limited at low temperatures due to
the absence of zero-point vibration. Several quan-
tum methods have been derived for approximating
the EXAFS cumulants, for example, the quantum
single bond models [8, 9], the full lattice dynam-
ical (FLD) approach [10], the anharmonic corre-
lated Einstein model (ACEM) [11], the pressure-
dependent ACEM [12], as well as the ACEMs for
studying EXAFS of doping materials compared to
Mössbauer studies [13], and the isotopic [14] effects
in EXAFS of the considered crystals, as well as the
thermal properties of semiconductors [15, 16]. The
further efforts in these developments are expressed
by the path integral effective potential model [17],
the force constant method [18, 19], the path-integral
Monte Carlo procedure [20], the dynamic matrix
calculation [21], and the density functional theory
for DWF [22]. Moreover, recently the DWF-based
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methods for studying the strong anharmonicity in
tin monosulfide evidenced by local distortion, high-
energy optic phonons [23], and the melting curve,
eutectic point, and Lindemann’s melting tempera-
ture of hcp binary alloys [24] have been published.
The advantages of the classical methods are sim-
plicity and usefulness in describing the dominant
anharmonicity at high temperatures, even at melt-
ing temperatures [3]. The quantum models have the
advantage of being well-suited to describe the quan-
tum effects at low temperatures based on including
the zero-point energy contributions. Therefore, it
is very useful to combine the classical models with
the quantum ones, obtaining a semi-classical ACEM
(SCACEM), which has the advantages of both clas-
sical and quantum theories.

The purpose of this work is to derive a SCACEM
for hcp (hexagonal close-packed) crystals, combin-
ing a classical model with a quantum one for
the calculation and analysis of the high-order ex-
panded DWFs describing the thermodynamic prop-
erties and anharmonic effects, as well as anharmonic
EXAFS contributing to the accurate structural de-
termination. In Sect. 2, the derivation of the present
SCACEM is presented. An anharmonic many-body
effect effective potential is derived instead of the
single-pair potential (SPP) used elsewhere [3, 8–10].
The Morse potential is adopted to describe the
single-pair atomic interactions. The many-body ef-
fect is taken into account in a simple manner based
on the contributions of the first shell near neigh-
bors of the absorber and backscatter atoms. The
analytical expressions of DWFs presented in terms
of cumulant expansion up to the fourth order yield
results based on the classical theory corrected for
its absence of zero-point vibration. The method is
created to:

• indicate the best way of providing all consid-
ered EXAFS quantities;

• correct the absence of zero-point vibration in
a classical EXAFS theory;

• combine the classical theory with the quan-
tum one, with the advantage of realizing these
purposes based on only the second cumu-
lant or mean square relative displacement
(MSRD).

Furthermore, the equality of the obtained relation
σ(1)σ2/σ(3) among the first σ(1), second σ2, and
third σ(3) cumulants to the classical value of 1/2 [3]
at all temperatures, while these obtained cumu-
lants contain the zero-point energy contributions,
leads to a conclusion that the derived SCACEM in-
cludes both classical and quantum effects. In Sect. 3,
the anharmonic EXAFS of hcp crystals is stud-
ied based on the obtained SCACEM cumulants.
The numerical results (Sect. 4) of all considered
quantities (cumulants, EXAFS spectra and their
Fourier transform magnitudes) of Zn in the hcp
phase are compared to the experimental values mea-
sured at HASYLAB (DESY, Germany) published

elsewhere [7, 25], as well as to those measured at the
BL8, Synchrotron Light Research Institute (SLRI,
Thailand) [26]. The significant discrepancies be-
tween the results calculated by the CSBM [3] and
by the present method using the SPPs, indicate the
limitations of the SPP model. The conclusions on
the obtained results are presented in Sect. 5.

2. Semi-classical ACEM (SCACEM)
of hcp crystals

2.1. Anharmonic and many-body effects
in SCACEM

The anharmonic contributions and many-body
effects included in the present SCACEM of hcp
crystals are considered based on an anharmonic
many-body effect effective potential expanded up to
the fourth order as a function of the displacement
x = r−r0 along the bond direction with r and r0 be-
ing, respectively, the instantaneous and equilibrium
distances between absorber and backscatter atoms,
i.e.,

Veff (x) ∼=
1

2
keff x

2 + k3eff x
3 + k4eff x

4, (1)

where keff is the effective local force constant, and
k3eff and k4eff are the effective parameters describ-
ing the anharmonic effects giving the asymmetry of
the derived effective potential.

Based on the center-of-mass frame of single-bond
pair of absorber and backscatter atoms [11], the an-
harmonic effective potential given by (1) has been
defined as

Veff (x) = V (x) +
∑
i=1,2

∑
j 6=i

V

(
µx

Mi
R̂12 · R̂ij

)
=

V (x) +M(x), (2)

where
M(x) = 2V

(
−x

2

)
+ 8V

(
−x

4

)
+ 8V

(x
4

)
. (3)

Note that Veff is the sum of not only the term V (x)
describing the pair-interaction between absorber
and backscatter atoms, but also the termM(x) con-
sisting of the components 2V (x/2), 8V (x/4) and
8V (−x/4) given by (3), describing the projections
of their pair-interactions with the first shell near
neighbors along the bond direction, where µ =
M1M2/(M1 +M2) is reduced mass of absorber with
massM1 and backscatter with massM2, R̂ is a unit
vector. The sum for the index i is for absorber
(i = 1) and backscatter (i = 2). The sum for j
is for all first shell near neighbors, where the first
line in (2) is for any structure, and the second one
is valid for monatomic hcp crystals.

The term M(x) given in (3) actually describes
the lattice contributions or many-body effects to
the pair-interaction of absorber and backscatter
atoms of hcp crystals whose vibration behaves
as a linear anharmonic oscillator in the present
SCACEM.
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Applying the Morse potential expanded up to the
fourth order

V (x) = D
(

e−2αx − 2e−αx
) ∼=

D

(
−1 + α2x2 − α3x3 +

7

12
α4x4

)
(4)

to (2)–(3), as well as comparing the results to (1),
we obtain the effective parameters keff , k3eff , k4eff for
hcp crystals in terms of Morse potential parameters
D and α as follows

keff = 5Dα2, k3eff = −5

4
Dα3,

k4eff =
133

192
Dα4. (5)

These parameters are quite different from those of
SPP, which include only the term V (x), written be-
low

kSPP = 2Dα2, k3SPP = −Dα3,

k4SPP =
7

12
Dα4, (6)

where D is dissociation energy and α describes the
width of the potential.

2.2. Classical ACEM (CACEM) including
many-body effect

The first step of deriving the present SCACEM
is advancing a classical model like the well-known
CSBM [3] into the classical ACEM (CACEM) based
on the high-order expanded DWFs, including the
many-body effect. The derivation of such DWFs is
based on the cumulant expansion approach [1] and
the classical statistical theory, treating the anhar-
monicity as a perturbation and the temperature-
dependence of the moments about the mean 〈x〉 to
the lowest orders in temperature T , as determined
by evaluating the thermal average

〈(
x−〈x〉

)n〉
=

∞∫
−∞

dx (x−〈x〉)n exp
(
−Veff (x)

kBT

)
∞∫
−∞

dx exp
(
−Veff (x)

kBT

) ,

(7)

which uses the high-order expanded anharmonic ef-
fective potentials Veff(x) given by (1)–(3) instead of
SPP used in CSBM [3].

The truncation of the series calculated from (7)
serves as a convergence cutoff while including
enough terms to accurately obtain the second
lowest-order expressions for the moments. From
these results, including the anharmonic effective
potential parameters keff , k3eff , k4eff given by (5)
for hcp crystals to lowest order in temperature T ,
the temperature-dependent expressions in terms of
Morse potential parameters have resulted for the
second cumulant describing MSRD

σ2 (T ) = 〈(r − r0)
2〉 ∼=

〈
x2
〉

=
kBT

5Dα2
. (8)

The first cumulant describing the net thermal ex-
pansion or lattice disorder is

σ(1) (T ) = 〈r − r0〉 = 〈x〉 =
3

4
ασ2(T ). (9)

The third cumulant or mean cubic relative displace-
ment (MCRD) describing the asymmetry of the pair
distribution function is

σ(3) (T ) =
〈
(r − r0)3

〉 ∼=〈
x3
〉
− 3σ(1)σ2 =

3

2
α
(
σ2(T )

)2
. (10)

The fourth cumulant describing the anharmonic
contribution to EXAFS amplitude is

σ(4) (T ) = 〈(r − r0)
4〉 − 3

(
σ2
)2

=

137

40
α2
(
σ2(T )

)3
, (11)

and the relation among the three first EXAFS cu-
mulants is given by

σ(1)σ2

σ(3)
=

1

2
. (12)

The atomic vibration is characterized by its fre-
quency so that using the obtained effective lo-
cal force constant keff , the correlated Einstein fre-
quency ωE, and temperature θE have resulted in

ωE =

√
5Dα2

µ
, θE =

~ωE

kB
, (13)

where µ is the reduced mass of absorber and
backscatter atoms, kB is Boltzmann constant.

Note that the application of the anharmonic ef-
fective potential parameters keff , k3eff , k4eff to the
obtained cumulant expressions instead of the SPP
ones in the above derivation of the high-order ex-
panded DWFs is shown actually as the first im-
provement by including the many-body effects in
these quantities, making CSBM [3] the present
CACEM. Moreover, the presentation of the ob-
tained cumulants given by (8)–(11) in terms of
second cumulant σ2(T ) leads to the creation of
a method that provides all considered quantities
based on only the second cumulant or MSRD, giving
a significant reduction and simplification of the nu-
merical calculations, the great advantage of which
is shown in Sect. 4. This created method also pro-
vides the best way of correcting the absence of zero-
point vibration in the classical theory of EXAFS
and combining it with the quantum one performed
in Sect. 2.3.

2.3. Combination of CACEM with quantum
model leading to SCACEM

The further improvement making the obtained
CACEM the SCACEM of hcp crystals is combining
CACEM with a quantum one of hcp crystals [25],
correcting the absence of zero-point energy con-
tributions in all quantities that existed in every
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TABLE I

The values kS , k3S , k4S , ωES , θES of Zn calculated for the effective (S = eff) and single-pair (S = SSP) potentials
using the Morse potential parameters [28] compared to experimental ones (S = expt.) [25].

S kS [N/m] k3S [eV/Å3] k4S [eV/Å4] ωES (×1013) [Hz] θES [K]

eff (present) 39.5616 −1.0528 0.9949 2.6917 205.6101

expt. [25] 39.0105 −1.0348 0.9749 2.6729 204.1730

SPP 15.8247 −0.8422 0.8378 1.7024 130.0392

classical model, including the present CACEM
based on replacing the classical second cumulant
given by (8) by the quantum one

σ2 = σ2
0

1 + z(T )

1− z(T )
, σ2

0 =
}ωE

10Dα2
,

z(T ) = exp (−θE/T ) , (14)

where z(T ) is temperature variable.
In this SCACEM, the expressions of the first σ(1),

third σ(3), and fourth σ(4) cumulants remain the
expressions given by (9)–(11), respectively. Then,
it is possible for the obtained SCACEM to include
not only the dominant anharmonicity at high tem-
peratures, the advantage of a classical model like
CSBM [3], but also the zero-point energy contribu-
tions at low temperatures like in [25], the advantage
of a quantum model.

Note that the derived SCACEM of hcp crystals
is an effective and useful combination of a classical
model of EXAFS with a quantum one where the
zero-point energy contribution σ2

0 of the second cu-
mulant given by (14), based on the above-created
method by automatically entering the expressions
of the other cumulants given by (9)–(11) corrects
their absence of zero-point vibration. The interest-
ing result obtained here is that the cumulant rela-
tion σ(1)σ2/σ(3) of SCACEM is equal to the clas-
sical value of 1/2 at all temperatures as a classical
effect [3], while the cumulants included in this re-
lation contain the zero-point energy contributions,
a quantum effect. This demonstrates the advantage
of SCACEM of including both classical and quan-
tum effects.

3. Anharmonic EXAFS of hcp crystals
based on SCACEM

Further, for studying the anharmonic EXAFS
of hcp crystals based on the present SCACEM
and the cumulant expansion approach [1], the an-
alytical expression of the temperature-dependent
K-edge anharmonic EXAFS spectra is derived and
given by

χ(k, T ) =
∑
j

S2
0Nj
kR2

j

sin
(

2kRj+Φj(k)+ΦjA(k, T )
)

×Fj(k)FA(k, T ) e−(2k2σ2(T )+2Rj/λ(k)), (15)

where S2
0 is the square of the many body overlap

term, Nj is the atomic number of each shell, Φ(k) is
net phase shift, the mean free path λ is defined by
the imaginary part of the complex photoelectron
momentum p = k+ i/λ, and the sum for j includes
all considered atomic shells.

The expression for the anharmonic EXAFS
given by (15) differs from the one of the har-
monic model [27] by including the above obtained
SCACEM cumulants, which lead to the factors de-
scribing the temperature T - and photoelectron wave
number k-dependence of the anharmonic contribu-
tions to the amplitude

FA (k, T ) = exp

[
−2

3
k3σ(4) (T )

]
, (16)

and to the phase

ΦA (k, T ) ∼= −4k

[
σ2 (T )

(
1

R
+

1

λ

)
+

1

3
σ(3) (T ) k2

]
,

(17)

of the anharmonic EXAFS spectra of hcp crystals
which are attenuated due to the factor FA(k, T ) and
phase shifted by the term ΦA(k, T ) compared to the
harmonic ones.

4. Numerical results and discussions

Now, the expressions derived in the previous sec-
tions are applied to numerical calculations of the
considered EXAFS quantities of Zn in the hcp phase
using its Morse potential parameters [28] D =
0.1698 eV, α = 1.7054 Å−1. The local force constant
kS , anharmonic parameters k3S , k4S , correlated
Einstein frequency ωES , and temperature θES for
the anharmonic effective (S = eff) and single-pair
(S = SPP) potentials of Zn have been calculated.
Some results are given in Table I and compared
with the experimental ones (S = expt.) obtained
from the measured Morse parameters (MMP) [25]
D = 0.1685 eV, α = 1.7000 Å−1.

Figure 1 illustrates the anharmonic many-body
effect effective potential Veff(x) of Zn calculated
using the present theory (SCACEM). It has been
found to be in good agreement with the experimen-
tal values (expt.) [25] and asymmetric compared to
the harmonic term due to the inclusion of the an-
harmonic contributions.
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TABLE II

Comparison of the values of four first EXAFS cumulants of Zn calculated using the present theory (SCACEM) with
their experimental values (expt.) at 77, 300, 400, 500, and 600 K. The experimental values at 77 and 300 K were
measured at DESY (Germany) [7, 25] and those at 400, 500, and 600 K were measured at SLRI (Thailand) [26].

T [K]
σ(1) [Å] σ2 [Å2] σ(3) [Å3] σ(4) (×10−4) [Å4]

present expt. present expt. present expt. present expt.
77 0.0053 0.0053 0.0041 0.0041 0.0001 0.0001 0.0180 0.0180
300 0.0139 0.0141 0.0109 0.0109 0.0003 0.0003 0.1458 0.1460
400 0.0184 0.0190 0.0143 0.0149 0.0005 0.0006 0.3142 0.3144
500 0.0230 0.0236 0.0177 0.0185 0.0008 0.0009 0.5867 0.5869
600 0.0275 0.0284 0.0215 0.0223 0.0011 0.0012 0.9835 0.9837

Fig. 1. Anharmonic many-body effect effective po-
tential Veff(x) of Zn calculated using the present
theory (SCACEM) compared to its harmonic term,
to the experimental values (expt.) [25], and to SPP.

Table II illustrates a good agreement of the val-
ues of four first cumulants σ(1) [Å], σ2 [Å2], σ(3)

[Å3], σ(4) [Å4] of Zn calculated using the present
theory (SCACEM) with their experimental values
(expt.) at 77, 300, 400, 500, 600 K. The experimen-
tal values at 77 and 300 K were measured at DESY
(Germany) [7, 25], and those at 400, 500, and 600 K
were measured at SLRI (Thailand) [26]. The values
of the cumulants measured at SLRI at 300 K are
equal to those measured at DESY at the same tem-
perature.

Figure 2 shows good agreement of temperature-
dependent second cumulant σ2(T ) or MSRD of
Zn calculated using the present theory (SCACEM)
with the experimental values (expt.) measured at
HASYLAB (DESY, Germany) [7, 25] and at SLRI
(Thailand) [26], as well as its significant difference
from those calculated with CSBM [3] and with the
present theory using SPP.

Based on the advantage of the created method
presenting all considered quantities in terms of sec-
ond cumulant and σ2(T ) computed by the present
SCACEM (Fig. 2), the temperature-dependent
first σ(1)(T ), third σ(3)(T ), and fourth σ(4)(T )

Fig. 2. Temperature-dependent second cumulant
σ2(T ) of Zn calculated using the present theory
(SCACEM) compared to those calculated using
SPP, CSBM [3], CACEM, and to the experimen-
tal values (expt.) measured at DESY [7, 25] and at
SLRI [26].

cumulants have been obtained and are presented
in Figs. 3, 4, and 5, respectively. They have been
found to be in good agreement with the experimen-
tal values (expt.) measured at DESY [7, 25] and
at SLRI [26], as well as significantly different from
those calculated with CSBM [3] and the present the-
ory using SPP.

Moreover, the first cumulant σ(1)(T) describes
the net thermal expansion or lattice disorder of
a considered crystal so that it can also be used for
obtaining temperature dependence of the atomic
near-neighbor distance based on the expression
R(T ) = R(0) +σ(1)(T ) [9] providing the same good
agreement with experiments as for σ(1)(T ).

The significant discrepancies of the second, first,
third, and fourth cumulants of Zn calculated by
CSBM [3] and by the present CACEM using the
SPP parameters presented in Figs. 2–5, respec-
tively, from the experimental values can be at-
tributed to neglecting the many-body effects in
SPP. Actually, the local force constant kSP =
15.8247 N/m (Table I) calculated using SPP is
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Fig. 3. Temperature-dependent first cumulant
σ(1)(T ) of Zn calculated using the present theory
(SCACEM) compared to those calculated using
SPP, CSBM [3], CACEM, and to the experimental
values (expt.) measured at DESY [7, 25] and at
SLRI [26].

Fig. 4. Temperature-dependent third cumulant
σ(3)(T ) of Zn calculated using the present the-
ory (SCACEM) compared to those calculated using
SPP, CSBM [3], CACEM, as well as to the experi-
mental values (expt.) measured at DESY [7, 25] and
at SLRI [26].

significantly smaller than the one needed to ap-
proximate the observed phonon spectra. This in-
dicates the limitations of the SPP model and the
possible importance of the next-neighbor interac-
tions describing the many-body effect included in
the present theory (SCACEM) for hcp crystals.
This SCACEM provides the larger value keff =
39.5616 N/m (Table I), leading to a good agreement
of the EXAFS results of Zn calculated using the
present theory (SCACEM) with the experimental
values illustrated in the above figures.

The cumulants of Zn calculated using the present
CACEM presented in the above figures provide,
due to including the many-body effects, a good

Fig. 5. Temperature-dependent fourth cumulant
σ(4)(T ) of Zn calculated using the present the-
ory (SCACEM) compared to those calculated using
SPP, CSBM [3], CACEM, and to the experimen-
tal values (expt.) measured at DESY [7, 25] and at
SLRI [26].

Fig. 6. Comparison of temperature-dependent cu-
mulant relation σ(1)σ2/σ(3) of Zn calculated using
the present theory (SCACEM) with the one calcu-
lated using the quantum ACEM [25].

agreement with the experimental values but only at
high temperatures and not at low temperatures be-
cause of the absence of zero-point vibration. Unfor-
tunately, since the zero-point energy contributions
of the third and fourth cumulants are negligibly
small, this limitation has no important influence on
these cumulants.

The cumulant relation σ(1)σ2/σ(3) is often con-
sidered in EXAFS cumulant studies, for example,
in [3, 11, 15, 25, 26]. Figure 6 illustrates a compari-
son of temperature-dependent σ(1)σ2/σ(3) of Zn cal-
culated using the present theory (SCACEM) with
the one calculated by the quantum ACEM [25]. It
is interesting that this obtained SCACEM cumulant
relation is equal to the classical value of 1/2 at all
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Fig. 7. Comparison of EXAFS spectra of Zn
at 300 and 500 K calculated using the present
theory (SCACEM) with the experimental values
(expt.) [26].

Fig. 8. Comparison of the Fourier transform mag-
nitudes of EXAFS spectra at 300 K and 500 K
calculated using the present theory (SCACEM)
presented in Fig. 7 with the experimental values
(expt.) [26].

temperatures for any classical model like the well-
known CSBM [3], expressing a classical effect, while
the first, second, and third cumulants (Figs. 3, 2, 4)
contained in this relation include the zero-point en-
ergy contributions, i.e., a quantum effect. There-
fore, this result confirms the special character of
SCACEM that it includes both classical and quan-
tum effects.

In EXAFS theory, EXAFS spectra and their
Fourier transform magnitudes provide the struc-
tural determination [1], so the above cumulants
or high-order expanded DWFs obtained using the
present SCACEM are applied to studying the an-
harmonic EXAFS data of Zn. The calculations
of these EXAFS spectra are carried out based
on the FEFF code [27] with the modifications

using (15), including the anharmonic contributions
to the EXAFS amplitude given by (16) and its phase
given by (17). Figure 7 illustrates the good agree-
ment of EXAFS spectra of Zn at 300 K and 500 K
calculated using the present theory (SCACEM)
with their experimental values [26]. These obtained
spectra have been Fourier-transformed also by this
modified FEFF code. Their magnitudes are pre-
sented in Fig. 8 and for the first shell are found
to be in good agreement with the experimental
values (expt.) [26]. The above good results appar-
ently demonstrate the important contributions of
SCACEM to the accurate structural determination
of hcp crystals. Note that, being different from
the harmonic model, the EXAFS spectra and their
Fourier transform magnitudes of Zn obtained by the
present SCACEM are damped and shifted when
the temperature changes from 300 to 500 K due
to the anharmonic effects given by the obtained
cumulants.

5. Conclusions

In this work, SCACEM of hcp crystals has been
derived by combining the classical and quantum
theories for the calculation and analysis of the high-
order expanded DWFs, anharmonic EXAFS spectra
and their Fourier transform magnitudes, which in-
clude not only the dominant anharmonicity at high
temperatures, the advantage of classical theory, but
also the zero-point energy contributions at low tem-
peratures, the advantage of quantum theory.

The present SCACEM has successfully simplified
the problem of the many-body system in EXAFS
theory into one of the linear anharmonic oscillator
models by taking the many-body effect into account
in a simple manner based on the contributions of the
first shell near neighbors of absorber and backscat-
ter atoms where the Morse potential is used for de-
scribing the single-pair atomic interactions.

The advantageous development of this SCACEM
has been the creation of a method giving the best
way for providing all considered quantities, correct-
ing the absence of zero-point vibration of the clas-
sical theory of EXAFS, and combining it with the
quantum one based on only the second cumulant
or MSRD. This also illustrates the close relation
of the thermodynamic properties and anharmonic
effects of hcp crystals with their atomic displace-
ments, as well as leads to the significant reduction
and simplification of the numerical calculations of
the considered quantities.

The significant discrepancies between the consid-
ered EXAFS quantities of Zn calculated with CSBM
and with the present theory using the SPPs from
the experimental values indicate the limitations of
the SPP model and the importance of including the
many-body effect in the present theory (SCACEM)
providing good agreement of the calculated results
with their experimental values.
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The equality of the SCACEM cumulant rela-
tion σ(1)σ2/σ(3) to the classical value of 1/2 at
all temperatures, while the cumulants included in
this relation contain zero-point energy contribu-
tions, demonstrates the advantage of SCACEM of
including both classical and quantum effects. This
explains the reason for calling the derived model
SCACEM opening up new possibilities in EXAFS
theory for studying the thermodynamic properties
and anharmonic effects, as well as for improving the
accurate structural determination of the considered
crystals at any temperature.

The present derived SCACEM avoids the inten-
sive FLD calculations usually required by a task of
a many-body system yet provides good agreement
of the numerical results for all considered quantities
of Zn in hcp phase with the experimental values.
This illustrates the simplicity, advantages, efficien-
cies, and reliability of the present SCACEM in re-
searching the high-order expanded DWFs, EXAFS
spectra and their Fourier transform magnitudes of
the considered hcp crystals, as well as those of the
other structures based on calculating their anhar-
monic effective potential parameters.
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