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This paper outlines a variety of possible applications of the Vlasov equation and its generalization, i.e.,
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1. Introduction

In 1938, Anatoly Vlasov wrote a seminal pa-
per [1] in which he argued that in the description
of a many-body system with long-range interparti-
cle interactions, the conventional kinetic Boltzmann
equation is inadequate and should be replaced by
the continuity equation for the one-particle distri-
bution function f(r,p, t) in the one-particle phase
space, where r denotes the particle position and
p its momentum. The adequate equation in ques-
tion is
∂f(r,p, t)

∂t
+
p

m
· ∇f(r,p, t) + F · ∂f(r,p, t)

∂p
= 0.

(1)
Here, F is the total force acting on the parti-
cle, resulting from interactions with all particles
in the system. Therefore, the force F depends
on f(r,p, t). When the interparticle interactions
are given by the potential forces, then F (r, t) =
−
∫

dp′dr′ ∇V (r, r′)f(r′,p′, t), and thus (1) be-
comes a self-consistent, nonlinear equation of one
particle distribution function.

Vlasow pointed out that the collision term —
the conventional right-hand side of the Boltzmann
equation — is divergent for long-range Coulomb
interactions between charged particles. A replace-
ment of the collision term for a charged particle
was suggested by Landau, and its formal deriva-
tion was proposed by Rosenbluth [2] in the first
glory years of thermonuclear reaction physics. In
fact, (1) with the Landau collision term becomes a

formidable nonlinear equation, which plays a fun-
damental role in plasma physics [3].

Forty years later, the posthumously published
book by Vlasov [4] contained several, mostly failed,
attempts to generalize his original ideas, includ-
ing those for relativistic statistical mechanics. The
Vlasov equation has been also used in many
condensed matter applications far from classical
plasma physics, for example, to describe quark–
gluon plasma and some problems in heavy ion col-
lisions [5] and in the development of late stages of
phase separation in the first-order phase transfor-
mations [6].

Almost twenty years later, Braun and Hepp [7]
showed that the Vlasov equation describes an
asymptotically exact, equal time evolution for the
N -particle Born, Bogoliubov, Green, Kirkwood,
and Yvon (BBBKY) hierarchy with interactions of
the form 1

N

∑
V (r, r′). The eigenfunctions of the

linearized (1) appear as approximate eigenfunctions
of the classical Liouville equation in the Zwanzig
variational principle for fluids [8].

Independently from Vlasov, and years later,
Yu.L. Klimontovich [9, 10] observed that for the
N -particle system the “phase space operator”

f̂(r,p, t) =
∑N

i=1
δ(r − ri) δ(p− pi) (2)

obeys the equation
∂f̂(r,p, t)

∂t
+
p

m
· ∇f̂(r,p, t)+F {f̂} · ∂f̂(r,p, t)

∂p
=0,

(3)
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where

F (f̂) =

∫
dr′dp′ F (r, r′)f̂(r′p′), (4)

here F (r, r′) is the force acting between the parti-
cles. The fact that the function f̂(r,p) is one of the
exact solutions of (1) plays a fundamental role in all
applications of the Vlasov equation and particularly
in mathematically correct solutions of it [3].

For an N -particle system with the Hamilto-
nian H(r,p), the Hamilton equations of motion,
identical to the Newton ones, can be written as

ṙ = {r, H},

ṗ = {p, H},
(5)

where {a, b} denote the Poisson brackets between
the arbitrary phase space functions a = a(r,p) and
b = b(r,p)

{a, b} =
∂a

∂r
· ∂b
∂p
− ∂b

∂r
· ∂a
∂p

. (6)

Using (5)–(6), we can derive the Poisson bracket re-
lation between the Klimontovich distributions (2),

{
f̂(r,p, t), f̂(r′,p′, t)

}
=
[
f̂(r,p′, t)−f̂(r′,p, t)

]
∇ · ∇P δ(r−r′) δ(p−p′) =

∫
dr′′dp′′ Cr

′′p′′

rp,r′p′ f̂(r′′,p′′, t),

(7)

where ∇ ≡ ∂/∂r and ∇P ≡ ∂/∂p. Now, (7) shows
that the algebra of the Klimontovich distribution
functions forms the Lie algebra with structure co-
efficients Cr

′′p′′

rp,r′p′ . This algebra is, therefore, of fun-
damental interest in the metriplectic formulation of
dissipative systems dynamics [11].

Assuming the conventional form of the Hamilto-
nian

H(r,p) =
∑

i=1...N

p2

2m
+

1

2

∑
i<j

V
(
|ri − rj |

)
, (8)

we can write the Hamiltonian H as functional of f̂ ,

H{f̂} =

∫
drdp

p2

2m
f̂(r,p)

+
1

2

∫
drdp

∫
dr′dp′ f̂(r,p)V (|r − r′|)f̂(r′,p′),

(9)
and subsequently (3) can be written as

∂f̂(r,p)

∂t
=
{
f̂(r,p), H{f̂}

}
. (10)

Note that (2), (7), and (10) form the symplectic
formulation of the many-body dynamics equivalent
to the Hamiltonian formulation. The complete in-
troduction to symplectic dynamics can be found in
a classical book by Marsden and collaborators [12]
and in a series of works by Morrison [13]. It is worth
noticing that by replacing the Klimontovich distri-
bution with the Wigner function [14] and its Poisson
brackets through the Moyal brackets [15], we obtain
the quantum version of the Vlasov–Klimontovich
formulation of the many-body system.

Back in the late 1970s, Piotr Goldstein and I
were working extensively on the use of the Vlasov–
Klimontovich formulation to describe the proper-
ties of waves propagating in a quasi-relativistic
plasma, described by an approximation, in which
interactions between charged particles are de-
scribed by means of the Breit–Darwin Hamiltonian
containing velocity-dependent interactions [16].
Simultaneously, with Zbigniew Iwiński, a former
student of Iwo Białynicki-Birula, we were analyzing
the possibility of formulating a fully relativistic

form of the Vlasov equation. In a preliminary pa-
per, we formulated such a description and derived
the Poisson brackets for a relativistic generalization
of the Klimontovich function [17]. Years later, Iwo
Białynicki-Birula and John C. Hubbard were work-
ing on the same subject, and eventually, we pub-
lished together a complete description of the gauge-
independent and canonical formulation of the rela-
tivistic plasma theory [18].

2. Relativistic plasma theory

The publication [18] mentioned at the end of the
previous section contained the gauge-independent
formulation of the theory of relativistic plasma
constituting the multicomponent particle system
and the electromagnetic field. Our theoretical tool
for that purpose is the symplectic (or canonical)
formulation with the dynamical variables for
electromagnetic field E,B and particle variables,
namely, positions ξA and relativistic kinematic mo-
menta PA. The index A-labels particles belonging
to a particular particle species A ∈ Sa, a = 1, . . . ,S,
and PA = mavA/

√
1− v2A/c2. These variables

obey the Maxwell–Lorentz equations of the form
dξA
dt

= vA,

dpA
dt

= ea
[
E
(
ξA(t), t

)
+ vA(t)×B

(
ξA(t), t

)]
,

∂B(r, t)

∂t
= −∇×E(r, t),

∂E(r, t)

∂t
= ∇×B(r, t)−

∑
A

eAvA(t) δ(r−ξA(t)),

∇ ·B(r, t) = 0,

∇ ·E(r, t) =
∑
A

eA δ(r − ξA(t)).
(11)

The relativistic invariant phase space Klimontovich
function is identical to that in (2), with the
relativistic kinematic momenta replacing p, i.e.,
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f̂a(r,p, t) =
∑

A∈Sa
δ(r − ξA)δ(p−PA), (12)

where
p = mav/

√
1− v2/c2. (13)

The Maxwell–Lorentz equation (11) can be cast
into a canonical form using the Poisson bracket
relations
{ξiA, P

j
B} = δAB δ

ij ,

{P iA, P
j
B} = eAδAB ε

ijkBk(ξA),

{P iA, Ej(r)} = eAδ
ij δ(r − ξA),

{Bi(r), Ej(r′)} = εijk∂k δ(r − r′),
(14)

with all other Poisson brackets vanishing. The Pois-
son brackets for electromagnetic fields {Ei, Bj}
are the classical form of commutators derived by

Born and Infeld [19] and discussed in greater detail
in [20]. These Poisson brackets are consistent with
the constraints described by the last two equations
in (11).

With the above choice of canonical variables and
their Poisson brackets, the full Poincaré group is
realised as a subgroup of the canonical transforma-
tion group [18] and the theory of plasma becomes
fully relativistic. Using (14) one can easily derive
the Poisson brackets for electromagnetic fields
and the phase space function (12) which we write
below employing shorthand notation z=(r,P ),
ζA=(ξA,PA), rational system of units with c = 1
and following{
F
(
{ζA}

)
, G
(
{ζB}

)}
=
∑
ζA,ζb

∂F

∂ζA

{
ζa, ζB

} ∂G
∂ζB

,

(15)

{
f̂a(z, )f̂b(z

′)
}

= δab

[(
f̂a(r,P ′)− f̂a(r′,P )

)
∇ · ∇P + eaB(r) ·

(
∇P f̂b(z)×∇P

)]
δ(z − z′). (16)

The remaining non-zero Poisson brackets read{
f̂a(z),E(r′)

}
= −ea∇P f̂a(z)δ(z − z′),

{
f̂a(z),B(r′)

}
= 0. (17)

Having the above formalism, we can express all the
generators of the Poincaré group in terms of the
Klimontovich function f̂ and fields E, B [18]. For
example, the Hamiltonian of the system reads

H =
∑
a

∫
dz
√
p2+m2f̂a(z) +

1

2

∫
dr
(
E2+B2

)
,

(18)
and momentum vector

Π =
∑
a

∫
dz p f̂a(z) +

∫
dr E ×B. (19)

Note that the Hamiltonian (18) does not contain the
coupling constant between the plasma and the elec-
tromagnetic field, i.e., the charge ea. The interaction
between these two is fully contained in the Poisson
brackets (14), (16), (17). The Klimontovich–Vlasov
formulation of relativistic plasma physics, presented
in [18], therefore follows some ideas presented by
Souriau and Sternberg [21, 22]. This gauge-invariant
formulation of the interacting system of particles
and fields can be extended for general relativity for-
mulation [23].

The Vlasov equation and the Maxwell equation
can then be written as

∂f̂a
∂t

=
{
f̂a, H

{
f̂a,E,B

}}
≡

−
[
va · ∇+ ea

(
E + va ×B

)
· ∇P

]
f̂a,

∂E

∂t
= {E, H} ≡ ∇×B −

∑
a

∫
dp vaf̂a,

∂B

∂t
= {B, H} ≡ −∇×E.

(20)

The relativistic statistical mechanics does not of-
fer a mathematically rigorous formulation of the re-
lation between the Vlasov (1) and the Kimontovich
equation (3) like that in [7]. Nevertheless, there is
sufficient experimental experience from hot plasma
and astrophysical applications for one to make an
assumption that the one-particle distribution func-
tion defined in one-particle phase space of positions
and relativistic kinematical momenta — the ensem-
ble average of the Klimontovich function — obeys
identical equations as our relativistic one (20). With
this assumption, we can generalize the formula-
tion given above by including in our description di-
rect information on destroying physical processes in
plasma — direct charge particle collisions — sim-
ilarly as Landau has done for the original Vlasov
equation. To do this, it is convenient to follow an
algebraic method of including dissipative processes
in symplectic dynamics — the metriplectic method.
We shall discuss this procedure in Sect. 4.

3. Semiclassical spin 1/2 Bloch
electrons plasma

In the quantum theory of crystalline solids, the
motion of electrons is described by means of the
wave packets constructed from Bloch wave func-
tions with periodic part uk, where k labels the wave
vectors for the specific band [24]. For the sake of
simplicity, we consider here the solids with only
one energy band ε(k). J. Zak [25] observed that the
Bloch systems yield the geometric phases and that
the gauge-invariant Berry curvature [26]
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Ω̃(k) = i
〈
∇kuk| × |∇kuk

〉
(21)

is observable and generally nonzero for crystals
without inversion symmetry. Theoretical analy-
sis [27, 28] has shown that in many important exper-
imental applications, it is sufficient to describe the
motion of electrons by a semiclassical equation of
motion in which the position of the center of the
localized electron wave function and wave vector
(r,k) obey the equation of motion

ṙ =
∂ε(k)

~ ∂k
+ F × Ω̃/~, k̇ = F /~, (22)

where F = −∇U(r) is the net force acting on the
electrons.

These equations play the role of the Hamilton
equations in classical mechanics and, therefore, can
be used in the formulation of the symplectic, or Lie–
Poisson bracket technique [11, 12, 29], description of
the semiclassical Bloch electrons. This description
can subsequently be rewritten using the Vlasov–
Klimontovich equation approach [30]. We begin by
defining the Poisson brackets for “position” r and
“momenta” κ = ~k (where Ω = Ω̃/~) as follows
{ra, rb} = εabcΩc, {ra, κb} = δab,

{κa, κb} = 0,
(23)

a special case of non-commutative classical mechan-
ics Poisson brackets discussed in [31]. Assuming
that the Hamiltonian for semiclassical electrons can
be written as H(r,κ) = ε(κ) + U(r) equations

ṙa = {ra, H}, κ̇a = {κa, H}, (24)
become identical to (22). That allows us to use
the Klimontovich function [9, 10] with momenta p
replaced by κ to describe the semiclassical Bloch
electron plasma. We can write, as in previous sec-
tions, H{f̂} =

∫
d1 ε(1)f̂(1), where 1 = (r,κ)

and the mean value of a physical observable as
〈A〉 =

∫
d1A(1)f̂(1). Using the Poisson brackets

(23), one easily finds the Poisson brackets for f̂ func-
tion{
f̂(1), f̂(2)

}
=
(
∇f̂(1) · ∇κ−∇κf̂(1) · ∇

)
δ(1−2)

+ Ω ·
[
∇f̂(1)×∇δ(1−2))

]
. (25)

Now, (25) allows us to write the Vlasov–
Klimontovich equation for the semiclassical elec-
trons as

∂f̂(1)

∂t
= {f̂(1), H{f̂}}. (26)

To account for the specific properties of the semi-
classical electron plasma, for example, Ohm’s law,
we need to supplement the Vlasov–Klimontovich
equation (26) with the proper dissipative term on
its RHS, which we shall denote W{f̂}. In [27, 28],
the simple relaxation time approximation has been
used for W{f̂}. The full kinetic equation for f̂ does
not then conserve the number of charge carriers
in the system. It seems, therefore, more appropri-
ate to replace this W{f̂} by the generalization of

the Boltzmann–Lorentz collision operator [32, 33],
which offers a formulation of the collision operator
for a tight-binding model. The relation between the
construction of such an operator and the symplectic
formulation of many-particle system dynamics will
be outlined in the last section. Having done so and
using the linearized version of the Chapman–Enskog
approximation f̂(r,κ) ≈ ρ(r)φB(κ), where ρ(r) de-
notes carriers density and φB(κ) stands for equi-
librium carriers distribution function at the tem-
perature of the carrier β−1 defined as mδijβ−1 =∫

dκ φB(κ)κiκj , and, furthermore, assuming that
the Berry curvature Ω is slowly varying function of
the wave vector k traversing the Brillouin zone, we
obtain the dispersion relation for the fluctuation of
the density of carriers ρω,q, which replaces the Ohm
law for spinless Bloch electrons(

ω̃(q) + izΓq

)(
ω̃(q)− iSqΓq

)
=[ q2

mβ
− eq ·

(
E0 × (q ·Ξ )

)
+ ieE0 ·

q

m

]
,

(27)

where
ω̃(q) = ω − eq · (Ω ×E0) (28)

is the frequency shift due to the anomalous Hall
drift velocity eΩ × E0. There, Γq, Sq, and z
are the scattering amplitude, scatterers struc-
ture factor, and coordination number, respectively;
Ω and Ξij denote, respectively, the averaged val-
ues of the Berry curvature Ω =

∫
dκφB(κ)Ω(κ)

and the averaged “curvature torque” Ξ ij =∫
dκκi Ωj(κ)φB(κ).
The charge carriers in solid carry internal de-

grees of freedom spins. One can generalize the
Vlasov–Klimontovich description of semiclassical
carriers, shown above, for the case of Bloch elec-
trons with spin 1

2 . We do this by describing the
carriers by spinor Klimontovich distribution func-
tion f̂ = 1

2

∑3
α=0 fασ̂α, where σ̂i=1,2,3 are the Pauli

matrices and σ0 is the 2×2 unit matrix. The mean-
ing of coefficients fα stems from the meaning of
the mean value of the observables 〈A〉 = Tr(A f̂).
Here, Tr denotes the matrix trace in spinor space
and phase-space integration. The coefficient f0 is
the Vlasov–Klimontovich function used for spinless
carriers, and fi are carriers spin densities 〈Si〉 =
1
2

∫
d1 Tr(~

2 σ̂i
∑
α fασ̂α) = ~

2

∫
d1 fi(1).

For the spinor distribution function f̂ , the Pois-
son brackets now become 4× 4 functional matrices
(i, j = 1, 2, 3)[
f̂(1), f̂(2)

]
=

(
{f0(1), f0(2)} , {f0(1), fj(2)}
{fi(1), f0(2)} , {fi(1), fj(2)}

)
,

(29)

where {f̂0(1), f̂0(2)}} is given by (25) and{
f̂i(1), f̂0(2)

}
= −∇f̂i(1) · ∇κ δ(1−1){

f̂i(1), f̂j(2)
}

= εijkf̂k(1) δ(1−1).
(30)
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The kinetic equation for the spinor f̂ becomes
now

∂ f̂

∂t
=
[
f̂ , H{f̂}

]
+W{f̂} =

Tr2
[
f̂(1), f̂(2)

] δH{f̂}
δf̂(2)

+W{f̂}. (31)

The collision operator W must preserve the length
of the carrier spin S2. The Poison brackets for the
spinor f̂ (see (29)) guarantee that the spin length
is the Casimir of the Lie–Poisson brackets.

Using the notation from [34, 35], we write

W{f̂} =

−λ
∫

d2
[
δijφB(κ2)δ(1−2)− f̂i(1)f̂j(2)

]δH{f̂}
δf̂(2)

.

(32)
Having formulated the kinetic equation for semi-
classical spin 1/2 Bloch electrons, we can use them
to analyze the properties of such a carrier plasma.
For example, we can consider plasma with con-
stant equilibrium carriers density ρ0, constant ex-
ternal electric field E0, and diagonal pressure tensor
Pij(ρ) =

∫
d3κ f(κ)κiκj . Linearizing (31), we ob-

tain the dispersion relation for plasma excitation

ω̃(q)2 = ω2
P + Cij q

iqj +
ie

m
q ·E0, (33)

where (ω, q) denotes the plasma excitations fre-
quency and momentum; ωP=

√
4πe2ρ0/m is the

plasma frequency; ω̃(q) is given in (28); c=(∂P∂ρ )1/2
0

is the speed of sound in carrier gas at equilib-
rium; and sound velocity is anisotropic c→ Cijq

iqj ,
with Cij = c2(δij−εijk El0 Ξ

kl
/c2). This anisotropy

is caused by the coupling of the external electric
field and the Berry phase curvature torque. The
plasma excitations group velocity is shifted with re-
spect to that of usual plasma in the frame of ref-
erence drifting with the anomalous Hall velocity
vD = eΩ̃ ×E0.

In the following sections, we shall discuss
the metriplectic generalization of the Vlasov–
Klimontovich formulation of both relativistic
plasma and plasma of semiclassical Bloch electrons.

4. Metriplectic description

In two previous sections, we have described the
use of the Lie–Poisson brackets technique, together
with the use of the Vlasov–Klimontovich function,
for two important physical models of plasmas: the
relativistic plasma and the plasma of semiclassical
Bloch, spinless and spin 1/2, electrons. The Lie–
Poisson bracket technique has been applied to many
other examples in non-linear physics leading to im-
portant progress in those fields [12, 36]. All these
applications are examples of reversible (dissipation-
less) dynamical systems. Allan Kaufman and Phil
Morrison suggested [37–39] that this description can

be generalized to include dissipative processes by
employing a technique called now metriplectic dy-
namics.

This theory, described for example in [11, 13],
consists of two steps.

Step one is replacing the Hamiltonian in equa-
tions of motions by the system free energy F(ψ) =
H(ψ)−θ S(C), where ψ stands for the system
dynamical variables, S is the entropy functional and
C denotes a set of the Casimir variables defined as
quantities which Poisson brackets with all ψ van-
ishes identically, independently of the form of the
Hamiltonian [29]. The coefficient θ depends on the
type of interaction between the dynamical system
and the environment. For example, it can be iden-
tified with the system temperature by assuming
that the absolute minimum of F(ψ) is described by
the equilibrium distribution function for the system
given by the Hamiltonian H. In both examples dis-
cussed in previous sections, this distribution func-
tion is the proper Maxwell–Blotzmann distribution.

Step two consists in adding to the Poisson brack-
ets in the Hamilton equations of motion (5) the
symmetric–“dissipative” brackets
≺ψ(ζA), ψ(ζB)� = ≺ψ(ζB), ψ(ζA)� = D(ψA, ψB).

(34)
The dynamical equations of motion are now written
as
∂ζA
∂t

=
[
ψA(ζ),F(ζ)

]
=

∫
Dζ ′ LAB(ζ, ζ ′)

δF
δψB(ζ ′)

,

(35)
where
LAB(ζ, ζ ′) =

{
ψA, ψB

}
−≺ψ(ζA), ψ(ζB)�. (36)

The structure of the dissipative bracket depends
on the nature of the processes causing the dissipa-
tion.

In [29], the general theory of algebraic construc-
tion ofD(ψA, ψB) was given. For the dynamical the-
ory equipped with Lie–Poisson brackets associated
with Lie algebra with the structure constant CABC
(compare with (7)), the dissipative brackets, consis-
tent with preservation of the Casimirs of that Lie
algebra, have the form

DAB = GCDCMCA C
N
DB ψMψN , (37)

where GCD is the inverse of the Cartan–Killing
tensor built from the structure constant as
GAB = −CDANCNDB .

In both applications described in previous sec-
tions, these brackets describe the direct particle–
particle collisions. Thus recalling that the role of
fields ψ is played by the Klimontovich function, we
can rewrite (34) as

≺f̂(z), f̂(z′)� ≡ D(f̂(z), f̂(z′)) =

1

2

∫
d6z1d6z2 f̂(z1)∆(z, z′; z1, z2)f̂(z2),

(38)
where the kernel ∆(z, z′; z1, z2) accounts for
physics of those particle–particle interactions.
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In the analysis of the semiclassical Bloch elec-
trons, we have used the collision operator W. The
use of a linearized version of such operator results
in the dispersion relation in (27). A similar collision
operator is shown in (32).

The dissipative bracket for relativistic classical
plasma, discussed earlier, should yield the collision
operator on the RHS of the first equation in (20) in
the form of the Landau collision operator [3]. This
requirement gives the kernal ∆(z, z′; z1z2) in the
form

∆(z, z′; z1z2) =

∫
dk αk(z1, z2) δ

(
k · (v(p)−v(p′)

) (
k ·
[
∇P1

δ(z−z1)−∇P2
δ(z−z2)

])
×
(
k ·
[
∇P1

δ(z′−z1)−∇P2
δ(z′−z2)

])
, (39)

where αk(z1, z2) describe details of particle–
particle collision and as before, v(p) =

p/
√
p2 +m2, [40].

The metriplectic description based on the
Klimontovich function suffers from mathematical
difficulties related to the problems with the opera-
tions on the singular distribution functions. In most
of the applications, the distribution f̂ is therefore
replaced by the “smooth” one-particle distribution
function f(r,p, t) = 〈f̂(r,p, t)〉, where 〈. . .〉 denotes
initial ensemble averaging. That surely leads to the
loss of information. One can attempt to restore at
least part of that lost information by amending
the RHS of (35) with a properly chosen Langevin
“force” [40–42]

∂ζA
∂t

=

∫
Dζ ′ LAB(ζ, ζ ′)

δF
δψB(ζ ′)

+ λA(ζ)

(40)
with
〈〈λA(ζ, t)λB(ζ ′, t)〉〉 = SAB(ζ, ζ ′) δ(t− t′), (41)

where the double brackets 〈〈. . .〉〉 denote averaging
over the realizations of the Langevin forces λA. The
generalized Fokker–Planck equation for the proba-
bility distribution P in space of dynamical variables
ψ can now be written as [40]

∂P
∂t

= L̂

(
δ

δζ

)
P, (42)

where

P =

∫
Dζ Dζ ′

δ

δψA(ζ)
LAB(ζ, ζ ′)

δF
δψB(ζ ′)

+

∫
Dζ Dζ ′

δ

δψA(ζ)
SAB(ζ, ζ ′)

δ

δψB(ζ ′)
.

(43)

Note that (43) has the same form for both spe-
cific examples discussed in Sect. 3. Note, therefore,
that for the relativistic plasma, it is a fully rela-
tivistic Fokker–Planck equation for the dynamical
variables ψA(ζ), which in this case are the Vlasov
one-particle distribution function f(r,p), with p
given by (13) and electromagnetic field (E,B). For
semiclassical Bloch electrons, p is the kinematic mo-
mentum of the carrier. Assuming that the Hamil-
tonian for semiclassical Bloch carriers is given as
a nonrelativistic form of (18) supplemented with the

Zeeman-like coupling proportional
∑3
j=1 γ fjBj(1)

and neglecting the internal electric and magnetic
fields generated by the motion of carriers and using
the dissipative brackets (32) stemming from dissi-
pative brackets for spins [43]

≺ Si, Sj �= −λ|S|
(
δij −

SiSj
S2

)
, (44)

we can derive the conservation equation for the spin
density Si(r) =

∫
dp fi(r,p), which is equivalent to

the convective version of the Gilber–Landau equa-
tion for sample magnetization [44]

∂S

∂t
+∇ ·Λ = γS ×B − λS ×

(
S ×B

)
, (45)

where Λij =
∫

dp pi fj(r,p) is the spin current
tensor. The explicit form of Λ follows from the
Chapman–Enskog approximations in solving the ki-
netic equation (31).

The above example of continuum equations fol-
lowing from metriplectic analysis of the Vlasov–
Klimontovich description of the many particles sys-
tem allows us to derive the hydrodynamic-like de-
scription of that system. These continuum me-
chanics equations can also be cast in the form of
metriplectic dynamics [41], and it has been dis-
cussed in many recent publications of Massimo
Materassi and Phil Morrison and their collabora-
tors [13, 36]. Whether this technique can be useful
in other applications, for example, in the theory of
quark–gluon plasma, remains to be seen.

5. Conclusions

The above sections contain a discussion of the
use of Vlasov–Klimontovich formulation of the clas-
sical many particle systems dynamics. Some im-
portant generalisations of that formulation, for ex-
ample, quantum many-body problems or classi-
cal hydrodynamics [36] are mentioned in included
references. There is essentially no applications of
that formulation in equilibrium statistical mechan-
ics in spite of the fact that the Vlasov descrip-
tion could easily be used within the Martin–Rose–
Sigma formulation [45]. The general relativity gen-
eralisation of the kinetic theory base on the present
above formulation [23] is now being prepared for
publication.
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