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We study the evolution of a quantum particle in a harmonic potential whose position and momentum
are repeatedly monitored. A back-action of measuring devices is accounted for. Our model utilizes
a generalized measurement corresponding to the positive operator-valued measure. We assume that
upon measurement, the particle’s wavefunction is projected onto one of the possible detector states
depending on the observed result. We chose these post-measurement states to be moving Gaussian
wavepackets. The wavefunction quantum Monte Carlo formalism is used to simulate single quantum
trajectories of the particle. We show how classical trajectories emerge in the course of observation and
study in detail the dispersion of position and momentum of the particle.
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1. Introduction

Position and momentum are fundamental quan-
tities characterizing the dynamics of a classical par-
ticle. The time-dependent position of a particle is
directly related to what an observer sees while moni-
toring its motion. The concept is thus very intuitive.
According to classical mechanics, measurements, in
principle, do not affect the system, and their pre-
cision can be arbitrarily high. In contrast, quan-
tum mechanical measurements always somehow af-
fect the system, and moreover, the relation between
a wavefunction (or density operator) describing the
state of a system with what is actually being ob-
served is not so obvious.

The first approach to resolving these issues is
known as the Copenhagen interpretation [1–4],
which, until today, forms the basis for the textbook
version of quantum mechanics. A central role is
played by the Born rule, which gives probabilities of
positive answers to yes/no questions related to mea-
surement outcomes. When a measurement is com-
pleted, an answer is obtained, and the wavefunc-
tion changes discontinuously, in accordance with the
result and the von Neumann (and Lüders) postu-
late of wavepacket reduction [3, 5]. P. Langevin ex-
pressed this rule in the introduction to the textbook
“La theorie de l’observation en mecanique quan-
tique” [6]) by F. London and E. Bauer, in the fol-
lowing words: “The wave function it [the quantum
theory] uses to describe the object no longer depends
solely on the object, as was the case in the classi-
cal representation, but, above all, states what the

observer knows and what, in consequence, are his
possibilities for predictions about the evolution of
the object. For a given object, this function, con-
sequently, is modified in accordance to the informa-
tion possessed by the observer.”

The Copenhagen interpretation gives a well-
defined prescription on how to use the theory in
practice. However, it is not the only existing in-
terpretation of concepts such as wavefunction and
measurements. After decades, the issue of collapse,
nonlocality, and measurement still remains a sub-
ject of scientific discussion [7–12].

Iwo Białynicki-Birula and Zofia Białynicka-Birula
(Z-IBB) identify in their textbook “Quantum elec-
trodynamics” [13] the fundamental postulates of
quantum theory pertaining to the relation between
the density operator and measurement. The postu-
lates are very formally combined into four axioms
which can be, under some simplifications, summa-
rized as follows: (i) the elementary questions, i.e.,
the yes/no questions, are represented by projec-
tors, P ; (ii) the state of a system is represented
by a non-negative, self-adjoint, and trace-one den-
sity operator ρ; (iii) the density operator determines
probabilities p of affirmative answers to elemen-
tary questions in accordance with the Born rule
p = Tr{Pρ}; (iv) every dynamical variable A is
represented by a self-adjoint operator A, and can
be assigned a spectral family of projectors, E(A)

λ ,
symbolizing questions whether the value of a dy-
namical variable A is not larger than λ. As men-
tioned by Z-IBB, “Since the set of probabilities p
is the only information in quantum theory available
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about the state of the system, from the operational
point of view the concept of the state of the system
should be identified with the function p(P) defined
on the set of all questions.”

The collapse postulate is missing from the Z-IBB
axioms. One might possibly find it in the statement
quoted above, equating the state of the system to
the function p(P). The answer to any question ap-
parently modifies it. On the other hand, the issue
might have seemed purely academic at the time,
since realistic measurements in quantum mechan-
ics were generally believed to be destructive. This
excludes the possibility of repeated measurement
on the same quantum system and limits the rele-
vance of the collapse postulate. E. Shrödinger [14],
one of the founding fathers of quantum mechan-
ics, wrote: “We never experiment with just one elec-
tron, or atom, or (small) molecule, we sometimes
assume that we do; this inevitably entails ridiculous
consequences. . .. In the first place, it is fair to say
that we are not experimenting with single particles,
any more than we can raise ichtyhysauria in the
zoo.” Nowadays, such measurements are not only
theoretically considered, but also performed in labs.

Modern variations of the Copenhagen inter-
pretation, such as QBism — quantum Bayesian-
ism [15–18], postulate that an agent (e.g., a physi-
cist) observing a system abruptly modifies their
knowledge (the set of probabilities) once a mea-
surement outcome becomes available. The wave-
function expresses the individual agent’s state of
knowledge. “. . .There is no real state of a physical
system. What one chooses to regard as the physi-
cal system and what state one chooses to assign to
it depend on the judgment of the particular physi-
cist who questions the system and who uses quan-
tum mechanics to calculate the probabilities of the
answers,” as stated by N. David Mermin [19]. Ac-
cording to Qbists, since there is no objective wave-
function of the system, there is no collapse either.

Other points of view assume that the wave-
function, the state of the system, has attributes
of reality, being independent of an observer. The
issue of an apparent collapse, disliked by many
physicists, is resolved in various ways. Everett’s
many-world interpretation (MWI) is one such ap-
proach [20]. Non-local hidden variable theories, of
which Bohmian mechanics is the best-known exam-
ple, are another possibility [21]. The MWI postu-
lates that upon measurement, the system, which
finds itself entangled with the measuring appara-
tus, does not collapse to some observed state, but
rather that all components of the wavefunction as-
sociated with possible measurement outcomes con-
tinue to evolve according to the Schrödinger equa-
tion of the composite system. Because of the lin-
earity of the Schrödinger equation, these compo-
nents do not interact and form separate “branches”
or “worlds.” One must accept uncountable copies
of themselves and the world living different lives.
Bohmian mechanics introduces additional hidden

variables — coordinates (e.g., particle positions) as-
sociated with a configuration of the system under
consideration. The particles move guided by a “pi-
lot wave”, which is equivalent to the wavefunction
of orthodox quantum mechanics (QM) and evolves
according to the Schrödinger equation. It is thus
the hidden variables that are actually observed in
a measurement. Each of the varying interpretations
of QM— of which we only mentioned a few— forces
us to accept some non-intuitive, seemingly problem-
atic postulate about reality. If none of them is found
satisfactory, one must accept the view that collapse
— an abrupt, discontinuous change of the system,
triggered by measurement — is a “real and wild”
thing.

None of the interpretations presented above may
be falsified on the grounds of present knowledge.
The problems, at this stage of understanding, seem
to be of a philosophical nature, and their experi-
mental verification is elusive. However, the various
interpretations may imply measurable effects in fu-
ture experiments and lead to different generaliza-
tions of quantum theory.

The first studies of repeated measurement of con-
tinuous variables can be found in the works of
Mensky [22] and Davies [23, 24]. Great experimen-
tal progress in cooling and trapping single ions
opened many possibilities for repeated measure-
ment of a single quantum system. The first spectac-
ular example is an observation of quantum jumps,
i.e., dark periods in the fluorescence spectrum of
an optically driven trapped ion [25–28]. The exper-
iments fueled the interest in the theory of repeated
quantum measurements. The proper description of
a system under repeated measurements calls for the
inclusion of information gained — the back-action
of the meters — as part of the dynamics. Different
methods were developed [29–35].

The theoretical approach utilizes an open system
formalism. It is based on the Gorini–Sudarshan–
Kossakowski–Lindblad (GKSL) equation for the
density operator [36, 37]. This allows for study-
ing all statistical properties of the system. Instead
of solving the GKSL equation directly, for differ-
ent reasons, it may be preferable to look for single
realizations of wavefunction dynamics. Obviously,
such individual trajectories are stochastic in na-
ture. Averaged over many realizations, they pro-
vide a description equivalent to the time-dependent
density operator. The general theoretical framework
governing wavefunction dynamics of this kind in-
volves the introduction of the so-called stochastic
Schrödinger equation (SSE) [38–42]. It should be
noted that the choice of an SSE is not unique, and in
general, there are many realizations (“unravelings”)
corresponding to one GKSL equation. In fact, the
formalism of SSE need not be invoked at all for the
construction of concrete numerical schemes generat-
ing the stochastical trajectories. One notable exam-
ple [43, 44] is known as the wavefunction quantum
Monte Carlo (WFQMC) method. This formalism is
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often used by atomic physicists since it allows them
to easily generate sequences of events mimicking ex-
periments with atoms and photons.

In this paper, we use WFQMC to analyze sta-
tistical characteristics of trajectories determined by
simultaneous repeated measurement of position and
momentum of a quantum particle. First, we spec-
ify our model, define jump operators, and introduce
the WFQMC approach. Then we present exemplary
trajectories and discuss the time dependence of dis-
persion of the position and momentum for differ-
ent choices of detection parameters. Conclusions are
presented in the final section.

2. Monte Carlo dynamics of a wavefunction

We study a phase space trajectory of a quantum
particle, continuously monitored by an array of de-
tectors. Here we use the theoretical model intro-
duced by us in [45]. We assume that every measure-
ment provides a value of the position and momen-
tum of the particle at this instant. A sequence of
such readouts gives a phase space trajectory. Each
simultaneous measurement of position and momen-
tum satisfies Heisenberg’s uncertainty principle. We
apply an open system formalism — our system is
a quantum particle described by the Hamiltonian
H0, while the detectors form a reservoir. We assume
that the reservoir has no memory.

The problem of simultaneous measurement of po-
sition and momentum for the first time was con-
sidered by E. Arthurs and J.L. Kelly [46]. The re-
cent studies of A.J. Scott and G.J. Milbourn [47]
assumed a different detection model than the one
studied here. They assumed the von Neumann
type of coupling between a particle and a meter
and used a formalism based on an Ito stochastic
Schrödinger equation [31–34]. The main difference
is, thus, in the form of the jump operators assumed
here.

The effect of coupling the system to the reser-
voir of detectors is described by the “jump oper-
ators” Ci,j specified in the following part of the
paper. The general form of a completely positive
and trace-preserving map which describes time-
homogeneous dynamics of the density operator ρ
of a system coupled to the Markovian reservoir via
operators Ci,j is given by the Gorini–Kossakowski–
Sudarshan–Lindblad equation [36, 37]

ρ̇ = i
[
ρ, H0

]
+ Lrelax(ρ), (1)

where H0 is the self-adjoint Hamiltonian of the sys-
tem, and Lrelax is a relaxation operator of the Lind-
blad form, accounting for an effect of the environ-
ment

Lrelax(ρ) = −1

2

∑
α

(
C†i,jCi,j ρ+ ρC†i,jCi,j

)
+
∑
α

Ci,j ρC
†
i,j . (2)

We chose Ci,j to be proportional to projectors onto
detector’s states |αi,j〉,

Ci,j =
√
γ |αi,j〉〈αi,j |, (3)

where γ gives the characteristic clicking rate (prob-
ability per unit time) and |αi,j〉 are complex Gaus-
sian wavepackets, which in position representations
have the form

〈x|αi,j〉 =
1

4
√

2πσ2
e−(x−xi)

2/4σ2

e ikjx. (4)

Spatial points xi and momenta ~kj define the po-
sitions of the detectors in phase space. These loca-
tions are a matter of choice. Here we assume that
they form a rectangular lattice with spacing dx and
dp, respectively.

In what follows, we will use the index α as
a shortcut notation for two indices, α ≡ (i, j)
and Cα ≡ Ci,j . The operators Cα are responsi-
ble for a reduction of the particle’s wavefunction,
a jump, caused by the interaction with the reser-
voir. Note that Cα projects onto non-orthogonal
states, thus CαCβ 6= 0 for α 6= β. Therefore, the
measurement we defined does not belong to the
class of a projective-valued measure (PVM). This
is in accordance with the modern formulation of
a measurement process, which extends the concept
of measurements to account for real observations,
whose results also depend on the characteristics of
the measuring apparatus and procedure. For details
on this positive operator-valued measure (POVM),
see [24]. Projectors are substituted by an arbitrary
number of positive operators — the effects’ Ei —
whose sum gives identity

∑
iEi = I [8, 10, 12, 38].

In the case studied here, the effects are related
to a jump within a time interval dt caused by
Eα = dt C†αCα, or alternatively, a no-jump event,
E0 = 1−

∑
αEα. To assure that all effect operators

are positive, the time step dt must be sufficiently
small. We take care of this fact.

Instead of solving the GKSL equation, in the
following, we use one of its possible unravel-
lings, the quantum Monte Carlo wavefunction
method [43, 44]. The idea of the approach is to gen-
erate an ensemble of individual trajectories. Each
one can be viewed as a single, possible realiza-
tion of the dynamics of the wavefunction. Averaging
over many such trajectories yields the time depen-
dence of the density operator in accordance with
the GKSL equation ρ(t) = |ψ〉〈ψ|. The WFQMC
method simulates stochastic evolution, in which for
each time step, the quantity |φ′(t + δt)〉 is calcu-
lated by evolving the state for an infinitesimal time
δt with the non-unitary Hamiltonian

H = H0 −
i

2

∑
α

C†αCα. (5)

One of two possibilities is then selected, i.e.,
a jump or no-jump event. The jump to the state
|α〉 is selected with the probability

δpα = δt 〈φ′(t)|C†αCα|φ′(t)〉 = γ δt
∣∣〈α|φ′(t)〉∣∣2.

(6)
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The time-step δt has to be sufficiently small to as-
sure that

∑
α δpα is smaller than one. If the jump

takes place, the particle’s wavefunction changes dis-
continuously
|φ(t+ δt)〉 = |α〉. (7)

The probability of no jump is equal to

P0 = 1−
∑
α

δpα. (8)

If the “no-jump” event takes place, the state is es-
sentially replaced with |φ′(t + δt)〉. However, since
the Hamiltonian (5) does not preserve the norm, the
state is first normalized

|φ(t+ δt)〉 =
(1− iH δt) |φ(t)〉∣∣∣∣ (1− iH δt) |φ(t)〉

∣∣∣∣ . (9)

The evolution of the wavepacket corresponds thus
to a random sequence of jump and no-jump events.
In our approach, every jump is interpreted as an act
of measurement. Projection onto states associated
with detectors is reminiscent of the reduction of
a wavepacket. The non-unitary evolution accounts
for the Hamiltonian dynamics of the particle as well
as for interaction with the detectors. The Hermi-
tian part H0 is the sum of kinetic and potential
energy H0 = 1

2mp
2 +V (x). Interaction with the de-

tectors is represented by the non-Hermitian term
i
2C
†
αCα. This term causes a kind of “accumulation”

of the wavefunction around the detector positions
in phase space [45]. In each timestep δt, every de-
tector contributes to the particle wavefunction, φ,
by an amount proportional to ∝ − 1

2γ δt 〈x|α〉〈α|φ〉.
Our choice of jump operators Cα fulfills a num-

ber of basic assumptions about a sensible detector
of position and momentum. First of all, a meter
of position should click if the probability of finding
a particle in its neighborhood is large. In our case,
this probability is proportional to the squared over-
lap of the wavefunction with the state associated
with the detector. Once the meter “fires”, the parti-
cle wavefunction should be reduced according to the
information gained, so the post-measured state is lo-
calized around the position of the detector. Choos-
ing the detector states to be Gaussians stands to
reason. The width σx gives the precision of the mea-
surement.

We would like our detectors to be “gentle” to
the objects under measurement. By this, we do not
mean a weak measurement, but we want the par-
ticle velocity, assumed to be proportional to the
probability density current, to be not significantly
affected due to detection. The post-measurement
state of the particle should preserve some informa-
tion about its pre-measurement momentum at the
detection point. To this end, we equip the detec-
tors at every spatial location with a variety of ki-
netic momenta by assigning to every Gaussian spa-
tial profile plane-waves of momenta ~kn. The mo-
menta can take various values, as discussed above.
The probability of clicking is thus maximal if both
the position and momentum of the particle fit one

of the detector states. This conclusion is obvious if
one considers the detector’s wavefunction not in po-
sition but in momentum space. The Fourier trans-
form of a detector state (see (4)) is

〈k|αmn〉 =
4

√
2σ2

π
e−σ

2(k−kn)2+ixm(k−kn), (10)

a Gaussian superposition of plane-waves of mo-
menta centered around kn. The detector is very sen-
sitive to wavefunctions whose local velocity at xm
is close to kn.

3. Statistical characterization
of particle’s trajectories

In our work, we study the “trajectories” of a par-
ticle resulting from the detection process, i.e.,
sequences of position and momentum measure-
ments of the particle in the harmonic potential
V= 1

2mω
2x2. We use the harmonic oscillator units,

i.e., the unit of length aho=
√

~/(mω), the unit of
momentum q0=~/aho, the unit of time τ0=1/ω, and
the unit of energy ε0=~ω. From now on, all quan-
tities are expressed in these units. The Hermitian
Hamiltonian has the form

H0 =
1

2
x2 +

1

2
p2, (11)

placing position and momentum on equal foot-
ing. We assume that the detectors are character-
ized by a spatial width σ =

√
1/2. Selecting this

value ensures that the detectors formally have the
same width in momentum space. Moreover, as the
detectors project into coherent states, the post-
measurement uncertainty in position and momen-
tum is minimal according to Heisenberg’s principle.
Similarly to the Hermitian part of the Hamiltonian,
the coupling to detectors is symmetric, and position
and momentum are on an equal footing. We choose
the same numerical value for the detector spacing
dx = dp = d.

In our calculations, we impose the initial wave-
function of the particle to be identical to one of
the Gaussian detector states (4), centered at (x0 =
nd, p0 = 0). Here n is a natural number, chosen so
that x0 is close to 20, so for different grid densities
d we get comparable initial conditions. The particle
thus starts with zero velocity at some distance from
the minimum of the potential. This distance defines
the classical amplitude of a harmonic oscillation and
comprises several other detectors (n � 1) so that
subsequent motion can be monitored with sufficient
resolution. In our numerical experiment, we simu-
late a large number of trajectories, where by tra-
jectory we mean a time series of detection events,
“clicks” of meters at phase space locations (xi, pi)
at instants ti. An example of a single realization of
a measurement experiment is shown in Fig. 1. The
particle follows a circular orbit in phase space, as
would be expected for a classical particle. Some ran-
dom departures from this orbit are clearly visible.
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Fig. 1. Sample trajectory in phase space. The
start point is marked by an orange point, while the
end of the simulation is visualized as a green point.
A typical trajectory in our setting is always a cir-
cular motion with a growing radius. Only isolated
phase space positions of a particle are available to
the observer. The line is drawn to guide the eye.
Detector spacing is d = 2.16 and γ = 1.

Fig. 2. Average position and momentum of a par-
ticle in the harmonic potential as a function of time.
The dependence is equivalent to the classical solu-
tion of the harmonic oscillator, giving a sinusoidal
motion with the respective frequency and a phase
shift of π/2 between position and momentum. De-
tector spacing is d = 2.16 and γ = 1.

Moreover, the radius of the orbit grows slowly in
time, i.e., the energy of the observed particle in-
creases.

Individual trajectories, resulting from a stochas-
tic process, differ from one another. Their statisti-
cal properties are the main objects of our interest.
First, we analyze the average phase space trajec-
tory (〈x(t)〉, 〈p(t)〉). Using the WFQMC formalism,
we generate 5000 trajectories for each choice of pa-
rameters. Detection events are random and discrete
points in time, so to get a mean trajectory, we in-

Fig. 3. Dispersion in position (and equivalently,
momentum)

√
δ20(t) as a function of time. The

colours correspond to different values of γ for d =
2.16. The dispersion grows faster for larger γ. The
figure also shows fits of (12) as dashed lines in the
corresponding color, which are barely visible be-
cause of high agreement.

troduce coarse-grained time by dividing the time-
line into small intervals, [t, t + δt], where δt = 0.1,
and calculate the mean position and momentum for
all clicks from the ensemble falling into the interval.
The mean trajectories, both in position and mo-
mentum space, show that, on average, the particle
follows a classical path (cf. Fig. 2). The position
as well as momentum oscillate with the harmonic
oscillator frequency and are phase-shifted by π/2.

Deviations of a single realization from the
average trajectory are characterized by the
second moment of the click distribution, i.e.,
the dispersion δ2x(t) = 〈x(t)2〉 − 〈x(t)〉2 and
δ2p(t) = 〈p(t)2〉 − 〈p(t)〉2. Because of the symmetry
of the Hamiltonian (5) and (11), the dispersion
in position and momentum should be equivalent
to δ2x = δ2p. The simulations essentially confirm
these expectations, which is why in Fig. 3, we
only plot the dispersion function δ(t) ≡

√
δ2x. The

dispersion functions of position and momentum
actually differ by a small modulation due to the
π/2 phase shift of position and momentum of the
particle. This will be discussed later on in this
section.

The time dependence, fitted to the numerical re-
sults, is found to be

δ2(t) ≈ Dt+ δ20 , (12)
where D is a diffusion coefficient and δ20 the ini-
tial dispersion, independent of γ; δ20 is a result of
the initial wavepacket having a finite width even
when identical to the detector wavefunction. In
other words, because of the lack of orthogonality,
immediately after localization at the detector at the
position (x0, p0) = (j0d, k0d), the particle may be
captured by a different detector (x, p) = (jd, kd). In
our model, the probability distribution of a subse-
quent click of the detector αj,k, under the condition
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that such a click occurs within a short time from the
first one, is approximately equal to the discretized
Husimi function Q(j, k) of the initial state [45]

Q(j, k) =
∣∣〈αj,k∣∣αj0,k0〉∣∣2 =

e−
1
2d

2[(j−j0)2+(k−k0)2]∑
j,k

∣∣〈αj,k∣∣αj0,k0〉∣∣2 .

(13)
According to the discussion above, the dispersion
squared of the initial spatial position of the moni-
tored particle is δ20 =

∑
j,kQ(j, k)(jd)2. If d � 1,

summation can be substituted by integration, which
yields δ20 ≈ 1. In the case of the numerical re-
sults shown in Fig. 3, this condition is not sat-
isfied (d = 2.16), but surprisingly we find that
this continuous approximation still works quite
well.

For large times, the initial dispersion can be ne-
glected, and (12) indicates that on the top of the
harmonic oscillation, the particle undergoes Brow-
nian motion. Deviations from the mean trajectory
grow as the square root of time, suggesting a dif-
fusion process characterized by the D coefficient.
Moreover, from the dimensional analysis, it seems
that dynamical quantities such as δ2(t) should de-
pend on the dimensionless parameter γt. Indeed, de-
tailed studies confirm this prediction (see Fig. 4a).
This implies that the diffusion coefficient D grows
linearly with γ, which is plausible since this im-
plies more frequent detection of the particle. Sim-
ilarly, the denser the detector grid, the more de-
tectors monitor the particle, which in turn leads to
a higher detection frequency and larger perturba-
tions of the classical trajectory. In Fig. 4b, we show
the dependence of the diffusion coefficient on the
detector spacing d for a fixed value of γ = 1.0. The
results clearly show that D is inversely proportional
to the squared detector spacing. Our numerical ex-
periment allows us to postulate the following depen-
dence of the diffusion coefficient on the parameters
of the observation process

D ≈ 2π
γ

d2
. (14)

The analytical formula (12) shows very good agree-
ment with numerical calculations. This formula may
also be confirmed by approximate analytical consid-
erations. The diffusion coefficient is related to the
squared mean displacement of a walking particle per
unit of time, i.e.,

D = γ
∑
j,k

e−d
2(j2+k2)/2 (dj)2. (15)

Using the continuum approximation, jd = x,
kd = p, and

∑
j,k →

1
d2

∫
dxdp, the diffusion co-

efficient is equal to

D ≈ γ

d2

∫
dx dp x2 e−(x

2+p2)/2 =
2π γ

d2
. (16)

We thus recovered (14), which was obtained by fit-
ting it to numerical data.

A more careful analysis indicates that in ad-
dition to the Brownian diffusion characterized by
a linear growth of the dispersion δ2(t), there are

Fig. 4. Dependence of the diffusion coefficient D
on parameters of detection. (a) Dependence of D
on γ for d = 2.16. Blue points correspond to simu-
lations while the orange curve is a fit of the linear
function, D ∝ γ. (b) Dependence of D on distance
d between detectors for a fixed value of γ = 1. The
blue points are the simulation results, while the or-
ange line is the fit of D ≈ ( 5

2
)2 1

d2
function.

small-amplitude oscillations with the frequency 2ω.
These oscillations can be explained assuming small
dephasings of individual trajectories x=x0 cos(t +
δϕ) with respect to the average x=x0 cos(t). De-
phasing gives an oscillatory contribution to the dis-
persion 〈x2〉 − 〈x〉2 ≈ δϕ2 sin2(t). A similar oscil-
latory character of the dispersion of position and
momentum was observed in [47], where the phase
space dynamics of a continuously monitored particle
in an anharmonic potential is studied. In that work,
however, the dispersion is bounded, contrary to the
result presented here. This is because the authors
of [47] have studied the limit of very frequent and
very weak measurements, whereas the present work
treats a series of strong measurements at discrete
points in time. Each measurement is performed at
the “Heisenberg limit”, i.e., it minimizes the uncer-
tainty relation

σxσp =
1

2
. (17)

Such a measurement necessarily introduces growing
fluctuations. Our studies indicate that the disper-
sion of trajectories is model/system sensitive. This
fact was also noticed by us in [45], where different
types of diffusion were found for alternative POVMs
of measurement operators.
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Fluctuations in the position and momentum of
a particle lead to an increase in its energy. It is
because of this that when we observe the sample
trajectory in phase space, it tends to be a circular
motion spiraling outwards (see Fig. 1). The radius
of a circle in phase space increases with time, r(t) =√

2〈E(t)〉. It follows directly from (12) that the av-
erage energy of the particle, 〈E〉 = 1

2 〈x
2〉 + 1

2 〈p
2〉,

grows linearly with time,
〈E(t)〉 = δ2(t) + E0 = D t+

(
δ20 + E0

)
, (18)

where E0 = 1
2 (x20+p20) is the initial energy of a clas-

sical particle at initial position x0 with initial mo-
mentum p0.

By dividing the energy scale into small inter-
vals ∆E, we can obtain the energy distribution
pE(t) of the ensemble of trajectories as a function
of time. This distribution around t = 0, as obtained
from our simulations, is shown in Fig. 5. This is
a relatively narrow function centered around E0.
Again, as in the case of position dispersion, the
initial distribution of energy can be approximately
obtained from analytic calculations. As previously,
we use the continuum approximation: j(j0)d →
x(x0), k(k0)d → p(p0), and Qi,j → P(x, p) =
1
2π e−

1
2 (x−x0)

2

e−
1
2 (p−p0)

2

. If the particle is initially
placed at phase space location (x0, p0), then the ini-
tial energy distribution is

pE =

∫
dxdp P(x, p) δ

(
E − 1

2 (x2 + p2)
)
. (19)

Using that 2E0 = x20 + p20, we get

pE = e−(E+E0) I0(
√

2E0

√
2E), (20)

where I0(z) is the modified Bessel function of the
first kind.

The energy distribution, as given by (20), is plot-
ted in Fig. 5a. Again, the continuous approximation
works quite well even for the parameters that do not
fully legitimate the use of the formula. We stress
that to get the energy histogram, we accumulated
data from the time interval 0 < t < 2π, so strictly
speaking, the histogram does not give the energy
distribution exactly at t = 0, but the distribution
averaged over the first period of the oscillation. For
large times t, this initial energy distribution evolves
into a thermal distribution

pE(t) =
1

ε(t)
e−E/ε(t). (21)

The width and mean of this ε(t) distribution de-
pend on time. Setting ε = kBT allows us to for-
mally define a temperature for the system, identi-
fying the repeated measurement process with the
type of “heating.” The distribution pE in the ther-
mal regime is shown in Fig. 5b. The temperature of
the ensemble grows with time, and for large times, it
becomes kBT (t) = 〈E〉 = δ2(t) ≈ Dt. This analyti-
cal prediction again agrees well with the numerical
results.

In summary, we studied a quantum particle in
an external harmonic potential that is repeatedly
monitored by an array of detectors regularly dis-

Fig. 5. Energy distribution for two different times.
Panel (a) shows a distribution shortly after the be-
ginning of the simulation, and panel (b) shows the
distribution at a “late time” (after many oscilla-
tions). The blue histograms correspond to numer-
ical data, while the orange curves are the func-
tion (20) (a) and an exponential (b) fit. Note
that the labels t = 0 and t = 200 are approx-
imate in the sense that in order to gather suffi-
cient numerical data for the histogram, we consider
clicks from a time interval corresponding to one full
oscillation.

tributed in phase space. We employed an open sys-
tem formalism, treating the detectors as an exter-
nal reservoir. Coupling of the particle to the me-
ters is given by jump operators whose action is
to project the particle’s wavefunction onto coher-
ent states characterizing the detectors. We use the
wavefunction quantum Monte Carlo method to gen-
erate ensembles of time-dependent wavefunctions.
We interpret every generated wavefunction as a sin-
gle realization of the particle’s dynamics, which in
addition to continuous evolution, experiences quan-
tum jumps related to observations. We show that,
on average, the trajectories follow the classical path.
This result is similar to the one in [47], where a von
Neumann type of coupling between the system —
being a nonlinear oscillator — and the meters were
considered. Random quantum jumps in position
and momentum space introduce fluctuations on top
of harmonic motion. We have shown that these fluc-
tuations have the character of Brownian motion, as
the diffusive process with the dispersion of position
and momentum grows linearly with time. We nu-
merically found the diffusion coefficient and its de-
pendence on the detector clicking rate γ and the de-
tector spacing d. Going back to dimensional units,
we see that the diffusion coefficient Dx in position
space is proportional to the Planck constant

S137



F. Gampel et al.

Dx = 4πγ
~

dxdp
σ2, (22)

signifying the quantum character of this process.
Again, this is due to the fact that our measurements
are performed at the limit set by the Heisenberg un-
certainty limit (see (17)). Here, dxdp is the action
equal to the area of an elementary cell in the phase
space, determined by the detector spacing.

Finally, we found that repeated observation in-
troduces heating of the particle, the energy distri-
bution of the trajectory ensemble at large times be-
comes thermal, and the effective temperature grows
linearly in time.

Our studies of the system under continuous mon-
itoring and comparison to similar studies [45, 47]
show that the observed mean trajectories corre-
spond to the classical trajectories, however, the de-
viation from the mean (the dispersion) significantly
depends on the system studied and details of the
detection process, in particular on a choice of the
positive operator-valued measure.

We do not know whether the particular measure-
ment schemes considered here can ever be realized
in practice. However, the model we formulate is fully
admissible in view of the present understanding of
the quantum measurement theory. As such, it is le-
gitimate to study its consequences. Paraphrasing
the words of Professor Iwo Białynicki [48]: “As to
the usefulness of our results, we have no opinion
at all. Perhaps someone else could see whether they
are good for anything.”†1
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