
ACTA PHYSICA POLONICA A No. 1 Vol. 144 (2023)

The Effect of Estimated Headway on Gradient
Highway by Means of Linear and Nonlinear Stability

S. Jina,∗ and Z.-C. Liub

aSchool of Information Science and Engineering, Chongqing Jiaotong University, Chongqing
400074, China
bCollege of Artificial Intelligence, Chongqing Technology and Business University, Chongqing
400067, China

Received: 15.12.2022 & Accepted: 27.04.2023

Doi: 10.12693/APhysPolA.144.15 ∗e-mail: jsfj@cqjtu.edu.cn

An extended car-following model is presented in this paper, which considers both gradient and estimated
headway. The study analyzes the impact of these factors on traffic flow stability using linear stability
theory and the nonlinear reductive perturbation method. Numerical simulation reveals that the kink–
antikink solution of the modified Korteweg–de Vries equation can describe the propagating behavior
of traffic density waves near critical points. Furthermore, considering estimated headway information
enhances traffic flow stability on both slope roads and flat roads, indicating its crucial role in alleviating
congestion.
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1. Introduction

As one of the most important environmental fac-
tors for vehicle driving, roads directly determine the
performance of vehicles and the difficulty level of
completing driving tasks. Due to topographical fluc-
tuations and urban three-dimensional transporta-
tion systems, undulating roads have become one
of the more common working conditions in daily
driving processes. Therefore, the impact of road
slopes on vehicle driving has become a research
hotspot [1, 2]. Research has found that sags (where
the slope varies significantly from downhill to up-
hill) can induce undesired traffic instability and ca-
pacity drop and, therefore, worsen traffic congestion
and throughput [3]. As is well known, traffic flow
research has been conducted for decades to better
understand the phenomenon and its characteristics.
Scholars have proposed various models, including
macroscopic [4–13], mesoscopic [14–17], and micro-
scopic models [18–24]. The car-following model is
a commonly used microscopic model that describes
traffic flow. Bando et al. [17] proposed an opti-
mal velocity model to study the dynamic behav-
ior of traffic flow. On this basis, Helbing et al. [18]
found that the acceleration and deceleration values
of the optimal speed model differed greatly from
the values obtained in an actual situation through
measurement, so they proposed a generalized force

model [18]. Moreover, to analyze the impact of
time delay and the kinematic wave velocity, Jiang
et al. [9] proposed a full velocity difference model
(FVDM).

The current research on car-following theory is
impressive, but it has mainly focused on simple
road scenes without considering the slope and other
road characteristics. Consequently, researchers have
explored traffic flow behaviors on sloped roads. Li
et al. [20] investigated the phase transition of traf-
fic flow considering speed limits in gradient scenar-
ios. Meanwhile, Komada et al. [21] examined how
gravity affects traffic flow under sloped roads. Zhu
and Yu [22] analyzed traffic flow characteristics, in-
cluding road slope. Meng and Yan [23] developed
a new model for traffic flow on curved roads with
slopes. Sun et al. [24] investigated the impact of
driver characteristics on traffic stability on gradient
highways, finding that aggressive drivers stabilize
flow while timid drivers destabilize it, regardless of
uphill or downhill direction. To capture the effects
of sloping roads, this study proposed a generic ap-
proach to extend any (free-flow or car-following)
microscopic models characterized by acceleration
functions [25]. Considering that the performance
of various types of vehicles is multifarious and the
vehicles sometimes drive on the road with slopes,
a novel two-lane lattice hydrodynamic model on
a gradient road considering heterogeneous traffic
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flow was proposed [26]. Zhang et al. [7] deduced
a macroscopic traffic model on the uphill and down-
hill slopes by employing the transformation relation
of microscopic variables to macroscopic ones based
on a microscopic car-following model considering
the velocity difference between adjacent vehicles.

A new continuum model was proposed by Zhai
et al. [27] to account for the velocity uncertainty
of preceding vehicles on gradient highways, and
showed that slope information and uncertainty have
significant impacts on traffic congestion and en-
ergy consumption. Specifically, slope information
has a positive effect, while uncertainty has a neg-
ative effect. Wang et al. [28] developed an extended
macro model for single-lane systems that considers
the dynamic effects of electronic throttle and an-
alyzes the complex influence of road geometry on
traffic flow stability. Zhang et al. [29] developed
a macroscopic traffic model for uphill and down-
hill slopes by transforming microscopic variables to
macroscopic ones using a car-following model that
considers the velocity difference between adjacent
vehicles. Han et al. [30] studied car-following be-
havior, taking into account the driver, vehicle, and
environment. Lee et al. [31] proposed an eco-driving
strategy to reduce energy consumption in various
driving situations, including road slopes and car-
following scenarios. Additionally, several other stud-
ies have investigated vehicle behavior on gradient
highways [32–36].

We propose a new car-following model that con-
siders the estimated headway on gradient highways.
This is important because in slope road scenarios,
the speed of the front vehicle changes frequently,
which should be taken into account when estimating
its effect. However, previous works have not consid-
ered the estimated effect of slope roads. Using our
proposed model, we analyzed both linear and non-
linear stability and explored how estimated driv-
ing behavior on gradients affects traffic congestion.
We also revealed how the estimated headway influ-
ences the spatial-temporal evolution characteristics
of traffic flow. Our simulation results demonstrate
the effectiveness of this method.

This paper is organized as follows. Sect. 1 pro-
vides an introduction to relevant works. In Sect. 2,
we propose a new car-following model that consid-
ers estimated headway on gradient highways. We
conduct a linear stability analysis of the proposed
model in Sect. 3. Nonlinear stability analysis of the
proposed model is conducted in Sect. 4. In Sect. 5,
we present and analyze interesting results from nu-
merical simulations. Finally, conclusions and future
work are discussed in Sect. 6.

2. Model considering gradient and
estimated headway

First, we consider that vehicles move ahead
on a single-lane gradient highway, as described
in Fig. 1.

Fig. 1. Schematic diagram of vehicle driving on
gradient highway.

In Fig. 1, θ represents the slope, g represents the
gravitational acceleration, and M denotes the mass
of the vehicle. According to Newton’s theorem of
mechanics, the dynamic equation for vehicles trav-
eling on slope roads is

M
d2xm(t)

dt2
= F

(
∆xm(t)

)
− µ dxm(t)

dt

−Mg sin(θ)B
(
∆xm(t)

)
, (1)

where xm(t) represents the position of vehicle m
at time t, the ∆xm(t) = xm+1(t) − xm(t) is the
headway of vehicle m at time t. In (1), F (∆xm(t))
indicates the driving force of the vehicle, and µ is
the friction coefficient. The braking control func-
tion B(∆xm(t)) represents a function of the shop
distance xm(t), while F (∆xm(t)) is a linear func-
tion about xm(t), namely,

F (∆xm(t)) = αF
(
∆xm(t)

)
. (2)

Here, α is a constant of proportionality. Further,
(2) can be rewritten as follows

d2xm(t)

dt2
= − µ

M

dxm(t)

dt
(3)

+
µ

M

[
αF (∆xm(t))

µ
− Mg sin(θ)B(∆xm(t))

µ

]
.

According to the literature [19], the optimal veloc-
ity car-following model is

d2xm(t)

dt2
= a

[
V (∆xm(t))− dxm(t)

dt

]
. (4)

The optimal velocity function is
V (∆xm(t)) =

vf,max
tanh(∆xm(t)−hc) + tanh(hc)

2
, (5)

where a = 1/τ is the driver’s sensitivity coefficient
and τ is the delay time, vf,max denotes the max-
imum speed of the vehicle when the road has no
slope. It is worth noting that the optimal velocity
function mentioned here indicates that the optimal
velocity of the following vehicle m depends on the
headway ∆xm(t) between the following vehicle m
and the preceding vehiclem+1. When ∆xm(t)→ 0,
the optimal velocity V (∆xm(t)) → 0, thus avoid-
ing collisions. When the ∆xm(t)→∞, the optimal
velocity V (∆xm(t)) → vf,max, indicating that the
vehicle is in a free-flowing state. Here we can con-
sider ∆xm(t) as the cost function.
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When θ = 0, then (1) and (3) are equivalent, and
we have

αF
(
∆xm(t)

)
µ

=

vf,max
tanh(∆xm(t)− hc) + tanh(hc)

2
(6)

and µ/M = a. As shown in the literature [21],
Mg sin(θ)B(∆xm(t))

µ
=

vg,max
tanh(∆xm(t)− hb) + tanh(hb)

2
, (7)

where vg,max = Mg sin(θ)/µ, hb denotes the brak-
ing distance, and vg,max and sin(θ) are proportional
to each other. Therefore, considering the effect of
slope, the expression of the optimal velocity func-
tion of the vehicle when driving uphill is obtained
as follows

V (∆xm(t)) = vf,max
tanh(∆xm(t)−hc)+ tanh(hc)

2

−vg,u,max
tanh(∆xm(t)−hb,u) + tanh(hb,u)

2
.

(8)
The expression for the optimal velocity function of
the vehicle while driving downhill is

V (∆xm(t)) = vf,max
tanh(∆xm(t)−hc)+ tanh(hc)

2

+vg,d,max
tanh(∆xm(t)−hb,d) + tanh(hb,d)

2
,

(9)
where hc is the safe distance of the vehicle on
the plane road, hb,u represent the safe distance for
an uphill gradient highway, hb,d represent the safe
distance for a downhill gradient highway. On a slope
road, the safety distance between vehicles is related
to the slope of the road. Therefore, we use hc,θ
instead of hb,u and hb,d, as can be seen in litera-
ture [19], where hc,θ = hc (1 + η sin(θ)) for downhill
slope and hc,θ = hc (1− ξ sin(θ)) for uphill slope.
In general, we assume that ξ = η = 1. Note that
vg,d,max and vg,u,max are the maximal reduced and
enhanced velocity on uphill and downhill gradients
and the expression is vg,d,max = vg,u,max = vg,max;
when θ = 0, then vg,max = 0. Therefore, based on
the above analysis, we can obtain the car-following
model on the slope scenario as

d2xm(t)

dt2
= a

[
V (∆xm(t))− dxm(t)

dt

]
. (10)

The expression of the optimal velocity function
in (10) is

V (∆xm(t)) =
vf,max ± vg,max

2

×
[
tanh(∆xm(t)− hc,θ) + tanh(hc,θ)

]
=

vf,max ± vg,max

2
Vs(∆xm(t)), (11)

where Vs(∆xm(t)) = tanh(∆xm(t) − hc,θ) +
tanh(hc,θ), the sign “+” indicates the situation when
the vehicle is on a downhill slope and the sign “-” in-
dicates the situation when the vehicle is on an uphill
slope.

Now, (11) can be rewritten as
d2xm(t)

dt2
=a

[
vf,max±vg,max

2
Vs(∆xm(t))−dxm(t)

dt

]
.

(12)

The speed of the car in front is constantly chang-
ing, especially on a sloped road. To adjust the speed
of the vehicle accordingly, it is necessary to predict
the future disturbance distance between the front
and rear vehicles based on their current speeds.
More specifically, when the vehicle adjusts its speed
according to the headway, the headway will also
change due to the change in the speed of the pre-
ceding vehicle, and the changed headway is the
future disturbance distance. This allows for real-
time dynamic micro adjustments to maintain the
optimal speed of the vehicle. We propose a car-
following model that considers estimated headway
based on (12). The evolution differential equation is
as follows
d2xm(t)

dt2
=a
[vf,max±vg,max

2
Vs
(
∆xm(t)+T∆vm(t)

)
− dxm(t)

dt

]
, (13)

where the T is the predicted time, T∆vm(t) repre-
sents the estimated headway; when T = 0, the equa-
tion (13) will degenerate into (10). If Vs(∆xm(t) +
T∆vm(t)) in the model is expanded according to
the Taylor series, and the nonlinear term above the
second order is omitted, we obtain

Vs(∆xm(t) + T∆vm(t)) = Vs(∆xm(t))

+V ′s (∆xm(t))T∆vm(t). (14)

Then we have
d2xm(t)

dt2
= a

[
q Vs(∆xm(t))

+q V ′s(∆xm(t))T∆vm(t)− dxm(t)

dt

]
, (15)

where Vs′(∆xm(t))= dVs(∆xm(t))
d∆xm(t) , q =

vf,max±vg,max

2 .
In order to facilitate the subsequent analysis, we
write (15) in the form of difference, and the specific
form is as follows

∆xm(t+ 2τ) = ∆xm(t+ τ)

+τq
[
Vs(∆xm+1(t))− Vs(∆xm(t))

]
+Tq

[
Vs
′(∆xm+1(t))− Vs′(∆xm(t))

]
× (∆xm+1(t+ τ)−∆xm+1(t))

+TqVs
′(∆xm(t))

(
∆xm+1(t+ τ)

−∆xm+1(t)−∆xm(t+ τ) + ∆xm(t)
)
. (16)
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3. Linear stability analysis

Linear stability analysis helps to investigate how
estimated headway and slope affect traffic flow. As-
suming an initial equilibrium state, all vehicles have
a headway of h, and the corresponding optimized
speed is (

vf,max±vg,max

2 )Vs(h), at this time, the po-
sitions of all vehicles in steady-state traffic flow are

x(0)
m (t) = hn+

vf,max ± vg,max

2
Vs(h),

h = L/N,
(17)

where L represents the length of the road, and N
is the number of vehicles studied. Adding the dis-
turbance ym(t) to the uniform flow (17), we can
obtain

xm(t) = xm
(0)(t) + ym(t). (18)

Taking (18) into difference (16) and linearizing it,
we can get

∆ym(t+ 2τ) = ∆ym(t+ τ)

+τqVs
′[∆ym+1(t)−∆ym(t)

]
+TqVs

′
[
∆ym+1(t+ τ)−∆ym+1(t)

−∆ym(t+ τ) + ∆ym(t)
]
, (19)

where ∆ym(t) = ym+1(t) − ym(t), V ′s =
dVs(∆xm(t))

d∆xm(t)

∣∣
∆xm(t)=h

. Let ∆ym(t) = e ikm+zt, ex-
pand (19) according to the Fourier series to get

e2zτ − ezτ − τqVs′
(

e ik − 1
)

−TqVs′
[(

e ik − 1
)

(ezτ − 1)
]

= 0. (20)
Expanding the parameter z into z = z1(ik) +
z2(ik)2 + . . . , by omitting the terms above the sec-
ond order, we can get

z1 =
vf,max ± vg,max

2
V ′s , (21)

z2 =
1

2
qVs
′[1 + 2TqVs

′ − 3τqVs
′]. (22)

The system’s behavior depends on the sign of z2.
If z2 > 0, the traffic flow will evolve from an ini-
tial equilibrium state to an unstable state, causing
the magnitude of the disturbance to increase over
time until it reaches a stop-and-go traffic conges-
tion phenomenon. On the other hand, if z2 < 0, the
traffic flow will return to a stable state under initial
disturbance. Therefore, we can obtain the critical
stability condition for traffic flow as follows

τ =
1 + 2T

(
vf,max±vg,max

2

)
Vs
′

3
(
vf,max±vg,max

2

)
Vs
′

. (23)

Take vf,max = 2, mgµ = 1, we get

τ =
2 + 2T

(
2± sin(θ)

)
Vs
′

3 (2± sin(θ)) Vs
′ . (24)

For small disturbances in the long-wave mode, the
traffic flow will remain stable when the headway
meets the following condition

τ <
2 + 2T

(
2± sin(θ)

)
Vs
′

3
(
2± sin(θ)

)
Vs
′ ; (25)

when parameter T = 0, parameter θ = 0, we can
get the stable condition

τ <
1

3Vs
′ . (26)

The estimated headway T and the angle of slope
both affect the stability of the car-following model,
as shown in (25). Figure 2 displays stable phase di-
agrams for different values of T and θ on uphill,

Fig. 2. Stable phase diagram for different values
of T and θ (uphill and downhill slopes).
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Fig. 3. Stable phase diagram for different models
(uphill and downhill slopes).

downhill, and flat roads. In Fig. 2a, all lines rep-
resent critical stability curves; regions above these
lines are stable, while those below are unstable.
Fig. 2a shows the stability curves for uphill angles of
θ = 6◦ and 2◦, with solid and dashed lines, respec-
tively. The values of T are 0.2, 0.1, and 0 for both
cases. The figure indicates that a larger T results
in a larger stability area and smaller impact range
for the same uphill angle case. When T = 0.2, the
stability area for an uphill angle of θ = 6◦ is larger
than that for θ = 2◦. This suggests that a steeper
uphill angle leads to more favorable traffic flow sta-
bilization, which aligns with previous research [21].
Figure 2b shows the stability curve for three differ-
ent T values at a downhill angle of θ = 6◦ repre-
sented by a solid line. The dashed lines represent
the stability curves for θ = 2◦ with T values of
0.2, 0.1, and 0, respectively. A larger T results in
a larger stability area for the model at the same
downhill angle. However, when comparing models
with equal T , such as T = 0.1, the stability area is
smaller for θ = 6◦ than it is for θ = 2◦. This suggests
that traffic stabilization improves as the downhill
angle decreases; this conclusion has also been found
in previous literature [24]. To more clearly compare

the stability of uphill and downhill slopes at vary-
ing angles, Fig. 2c gives the stability curves of uphill
and downhill slopes at angles of θ = 2◦, θ = 4◦, and
θ = 6◦ for T = 0, respectively. The solid line indi-
cates the uphill case, and the dashed line indicates
the downhill case. It is obvious that the stability
regions of the corresponding curves for the uphill
slope are larger than those for the downhill slope.
In addition, in all the solid lines, the higher the up-
hill angle, the shorter the apex of the curve. In all
the dashed lines, the higher the downhill angle, the
higher the apex of the curve.

To highlight the advantages of the proposed
model in this paper, we compare the phase stabil-
ity curves of the model in [22] (referred to as the
Zhu model) and the model in this paper. Figure 3a
shows the phase stability curves of the two models
for different slope angles (θ = 0◦, θ = 2◦, θ = 4◦

and θ = 6◦) in the uphill case. The solid line rep-
resents the Zhu model [22], and the dashed line
represents our model. It is obvious from the fig-
ure that the curve stability regions of our model
are larger than those of the Zhu model for all four
slope angle cases. Figure 3b represents the phase
stability curves of the two models at different slope
angles in the downhill case. Similarly, in the down-
hill case, the curve stabilization area of our model
is larger than that of the Zhu model for all four
slope angle cases. It can be seen that considering
the estimated headway in the model from this pa-
per is beneficial to the traffic stabilization of sloped
roads.

4. Nonlinear stability analysis

Based on the results of linear stability analy-
sis, the nonlinear analysis of the traffic character-
istics of the proposed model near the critical point
(hc, ac) is carried out by using the perturbation
analysis method, which can reveal the influence of
the estimated headway on the spatial-temporal evo-
lution characteristics of traffic flow. First, near the
critical point (hc, ac), for a given small parameter
ε(0 < ε � 1), for space variables m and time vari-
ables t, we define the corresponding space slow vari-
ables X and time slow variables T as follows

X = ε (m+ bt) , T = ε3t, (27)

where parameter b is undetermined constant. Let
∆xm(t) satisfy

∆xm(t) = hc + εR(X,T ). (28)

By substituting (27) and (28) into (16), and expand-
ing (16) to the Taylor series ε5, we get the following
partial differential equation

ε2Σ1∂XR+ ε3Σ2∂
2
XR

+ε4
(
Σ3∂

3
XR− Σ4∂XR

3 + ∂TR
)

+ε5
(
Σ5∂

4
XR− Σ6∂

2
XR

3 + Σ7∂T∂XR
)

= 0,

(29)
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where
Σ1 = b− qVs′(hc),

Σ2 = 3
2b

2τ − 1
2qVs

′(hc)− TqVs′(hc)b,

Σ3 = b3τ2 − 1
6qVs

′(hc)− 1
2TqVs

′(hc)
(
b+ b2τ

)
,

Σ4 = 1
6qVs

′′′(hc),

Σ5 = 1
4b

4τ3 − 1
24qVs

′(hc)− 1
6bTqVs

′(hc)

− 1
4TqVs

′(hc)b
2τ,Σ6 = 1

12qVs
′′′(hc),

Σ7 = 3bτ − TqVs′(hc),
(30)

and ∂X = ∂
∂X , ∂T = ∂

∂T , ∂T∂X = ∂2

∂T∂X , while

Vs
′(hc) =

dVs(∆xm(t))

d∆xm(t)

∣∣∣∣
∆xm(t)=hc

,

Vs
′′′(hc) =

d3Vs(∆xm(t))

d∆xm(t)
3

∣∣∣∣∣
∆xm(t)=hc

,

q = 1
2 (vf,max ± vg,max) .

(31)
For convenience, we set Vs′(hc) = Vs

′, Vs′′′ (hc) =
Vs
′′′. Near the critical point (hc, ac), let b = qVs

′,
τ = (1 + ε2)τc, τc = (1 + 2TqVs

′)/3qVs
′. By elimi-

nating the second-order and third-order terms of ε
in (20), the simplified equation is further obtained

∂TR− g1∂
3
XR+ g2∂XR

3

+ε
(
g3∂

2
XR+ g4∂

4
XR+ g5∂

2
XR

3
)

= 0, (32)
where

g1 = −
[
b3τc

2 − 1
6qVs

′ − 1
2TqVs

′ (b+ b2τc
)]
,

g2 = − 1
6qVs

′′′,

g3 = 3
2

(
qVs
′)2τc,

g4 = (3bτc − TqVs′)
[
− b3τc2 + 1

6qVs
′

+ 1
2TqVs

′ (b+ b2τc)
]

+
(

1
4b

4τc
3 − 1

24qVs
′

− 1
6bTqVs

′ − 1
4TqVs

′b2τc
)
,

g5 = 1
6qVs

′′′ (3bτc − TqVs′)− 1
12qVs

′′′ =

1
12qVs

′′′ [2(3bτc − TqVs′)− 1
]
.

(33)
Further, (32) is transformed as follows

T ′ = g1T, R =
√

g1
g2
R′. (34)

Then, (32) can be rewritten as the following
mKdV equation with correction term

∂T ′R′ − ∂3
XR
′ + ∂XR

′3 + εM [R′] = 0, (35)

where M [R′] =
√

1
g1

(g3∂
2
XR
′ + g4∂

4
XR
′ +

g1g5
g2
∂2
XR
′3). Ignoring the correction term in (35),

the kink–antikink solution of the standard modi-
fied Korteweg–de Vries (mKdV) equation can be
obtained

R′0(X,T ′) =
√
c tanh

(√
c

2
(X − cT ′)

)
, (36)

where the parameter c represents the propagation
velocity of kink–antikink density wave. Considering
the correction term in (35), in order to obtain the
wave velocity c, R′0(X,T ′) needs to satisfy the fol-
lowing conditions
+∞∫
−∞

dX

√
c

g1g2

(
g2g3∂

2
XR
′ + g2g4∂

4
XR
′ + g1g5∂

2
XR
′3)

× tanh

(√
c

2
(X − cT ′)

)
= 0. (37)

By solving the integral (37), we can get

c =
5g2g3

2g2g4 − 3g1g5
. (38)

Then, the kink–antikink density wave solution of
the proposed model near the critical point (hc, ac)
is

∆xm(t) = hc +Q

√
g1c

g2

(
τ

τc
− 1

)
×
[
m+

(
1− cg1

(
τ

τc
− 1

))
t

]
, (39)

where Q = tanh

√
c
2

(
τ
τc
− 1
)
.

The fluctuation amplitude A is

A =

√
g1c

g2

(
τ

τc
− 1

)
. (40)

The kink–antikink density wave solution represents
the coexisting phase, which includes the free-flow
phase in the high headway region and the blocked
phase in the low headway region, and the cor-
responding headways are ∆xm(t) = hc + A and
∆xm(t) = hc −A.

5. Numerical simulation

In order to verify the theoretical analysis results,
this section will carry out a numerical simulation of
the proposed model under periodic boundary condi-
tions to reveal the evolution characteristics of traf-
fic flow density wave in its unstable region. Set the
driver’s sensitivity coefficient a = 2.2, and the ini-
tial conditions are set as follows:

∆xm(0) = 4(m 6= 50, 51),

∆xm(0) = 4− 0.1(m = 50),

∆xm(0) = 4 + 0.1(m = 51).
(41)

Total number of vehicles N = 100, hc = 4,
vf,max = 2, T = 0.1. First, we randomly choose
a moment to analyze the distribution of the head-
way under different slope angles (0◦, 2◦, 4◦, 6◦,
respectively) of uphill and downhill based on the
model proposed in this paper. The detailed results
are shown in Fig. 4.
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Fig. 4. Evolution curves of headway under different angles of downhill slope.

Fig. 5. Evolution curves of headway under different angles of uphill slope.
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Fig. 6. Space-time evolution of headway under different angles of downhill slope.

Figure 4 shows the evolution curves of head-
way under different angles of the downhill slope at
t = 12000. The horizontal coordinates in Fig. 4 in-
dicate the number of 100 vehicles, and the vertical
coordinates indicate the headway. Figure 4a, b, c,
and d corresponds to the cases of the downhill an-
gle of 0, 2, 4, and 6 degrees, respectively. Comparing
these four graphs, it can be seen that the minimum
headway increases from less than 3.5 m to more
than 3.5 m as the downhill angle increases, while
the maximum headway gradually increases from less
than 5 m to more than 5 m. This indicates that
when the downhill angle is small, even under the
effect of the initial disturbance, the shorter head-
way can be maintained between vehicles, and the
fluctuation amplitude is closer to the equilibrium
headway of 4 m. This, in turn, indicates that the
larger the downhill angle is, the less conducive to
relieving traffic congestion.

Figure 5 shows the evolution curves of headway
under different angles of uphill slope at t = 12000.
Similarly to Fig. 4, Fig. 5a, b, c, and d corresponds
to the cases of 0, 2, 4, and 6 degrees of uphill angle,
respectively. Unlike the results in Fig. 4, the experi-
mental results in Fig. 5 show that the headway fluc-
tuates gradually as the uphill angle increases, and
when the uphill angle is 6 degrees, the traffic flow is
completely stable, and the headway is maintained
at the equilibrium state of 4 m. This shows that in
the uphill situation, the larger the slope, the better
it is for maintaining the stability of the traffic flow.
This is consistent with the previous conclusion.

In order to further represent the congestion prop-
agation of traffic in the slope scenario, we give the
space-time evolution of the headway at different
slope angles. Figures 6 and 7 show the variation
of the headway in the downhill and uphill scenar-
ios over a period of time. The data tips in Fig. 6
are used to point out the values of the maximal
and minimal headway in each figure. In Fig. 6,
it can be seen that the stability conditions of the
traffic flow are not fully satisfied under different
slope conditions of the downhill slope, so the traffic
flow is propagated backward in the form of a kink–
antikink density wave under the initial disturbance.
Meanwhile, the maximum headway becomes larger
as the downhill angle increases, indicating that the
steeper downhill slope is not conducive to maintain-
ing a steady state of the traffic flow. In Fig. 7a–c,
similar to Fig. 6, the traffic flow is also in an unsta-
ble state and propagates backward in the form of
a kink–antikink density wave.

However, in Fig. 7d, since the system satisfies the
stability condition, the traffic flow will return to
a steady state after a period of time under the ini-
tial disturbance. In addition, we will also find that
the maximum headway gradually decreases as the
uphill angle gradually increases, and finally remains
at the equilibrium state of 4 m at an angle of 6 de-
grees. This also shows that the steeper the uphill
slope is, the more stable the flow can be.

Further, to highlight the advantages of the model
in this paper, we compare the proposed model with
the classical Zhu model. Figures 8 and 9 show

22



The Effect of Estimated Headway on Gradient Highway by Means. . .

Fig. 7. Space-time evolution of headway under different angles of uphill slope.

Fig. 8. Space-time evolution of headway under different angles of downhill slope (Zhu model).
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Fig. 9. Space-time evolution of headway under different angles of uphill slope (Zhu model).

the space-time evolution of the headway under the
reference model at different slope angles. Compar-
ing Figs. 8 and 6, it can be seen that our model
corresponds to a lower headway for the same down-
hill angle, which indicates that the estimated head-
way information considered in the proposed model
is helpful in reducing congestion and maintaining
stable traffic flow.

Similarly, comparing Figs. 7 and 9, it can be seen
that our model corresponds to a lower headway at
the same uphill angle. What is more obvious is that
our proposed model is already in a stable state when
the uphill angle is 6 degrees, while the reference
model is still in an unstable traffic state at that
time. Therefore, this further indicates that in the
slope scenario, the congestion can be effectively re-
lieved by considering the estimated headway infor-
mation so that the traffic flow can recover from the
unstable state to the stable state as soon as possible.

6. Conclusions

This study introduces a new car-following model
that considers estimated headway on a gradient
highway. The study analyzes the effect of estimation
on informed decision-making and the impact of gra-
dient on traffic flow stability, as well as explores the
relationship between estimated driving behavior on
gradients and traffic congestion. Using linear stabil-
ity theory, we analyze the proposed model’s stabil-

ity and find that estimated headway stabilizes traf-
fic flow evolution. We then use nonlinear analysis
to explore the propagation law of traffic jams near
critical points. The study found that traffic jams
spread through a headway wave, which is described
by the mKdV equation. By conducting numerical
simulations of the model with periodic boundary
conditions, it was discovered that incorporating es-
timated headway information can improve traffic
flow stability on both flat and sloped roads. The
results also showed that congestion has less impact
when there is a larger estimated headway. Future
research should explore how lane changing affects
traffic flow stability on gradients.

Acknowledgments

This work was supported by the Project funded
by the China Postdoctoral Science Foundation
[Grant No. 2022M710546], the Scientific and
Technological Research Program of Chongqing
Municipal Education Commission [Grant No.
KJQN202200741].

References

[1] X. Zhang, J.Xu, Q. Liang, F. Ma, Sustain-
ability 12, 587 (2022).

[2] F. Salihu, Y.K. Demir, H.G. Demir,
Transp. Res. D 118, 103676 (2023).

24

http://dx.doi.org/10.3390/su12020587
http://dx.doi.org/10.3390/su12020587
http://dx.doi.org/10.1016/j.trd.2023.103676


The Effect of Estimated Headway on Gradient Highway by Means. . .

[3] B. Goni-Ros, W.J. Schakel, A.E. Pa-
pacharalampous, M. Wang, V.L. Knoop,
I. Sakata, S.P. Hoogendoorn, Transp. Res.
C 102, 411 (2019).

[4] D.H. Sun, G. Zhang, W.N. Liu, M. Zhao,
S.L. Cheng, T. Zhou, Nonlinear Dyn. 86,
269 (2016).

[5] M.U. Khan, S. Saeed, M.L. Nehdi, R. Re-
han, Appl. Sci. 11, 4278 (2021).

[6] N. Laurent-Brouty, G. Costeseque,
P. Goatin, SLAM J. Appl. Math. 81, 173
(2021).

[7] P. Zhang, Y. Xue, Y.C. Zhang, X. Wang,
B.L. Cen, Mod. Phys. Lett. B 34, 2050217
(2020).

[8] Z.H. Khan, T.A. Gulliver, Eur. Transp.
Res. Rev. 10, 1 (2018).

[9] R. Jiang, Q.-S. Wu, Z.-J. Zhu, Appl. Math.
Mech. 23, 409 (2002).

[10] L. Sun, A. Jafaripournimchahi, A. Korn-
hauser, W. Hu, Physica A 547, 123829
(2020).

[11] I. Karafyllis, D. Theodosis, M. Papageor-
giou, IMA J. Math. Control Infor. 39, 609
(2022).

[12] Y. Xue, Y. Zhang, D. Fan, P. Zhang,
H.D. He, Nonlinear Dyn. 95, 3295 (2019).

[13] Y. Yuan, Z. Zhang, X.T. Yang, S. Zhe,
Transp. Res. B 146, 88 (2021).

[14] S.B. Li, D.N. Cao, W.X. Dang, L. Zhang,
Int. J. Mod. Phys. C 29, 1850014 (2018).

[15] A. Jamshidnejad, I. Papamichail, M. Pa-
pageorgiou, B. De Schutter, Transp. Res.
C 75, 45 (2017).

[16] V.A. Vu, G.Tan, IEEE T. Parall. Distr.
30, 1691 (2019).

[17] M. Bando, K. Hasebe, A. Nakayama,
A. Shibata, Y. Sugiyama, Phys. Rev. E 51,
1035 (1995).

[18] D. Helbing, B. Tilch, Phys. Rev. E 58, 133
(1998).

[19] M. Bando, K. Hasebe, A. Nakayama,
A. Shibata, Phys. Rev. E 51, 1035 (1998).

[20] L. Xing-Li, S. Tao, K. Hua„ D. Shi-Qiang,
Chin. phys. B 17, 3014 (2008).

[21] K. Komada, S. Masukura, T. Nagatani,
Physica A 388, 2880 (2009).

[22] W.X. Zhu, R.L. Yu, Physica A 393, 101
(2014).

[23] X.P. Meng, L.Y. Yan, Asian J. Control 19,
1844 (2017).

[24] D.H. Sun, P. Tan, D. Chen, F. Xie,
L.H. Guan,Mod. Phys. Lett. B 32, 1850314
(2018).

[25] Y. He, K. Mattas, R. Dona, G. Albano,
B. Ciuffo, IEEE Trans. Intell. Transp.
Syst. 23, 13604 (2021).

[26] H. Liu, R. Cheng, H.X. Ge, Mod. Phys.
Lett. B 35, 2150340 (2021).

[27] C. Zhai, W.T. Wu, Physica A 588, 126561
(2022).

[28] Z.H. Wang, W.X. Zhu, Physica A 597,
127225 (2022).

[29] P. Zhang, Y. Xue, Y.C. Zhang, X. Wang,
B.L. Cen, Mod. Phys. Lett. B 34, 2050217
(2020).

[30] J. Han, X. Wang, G. Wang, Sustainability
14, 8179 (2022).

[31] H. Lee, K. Kim, N. Kim, S.W. Cha, Appl.
Energy 313, 118460 (2022).

[32] C. Kang, Y. Qian, J. Zeng, X. Wei, Int. J.
Mod. Phys. C 1, 2250093 (2022).

[33] H. Liu, R. Cheng, H. Ge, Mod. Phys. Lett.
B 35, 2150340 (2021).

[34] A.S.M. Bakibillah, M.A.S. Kamal,
C.P. Tan, Appl. Soft. Comput. 99,
106875 (2021).

[35] Z. Yang, R. He, S. Zhang, J. Wu, IET In-
tell. Transp. Syst. 15, 1478 (2021).

[36] Z. Qin, H. Shao, F. Wang, Y. Feng,
L. Shen, Sustain Energy Grids 32, 100877
(2022).

25

http://dx.doi.org/10.1016/j.trc.2019.02.021
http://dx.doi.org/10.1016/j.trc.2019.02.021
http://dx.doi.org/10.1007/s11071-016-2888-9
http://dx.doi.org/10.1007/s11071-016-2888-9
http://dx.doi.org/10.3390/app11094278
http://dx.doi.org/10.1137/19M1268173
http://dx.doi.org/10.1137/19M1268173
http://dx.doi.org/10.1142/S0217984920502176
http://dx.doi.org/10.1142/S0217984920502176
http://dx.doi.org/10.1186/s12544-018-0291-y
http://dx.doi.org/10.1186/s12544-018-0291-y
http://www.amm.shu.edu.cn/EN/Y2002/V23/I4/409
http://www.amm.shu.edu.cn/EN/Y2002/V23/I4/409
http://dx.doi.org/10.1016/j.physa.2019.123829
http://dx.doi.org/10.1016/j.physa.2019.123829
http://dx.doi.org/10.1093/imamci/dnac003
http://dx.doi.org/10.1093/imamci/dnac003
http://dx.doi.org/10.1007/s11071-018-04756-y
http://dx.doi.org/10.1016/j.trb.2021.02.007
http://dx.doi.org/10.1142/S0129183118500146
http://dx.doi.org/10.1016/j.trc.2016.11.024
http://dx.doi.org/10.1016/j.trc.2016.11.024
http://dx.doi.org/10.1109/TPDS.2019.2896636
http://dx.doi.org/10.1109/TPDS.2019.2896636
http://dx.doi.org/10.1103/PhysRevE.51.1035
http://dx.doi.org/10.1103/PhysRevE.51.1035
http://dx.doi.org/10.1103/PhysRevE.58.133
http://dx.doi.org/10.1103/PhysRevE.58.133
http://dx.doi.org/10.1103/PhysRevE.51.1035
http://dx.doi.org/10.1088/1674-1056/17/8/042
http://dx.doi.org/10.1016/j.physa.2009.03.029
http://dx.doi.org/10.1016/j.physa.2013.09.049
http://dx.doi.org/10.1016/j.physa.2013.09.049
http://dx.doi.org/10.1002/asjc.1505
http://dx.doi.org/10.1002/asjc.1505
http://dx.doi.org/10.1142/S0217984918503141
http://dx.doi.org/10.1142/S0217984918503141
http://dx.doi.org/10.1109/TITS.2021.3126049
http://dx.doi.org/10.1109/TITS.2021.3126049
http://dx.doi.org/10.1142/S0217984921503401
http://dx.doi.org/10.1142/S0217984921503401
http://dx.doi.org/10.1016/j.physa.2021.126561
http://dx.doi.org/10.1016/j.physa.2021.126561
http://dx.doi.org/10.1016/j.physa.2022.127225
http://dx.doi.org/10.1016/j.physa.2022.127225
http://dx.doi.org/10.1142/S0217984920502176
http://dx.doi.org/10.1142/S0217984920502176
http://dx.doi.org/10.3390/su14138179
http://dx.doi.org/10.3390/su14138179
http://dx.doi.org/10.1016/j.apenergy.2021.118460
http://dx.doi.org/10.1016/j.apenergy.2021.118460
http://dx.doi.org/10.1142/S0129183122500930
http://dx.doi.org/10.1142/S0129183122500930
http://dx.doi.org/10.1142/S0217984921503401
http://dx.doi.org/10.1142/S0217984921503401
http://dx.doi.org/10.1016/j.asoc.2020.106875
http://dx.doi.org/10.1016/j.asoc.2020.106875
http://dx.doi.org/10.1049/itr2.12108
http://dx.doi.org/10.1049/itr2.12108
http://dx.doi.org/10.1016/j.segan.2022.100877
http://dx.doi.org/10.1016/j.segan.2022.100877

