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We study the statistical properties of a gas of interacting bosons trapped in a box potential in two
and three dimensions. Our primary focus is the characteristic temperature Tp, i.e., the temperature at
which the fluctuations of the number of condensed atoms (or, in 2D, the number of motionless atoms)
are maximal. Using the Fock state sampling method, we show that Tp increases due to interaction.
In 3D, this temperature converges to the critical temperature in the thermodynamic limit. In 2D, we
show the general applicability of the method by obtaining a generalized dependence of the characteristic
temperature on the interaction strength. Finally, we discuss the experimental conditions necessary for
the verification of our theoretical predictions.
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1. Introduction

The statistical properties of interacting ultracold
gases of bosonic atoms and, in particular, of Bose–
Einstein condensates (BEC) remain a considerable
challenge of current interest. While the statisti-
cal properties of non-interacting gases are well de-
scribed by a number of methods, a soluble model
for interacting bosons exists only in one dimen-
sion. In two and three dimensions, reliable results
are only available for weakly interacting gases at
low temperatures within the Bogoliubov approxi-
mation. Hence, the dependence of the critical tem-
perature on interaction remains a challenging issue.

Over the years, a large number of mutually exclu-
sive predictions of the change of the critical temper-
ature due to interactions were made [1–11]. Prac-
tically all of them dealt with a gas trapped in
a three-dimensional cubic box potential. The con-
flicting results are summarized in Table I [2–14].
Note that even the sign of the correction was

uncertain initially. Later the consensus emerged
that in the thermodynamic limit, the shift to the
critical temperature is ∆Tc ≈ 1.3 aρ1/3, where ρ
is the gas density, and a is the s-wave scattering
length.

During the struggle to compute the shift of the
critical temperature, a number of theoretical meth-
ods were used (see the review [11]). The correct re-
sult was eventually obtained by using the classical
field approximation (CFA) [10]. The CFA method
itself suffers from a cut-off problem, which was clev-
erly overcome in [10]. Recently, we proposed yet an-
other method based on a direct quantum descrip-
tion of the system and the definitions of the statis-
tical ensembles. The method, called the Fock state
sampling (FSS) method [15], is presented in Sect. 2.

Most BEC experiments to date are performed
with harmonic traps. However, recently Bose–
Einstein condensates were created in nearly perfect
box potentials [16]. Nonetheless, experimental ver-
ification of the theoretical prediction remains chal-
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TABLE I

Coefficient c of the shift of the critical temperature
∆Tc/Tc = c a ρ1/3 obtained by various analytic and
numerical methods. See also the review by J. Ander-
sen [11]. In [14], four different many-body methods
were used yielding results in the range c ∈ [1, 6.7].

Authors Ref. Coefficient c
Grueter et al. (1997) [2] 0.34± 0.06

Holzmann et al. (1999) [3] 0.7

Holzmann et al. (1999) [4] 2.3± 0.25

Baym et al. (1999) [5] 2.9

Wilkens et al. (2000) [6] −0.93

Arnold et al. (2000) [7] 1.71

Baym et al. (2000) [8] 2.33

Souza Cruz et al. (2001) [9] 3.059

Kashurnikov et al. (2001) [10] 1.29± 0.05

Davis et al. (2003) [12] 1.3± 0.4

Nho et al. (2004) [13] 1.32± 0.14

Watabe et al. (2013) [14] 1 to 6.7

lenging. One of the problems is due to the fact that
experiments are performed with a finite number of
atoms, and for such a system, there is no unique way
of determining the critical temperature. Namely, for
a finite-size system, the number of condensed atoms
is an analytic function of temperature, and thus
there is not a definite value of temperature beyond
which the number of condensed atoms is strictly
zero. The remedy for this difficulty, proposed in [17],
is to study the temperature of maximal variance
of the number of condensed atoms instead of the
critical temperature. The temperature of the max-
imal variance tends to the critical temperature in
the thermodynamic limit [17] and is well-defined
for finite-size systems, which makes it applicable to
gases exhibiting only quasi-condensation.

Experimentally, it is more demanding to measure
the fluctuations of the condensate atom number
than the mean of this number. However, the ex-
perimental difficulties were recently overcome due
to a stabilization technique of the evaporation pro-
cess [18], allowing for a measurement of the fluc-
tuations [19]. Furthermore, it was shown that the
canonical ensemble fails to describe the experi-
mental situation, and one must invoke the micro-
canonical one [20]. These experiments directly mea-
sure the temperature of the maximal fluctuations
rather than the temperature at which the conden-
sate vanishes.

It is the purpose of this paper to discuss the
interaction-induced shifts of the temperature of
maximal fluctuations, which is referred to as the
characteristic temperature Tp. Based on the FSS
method, we provide, to our knowledge for the first
time, results for a bosonic gas in a box potential in
the microcanonical ensemble.

The paper is organized as follows. In Sect. 2,
we briefly review the FSS method. Section 3 ap-
plies the method to a gas trapped in the three-
dimensional box potential in both the canonical
and microcanonical ensembles. In Sect. 4, the case
of the two-dimensional box potential is discussed.
Note that there is no phase transition and no crit-
ical temperature in this case, and nonetheless, the
characteristic temperature can be defined. Section 5
concludes the discussion and provides an outlook on
future experiments.

2. Fock state sampling method

We consider N bosonic atoms trapped in a box
potential with periodic boundary conditions and in-
teracting via short-range interaction potential. The
Hamiltonian of the system is

Ĥ = − ~2

2m

∫
ddr Ψ̂ †(r)∇2Ψ̂(r)

+
gd
2

∫
ddr Ψ̂ †(r)Ψ̂ †(r)Ψ̂(r)Ψ̂(r), (1)

where Ψ̂(r) is a bosonic annihilation operator, m is
a mass, and gd > 0 is a coupling constant related
to short-range interactions. In Sect. 3, we consider
three-dimensional systems, where the coupling con-
stant is gd=3 ≡ g3D = 4π~2a/m and a is the scatter-
ing length. In Sect. 4, devoted to two-dimensional
systems, we use the notation gd=2 ≡ g2D. In the
case of a box potential with periodic boundary con-
ditions, the macroscopically occupied orbital (the
BEC wave function in 3D) is just a constant func-
tion, i.e., a plane wave with momentum 0.

In what follows, we focus on the fluctuations of
the number of atoms in BEC at finite temperature.
We use the canonical and the microcanonical en-
sembles, which were shown to be close to the exper-
imental reality [19, 20].

There are several different ways to describe the
statistical properties of ultra-cold Bose gases theo-
retically. In this paper, we sample many-body states
to generate a set of copies that properly approxi-
mates the canonical ensemble of a gas. Given a suffi-
ciently large set of copies, the expectation values are
defined as the average over the set. By post-selecting
the set, we obtain results in the microcanonical en-
semble. To define the appropriate Metropolis algo-
rithm [21], we need to define “the stage”, which is the
set of available states, and the “Metropolis dynam-
ics” or the specific algorithm defining the Markov
chain generating the approximation to the canoni-
cal ensemble.

2.1. Setting “the stage”

All states of N particles belong to the suitable
Hilbert space. A convenient parametrization is pro-
vided by the basis of single-particle states in the
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Fig. 1. Single step of the FSS method: one draws
two states — one from which an atom might be
taken (index j) and one in which the atom may
land (index j′) with probability distribution pro-
portional to nj(nj′ + 1). The new state is accepted
only if a random number r drawn from a uniform
distribution in [0, 1] is smaller than the Boltzmann
factor b given in (5).

trapping potential. Since we consider box potentials
with periodic boundary conditions, the basis states
are just plane waves

fj(r) := fjx jy jz (x, y, z) =

1√
Lx Ly Lz

e− i 2π(jx x/Lx+jy y/Ly+jz z/Lz),

(2)
where Lx, Ly, and Lz are the lengths of the box
potential and jx, jy, and jz are positive and neg-
ative integers. It is worth stressing that due to
translational invariance, these states remain eigen-
states of the single-particle density matrix also for
the interacting gas. Thus, the constant function
jx = jy = jz = 0 remains the condensate state
also in the presence of interactions.

The space of all N -particle states is spanned by
the Fock states
|n〉 := |n1, n2, . . .〉 , (3)

where nj denotes the number of bosons in the
single-particle state fj(r). In the canonical ensem-
ble, we fix the total number of atomsN and consider
only the Fock states that contain N bosons∑

j

nj = N. (4)

The whole Hilbert space contains all superposi-
tions of all N -particle Fock states. The appropriate
parameters are far too numerous for any efficient
numerics. Instead, we restrict our set of available
states just to the Fock states in (3), not accounting
for their superpositions. This has two consequences.
First, it neglects the phenomenon of quantum deple-
tion. Thus, the method is expected to yield correct

results only for weak interactions. Second, it is not
applicable to weakly interacting bosons confined in
a harmonic trap, since, in this case, the condensate
wave function is a superposition of many oscillator
states.

2.2. Metropolis dynamics

The following algorithm defines our Markov chain
used to generate the elements of our representation
of the canonical ensemble. A single step of this al-
gorithm is also shown in Fig. 1.

Each particle has the same probability of jumping
out of a given single-particle state. The probability
of jumping out is proportional to the number of par-
ticles in that state. The probability of landing in a
given single-particle state is proportional to its oc-
cupation (stimulated process) plus one (to account
for the spontaneous process). The acceptance cri-
terion, usual for the Metropolis algorithm, is based
on comparing a random number 0 < r < 1 drawn
from a uniform distribution versus the Boltzmann
factor b of the initial and the final states
b
(
Ecurrent, Ecandidate

)
= e−β(Ecurrent−Ecandidate),

(5)
where β = 1/(kBT ), kB is the Boltzmann constant
and T is the temperature. The energy Ecurrent is the
expectation value of the Hamiltonian in the current
Fock state. It is the sum of the kinetic energy and
the interaction energy. The kinetic energy is simply

Ekin =
∑
j

nj ej , (6)

where ej is the energy of the j-th level, i.e.,

ej :=
2π2~2

m

[(
jx
L1

)2

+

(
jy
L2

)2

+

(
jz
L3

)2
]
.

(7)
The short-range interaction energy, which in the
general case is a nontrivial quadratic form, reduces
to a single sum in the case of a box potential and is
averaged in a single Fock state

Eint=

〈
n

∣∣∣∣g3D2
∫

d3r Ψ̂ †(r)Ψ̂ †(r)Ψ̂(r)Ψ̂(r)

∣∣∣∣n〉=

g3D
2

(
2N(N−1)−

∑
j
n2j

)
. (8)

Moreover, for comparison of the Boltzmann factors,
only the difference of the energies of the final and
initial state enters (see (5))

Ecurrent−Ecandidate = ej−ej′ + g3D (nj′−nj),

(9)
where j and j′ are the indices of the single-particle
states from which the atom escaped and in which it
lands, respectively. A single step of this algorithm
is presented in Fig. 1.

The algorithm satisfies the detailed balance prin-
ciple and guarantees access to all important N par-
ticle states. When the number of steps goes to infin-
ity, the expectation value of any physical quantity
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Fig. 2. Standard deviation of the number of condensed atoms confined in a 3D box potential with periodic
boundary conditions for N = 300 atoms for a non-interacting (solid lines) and an interacting gas with a gas
parameter aρ1/3 = 0.05 (empty diamonds). Red symbols indicate canonical and blue microcanonical results.
The solid lines are exact, obtained with the help of recurrence relations. The empty diamonds represent
canonical and microcanonical results obtained with the help of the Fock state sampling method. Note similar
shifts of the characteristic temperature in both statistical ensembles. Also, note that the maximal fluctuations
are increased by interactions.

does not depend on the state used to initiate the al-
gorithm. In practice, we perform only a finite num-
ber of steps and discard approximately 10N initials
steps during which the quantities of interest are not
only fluctuating but also drifting.

Importantly, the Fock state sampling method also
offers access to the microcanonical ensemble. This
is accomplished simply by reducing the number of
states to those with energy in the small interval
around the most probable one.

In the following, we present the results obtained
with Fock state sampling method (FSSM) for a gas
in a 3D (Sect. 3) and 2D (Sect. 4) box potential,
including interactions between the atoms.

3. Characteristic temperature for gas
in 3D box potential

We illustrate the results of our method for ul-
tracold gases of bosonic atoms in a 3D box poten-
tial in Fig. 2. The figure shows the temperature
dependence of the standard deviation of the num-
ber of atoms in a Bose–Einstein condensate ∆N0

for both canonical and microcanonical ensembles.
The results for the non-interacting gas are exact
and obtained with the recurrence relations [6], while
the results for the interacting gas are obtained with
the FSS method described in the previous section.
Note that the microcanonical ensemble yields sig-
nificantly lower fluctuations. Moreover, interactions
increase the peak fluctuations in both ensembles,
and similarly, the temperature of the maximal fluc-
tuations is increased.

The related shift of the critical temperature due
to collisions in weakly interacting Bose gas in a 3D
box potential has been the subject of a longstand-
ing debate, as outlined in the introduction. The final
result for the correction was obtained with a sophis-
ticated numerical method [10], based on techniques
developed over the past 20 years. Our method, on
the contrary, although approximate, is simple to im-
plement for as many as 10 000 atoms.

Here, we study the temperature of the maximal
fluctuations Tp instead of looking at the critical
temperature Tc. This characteristic temperature is
well-defined for systems with a finite number of
atoms. Moreover, it has been recently shown that
it can be measured for a Bose gas in a harmonic
trap [19, 20].

Thus, the main quantity of interest is the
interaction-induced relative shift to the character-
istic temperature Tp

δTp(N, a) :=
Tp(N, a)− Tp(N, 0)

Tp(N, 0)
, (10)

where Tp(N, a) is the characteristic temperature for
a gas with N atoms interacting with the s-wave
scattering length a. To find the dependence of δTp
on N and a, we study the system with atom num-
bers ranging from 100 to 10000 and interaction
strengths g corresponding to gas parameters aρ1/3
from 0.005 to 0.02. All temperatures are given in
units of 2π2~2/(mkBL2).

The results are illustrated in Fig. 3, which shows
the relative standard deviation of the number of
condensed atoms as a function of temperature for
different total numbers of atoms and various inter-
action strengths g. Since the main focus is the shift
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Fig. 3. Relative standard deviation of the BEC atom number for an interacting gas (colored points) for
various total numbers of atoms, and interaction strengths. All points are rescaled by the maximal value of the
fluctuations in the non-interacting case. Results for systems with the same gas parameter are marked with
the same color, i.e., aρ1/3 corresponds to 0.005 (blue), 0.01 (red), 0.015 (orange), 0.02 (green). The quantity
Tp,0 is the temperature of maximal fluctuations of the non-interacting gas and the symbol “x” marks the
reference point — the maximal BEC fluctuations of the non-interacting gas. The atom number is in the range
N = 100, 200, . . . , 1000, 2000, . . . , 10000. The inset shows an overview of the entire temperature range with the
results for the non-interacting gas (dashed lines).

of the characteristic temperature Tp, all results for
the non-interacting gas are normalized in terms of
both the maximal value and its temperature. The
same scaling factors are used for the results for the
interacting gas, i.e., the temperature (relative stan-
dard deviation) is divided by the temperature Tp,0
(maximal relative standard deviation) of the non-
interacting gas with the same number of atoms. Af-
ter rescaling, one can easily follow the interaction-
induced shits. The points of a given color show the
maximal variance at the characteristic temperature
for various atom numbers N and scattering lengths
a, but a common gas parameter aρ1/3.

Note that the maximal relative standard devi-
ations are grouped into small regions for a com-
mon gas parameter. For larger gas parameters cor-
responding to larger interactions, the maximal rela-
tive standard deviations are larger and are reached
at higher temperatures as compared to the non-
interacting gas.

We fit the average shift for each characteristic
temperature with a linear dependence on the gas
parameter and obtain

δTp ≈ (2.039± 0.014) aρ
1
3 (11)

in the range of the number of atoms N between
4000 and 10000. Thus the scaling is similar to
the one obtained for the critical temperature of
an infinitely large system, while the prefactor is
larger.

Note that the maximal relative standard devia-
tions for a common gas parameter form elongated
regions, indicating that the maximal variance and
the characteristic temperature may have a further

dependence on the scattering length and density.
The remaining spread of the points indicates the
precision of our method.

Also note that interactions increase the maximal
fluctuations in this case. This point has also been
the subject of a long-standing controversy (see, for
instance, the inset in Fig. 4 in [19]). It was recently
addressed using the FSS method [15], showing that
the size of the fluctuations depends on all system
parameters, and thus it is not possible to general-
ize the effect of interactions on the magnitude of
condensate fluctuations.

Importantly, the characteristic temperature dis-
cussed in this section is also well-defined for systems
that do not exhibit a phase transition in a thermo-
dynamic limit. An example of such a system is a gas
in a 2D box potential, discussed in the next section.

4. Characteristic temperature
in 2D box potential

It is well known that Bose–Einstein condensation
appears as a phase transition for sufficiently high
dimensions. In a box potential, the phase transition
occurs only in three dimensions, while it is absent in
lower dimensionality. Despite the fact that there is
no phase transition and, therefore, no critical tem-
perature in the case of two dimensions, the notion of
the characteristic temperature Tp, marking the tem-
perature of maximal fluctuations, is still applicable.
Of course, in the absence of the phase transition,
interactions still affect the fluctuations.
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Fig. 4. Relative shift of the characteristic temperature for Bose gases in a 2D box potential with periodic
boundary conditions due to interactions. The coupling constant g2D was varied from 0 to 0.01 and the number
of atoms was adjusted from 600 to 1500.

We illustrate this by investigating a two-
dimensional box potential with periodic boundary
conditions. The calculation is analogous to the 3D
box potential, and the condensate wave function
is still a constant one, regardless of interaction.
The algorithm, after omitting all Z-dependent vari-
ables, is identical to the one introduced in the pre-
vious section. The relative shift of the character-
istic temperature due to interactions was calcu-
lated for various atom numbers N and interaction
strengths g2D, as defined in the Hamiltonian (1).
In this section, we do not refer to the gas param-
eter, which would be more complicated than in
the 3D case.

Figure 4 shows this shift as a function of gα2DN
β

with optimally chosen exponents α and β obtained
from a fit to the data, yielding

δT (2D)
p (N, g2D) :=

(0.16± 0.03) N0.642±0.015g0.704±0.0062D . (12)

The stated errors may be reduced at the expense of
the numerical effort. The convergence is very slow,
and errors scale with the square root of the number
of Metropolis steps.

The results presented in this section illustrate
the power and generality of the FSS method. The
method is conceptually very simple, and its success-
ful application merely requires a numerical effort.

5. Conclusions

In conclusion, we have investigated the fluctu-
ations of the ideal and weakly interacting Bose–
Einstein condensates trapped in box potentials with
periodic boundary conditions. The temperature of
maximal BEC atom number fluctuations Tp was an-
alyzed under various conditions. The advantage of

Tp over Tc lies in the fact that it is unambiguously
defined also for a finite system, and it can be studied
also in systems that do not exhibit phase transition.

In our study, we used the Fock state sampling
method, which turns out to be easy to use, exact for
the non-interacting system (see [15]), and applicable
to a wide range of problems. With this method, we
found the shift of the characteristic temperature in
the 3D box potential to be ≈ 2.03 a ρ1/3, where a
is the scattering length, and ρ is the gas density.
This is reasonably close to the expected shift of the
critical temperature in this system ≈ 1.3 a ρ1/3.

We also applied our method to a two-dimensional
system and obtained a generalized dependence of
the characteristic temperature on the interaction
strength and atom number ≈ 0.16N0.642g0.7042D ,
showing the applicability in a system that does not
exhibit a phase transition.

Experimentally, the recent realization of box po-
tentials provides an opportunity to address the pre-
dictions presented above. In particular, combining
box potentials with atomic species that allow for
tunability of the interaction strength will provide
access to a wide variation of gas parameters.

Box potentials are typically created using blue-
detuned light to form the walls of a box, such as,
e.g., a hollow beam with two narrow light sheets as
end caps [22]. To flatten the bottom of the potential,
gravity must be compensated using a magnetic field
gradient. Alternatively, a light field with a linearly
varying intensity produced by an accousto–optic de-
flector can be used [23]. The necessary beam shapes
for box potentials can be generated using spatial
light modulators, digital micromirror devices, or
specialized optical elements such as axicons.

Tunability of the scattering length would be
highly beneficial to isolate the effect of interac-
tions on the characteristic temperature and the
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magnitude of atom number fluctuations. This can
be achieved by adjusting the magnetic field near
a Feshbach resonance [24]. Since a magnetic field
gradient is the most common way to cancel grav-
ity within a box potential, this will typically ne-
cessitate independent control of the magnetic field
gradient and its mean value. The field gradient will
thus introduce a spatial dependence of the scatter-
ing length, and hence atomic species with broad res-
onances such as, e.g., the bosonic isotopes of potas-
sium should be used.

Furthermore, it is important to distinguish be-
tween BEC and the thermal part of partially con-
densed atomic clouds to measure the atom num-
ber fluctuations. Thus, the bimodality of the mo-
mentum distribution is crucial for determining the
BEC number and the number of thermal atoms.
Fortunately, both the bimodality and an appropri-
ate fitting function for the thermal cloud have been
confirmed [16] experimentally.

The most significant outstanding challenge to-
wards the measurement of fluctuations proposed
here is the combination of box potentials with atom
number stabilization. There are two primary tech-
nical sources of variations in the total number of
atoms. The first one is due to the statistical nature
of evaporative cooling, which relates the atom num-
ber to the temperature. This is predictable and can
be accounted for in the evaluation of atom num-
ber fluctuations. The second source of atom num-
ber variation is typically due to various technical
noise sources in the experiment and should be min-
imized since it can distort the measured atom num-
ber fluctuation when different mean values of the
BEC atom number are probed. Thus, to conduct the
experiment, it will be necessary to combine the box
potential with atom number stabilization. However,
it is not yet clear whether it is sufficient to stabilize
the atom number before loading the cloud into the
box potential or if methods for stabilization within
the box potential must be developed.

The combination of the Fock state sampling
method and current experimental developments will
allow for further experiments in the near future. Es-
pecially since the FSSM can provide precise predic-
tions for experimentally relevant atom numbers in
a variety of potentials, the time has now come for
a new generation of experiments on these funda-
mental questions.
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