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In this work dedicated to Professor Iwo Białynicki-Birula on the occasion of his 90th birthday, I attempts
to show that dynamical quantum phase transitions observed as singularities in the Loschmidt rate
dynamics bear a close resemblance to the standard Rabi oscillations known from the dynamics of two-
level systems. For some many-body systems, this analogy may go even further, and the behaviour
observed for example transverse Ising chain can be directly mapped to such simple dynamics. A simple
link between Loschmidt echo singularities and quantum scars is also suggested.
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1. Introduction

The physics of complex systems may sometimes
be understood (in particular limiting cases) in
a simple, enlightening form. This has been often
demonstrated in quantum optics, one of the many
areas of Iwo Białynicki-Birula outstanding contri-
butions. As a scientific grandson of Iwo Białynicki-
Birula, I had relatively small overlap in scientific
interests with him, our paths crossed for a moment
in the studies of nonspreading wave-packets [1–4].
Still, however, I profited a lot from occasional con-
versations as well as participation, from time to
time, in unusually vivid seminars with his active
participation. Often his aim was to find a sim-
ple picture of the presented effects. In this con-
tribution, I consider briefly two cases from studies
of nonequilibrium dynamics of many-body systems
which may be, in my opinion, understood in sim-
ple terms: dynamical quantum phase transitions
(DQPT) [5, 6] and quantum many-body scars
(QMBS) dynamics [7].

The simplest definition of DQPT consists of
a sudden quench in which the system is prepared
in the ground state |Ψ〉 of a parameter-dependent

Hamiltonian H(λ = 0), and λ is suddenly changed
to other value. It has been observed that often if
a change of λmoves the Hamiltonian into a different
phase, the time dynamics withH(λ) of the now non-
stationary state after quench reveals the so-called
Loschmidt echo singularities. Their appearance is
neither a necessary nor a sufficient condition for
the phase transition between H(0) and H(λ). Still,
a predominantly lack of singularities occurs if no
phase transition is crossed while changing λ and
vice versa.

Dynamical detection [7] of QMBS is in some
sense similar. One prepares an initial nonstationary
state for the many-body system described by H(λ).
When this initial state has a significant overlap with
a few almost equally spaced in energy eigenstates of
H(λ), the time evolution of the observables reveals
oscillations even in a weakly ergodic regime, i.e.,
when the dynamics of a typical generic state will
lead to thermalization.

Both these phenomena, while of current interest,
can be simply explained by identifying a “essen-
tial state model”, i.e., a minimal approximate level
scheme allowing one to simulate the dynamics. Let
us first consider DQPT in the seminal example of
the transverse Ising model.
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2. DQPT in transverse Ising model

The first work on DQPT [5] considers the trans-
verse Ising model with the Hamiltonian of the
form

H = −1

2

∑
i

σz
i σ

z
i+1 −

g

2

∑
i

σx
i , (1)

where g is the strength of the magnetic field point-
ing in the Ox direction. For small g, the inter-
actions favor the ferromagnetic (FM) orientation
(along Oz), with the two degenerate (in the ther-
modynamic limit) ground states given for g → 0 by
|ψ(±)z〉 =

∏
i |±〉

z
i , where |±〉

z
i denotes the eigen-

vectors of σz
i . The phase transition from FM to

paramagnetic order occurs for g = 1, for large g
the unique ground state is well approximated by
|ϕ〉 =

∏
i |+〉

x
i with |±〉xi being the eigenvectors

of σx
i .

Let g serve as the parameter λ and let us start
with the ground state of (1) for small g, say with
|Ψ〉 = |ψ(+)z〉, and abruptly change g to a large,
positive value. In the new Hamiltonian, the term
proportional to g will dominate, while the first term
of the interaction will be a small perturbation. The
initial state can then be decomposed in the basis of
eigenvectors σx

i as

|Ψ(0)〉 =
∏
i

1√
2

(
|+〉xi + |−〉xi

)
. (2)

The initial state after a quench is therefore the prod-
uct of two-state combinations with coefficients of
equal magnitude (the phase does not affect the re-
sult). The subsequent time evolution, still neglect-
ing interactions in the final Hamiltonian, yields

|Ψ(t)〉 =
∏
i

1√
2

(
|+〉xi e igt/2 + |−〉xi e− igt/2

)
.

(3)
By the survival probability (fidelity, return ampli-
tude, or Loschmidt echo), one calls (depending on
the context) the squared overlap of initial and time
evolved state, L(t) ≡ |〈Ψ(0) |Ψ(t)〉 |2. Further one
may define [6] the rate function r(t) via L(t) =
exp (−Lr(t)), where L is the system size (number
of degrees of freedom). Such a measure has a good
thermodynamic limit. Singularities in r(t) time de-
pendence, often referred to as Loschmidt echo sin-
gularities, are the defining features of DQPT.

Let us immediately consider the example above.
The squared overlap L(t) becomes simply L(t) =
cos2L(gt/2), and the size-independent rate r(t) re-
veals singularities whenever the cosine function van-
ishes, i.e., for t∗ = (2k+1)π/g for an integer k. This
example clearly shows that Rabi-type oscillations
are the real origin of rate function singularities in
this case.

One can complain that the situation described
above is too simplified; singularities in the form
of finite cusps appear also for smaller changes
of g, where the approximations made by us would
not work fully. Then, however, one can use the

Jordan–Wigner transformation into a noninteract-
ing fermion system, as in the original DQPT let-
ter [5], and observe similar “two-level” dynamics for
a given k as different k decouple.

3. Other examples

Our model, however, helps to explain also other
situations. In fact, as reviewed in [6], 2-band topo-
logical noninteracting models lead to exactly the
same dynamics. Again here, due to the lack of inter-
actions, different k values can be treated indepen-
dently, leading to a similar estimate of critical times
at which singularities appear. Let us stress that
while these singularities are essential for the phase-
transition language application, they just seem to
be due to the vanishing overlaps between the initial
and time-evolved wavepacket.

Consider now a situation in which we make an
abrupt quench within the same phase, then by def-
inition the ground state changes slowly and contin-
uously with the change of the parameter for a finite
system. So it is quite justified to assume that the
ground state at say λ = 0 expands in eigenstates
{|ψk〉} of H(λ) as

|Ψ〉 = α0 |ψ0〉+
∑
k

αk |ψk〉 , (4)

with |α0| � |αk| for k > 0. Then the survival prob-
ability (Loschmidt echo) is dominated by the large
therm |α0|2. The situation is more subtle in the
thermodynamic limit due to the Anderson catas-
trophe. Still then, one may expect that many eigen-
states at the final parameter value contribute to the
initial wavepacket, leading to many superimposed
oscillations at different frequencies. In such a sit-
uation, the rate function should not reveal strong
maxima (not speaking of singularities).

Note that the situation is markedly different when
the phase transition is crossed in λ because then, for
the Ising system, via symmetry as described above,
two eigenstates contribute significantly to the sum,
leading to Rabi oscillations at half of their energy
difference (per site).

The discussion up till now was concentrated on
spin-1/2 models leading to simple Rabi oscillations.
This might be a transverse Ising chain but also, e.g.
a quantum dot dynamics [8]. As known from quan-
tum optics, Rabi oscillations generalize to quantum
revivals appearing when several equally spaced lev-
els are populated [9]. Here again one may expect
that between consecutive revivals, minima of the
survival probability lead to maxima (and possibly
cusps) of the Loschmidt rate functions. In a many-
body system, an even more general situation was
experimentally realized many years ago for inter-
acting bosons in an optical lattice [10]. Initially, the
bosons were kept in a shallow lattice, then abruptly
the height of the lattice was increased dramatically,
separating different lattice sites. Within each site,
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the initial almost coherent state was a superposi-
tion of states with different site occupations, sepa-
rated by a quadratic progression in the interaction
strength U (within the tight binding Bose–Hubbard
description), and the revivals were observed. The
corresponding Loschmidt rates reveal singularities
(or maxima), as discussed in detail recently [11] in
the DQPT language, at times when the overlap be-
tween initial and time evolved state is minimal, i.e.,
roughly in the middle between two consecutive re-
vivals.

4. Quantum scars

Recently, an interesting manifestation of ergod-
icity breaking as persistent oscillations for certain
initial states was discovered experimentally with ul-
tracold Rydberg atoms [7]. This feature is due to
the presence of few atypical, almost equally spaced
eigenstates — so-called quantum many-body scars
(QMBS) [12, 13], which are embedded in the oth-
erwise thermal spectrum of a quantum many-body
system. For initial states with a high overlap with
a few QMBS, one observes long-lived oscillations of
observables, whereas for generic initial conditions
the system quickly approaches thermal equilibrium
state. The same oscillations should be present in
the survival probability leading, in turn, to maxima
of the Loschmidt echo rate function if the data are
interpreted in that way.

QMBS borrowed their name from the single-
particle quantum chaos studies, where “quantum
scar” described the enhanced probability of eigen-
states or wavepackets in regions of space occupied
by unstable periodic orbits [14] — in close rela-
tion to the semiclassical periodic orbits quantiza-
tion [15, 16]. Then also the concept of scarring
by symmetries was developed in the contex of hy-
drogen atom in magnetic field studies [17]. Simi-
lar symmetry concepts were used for the construc-
tion of nonergodic states in many-body case see,
e.g. [18, 19].

Such QMBS may be easily imagined as having the
origin in the approximate decoupling of a (not al-
ways apparent) single degree of freedom from other
degrees of freedom. If this single degree is locally
described by a harmonic oscillator (or an angular
momentum), then the corresponding eigenstates are
equidistant — their weak coupling to the remaining
states preserves the energy structure. Now, if by ac-
cident (or cleverness) the initial state is prepared as
a linear combination of those selected states (or if
it has sufficiently large overlap on at least a few of
them), one may naturally expect a persistent oscil-
lation in the time dynamics. Let us mention also
that quench dynamics and Rabi oscillations result-
ing from the excitations of two or more localized
integrals of motion in the context of many-body
localization have recently been studied [20, 21].
The localized, almost decoupled family of states
may not be easy to identify, one may try to identify

it e.g., by adiabatic following from some analytic
limit [22] or via purely numerical approaches includ-
ing artificial intelligence [23].

5. Conclusions

DQPT forms a very intriguing interpretation of
rapid quantum quenches. On the other hand, sig-
natures of DQPT in the form of singularities of the
Loschmidt echo rate functions appear to a large ex-
tent due to the very definition of this rate. Survival
probability (Loschmidt echo) itself reveals no singu-
larities but rather smooth oscillations (or revivals in
more complicated cases).

Let us stress that the mechanism presented above
considers rather simple examples. For more compli-
cated cases one may consider the Loschmidt echo as
coming back not to a single ground state, but to the
degenerate manifold, if it exists [6]. After the first
draft of this note was completed, a related work ap-
peared, giving a more general picture of DQPT [24].
It has been brought also to our attention that sim-
ilar to DQPT cusp structures may appear in single
particle dynamics [25, 26].
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