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We propose a method to factor numbers based on two interacting bosonic atoms in a central potential,
where the single-particle spectrum depends logarithmically on the radial quantum numbers of states
corresponding to zero angular momentum. Bosons initially prepared in the ground state are excited
by a sinusoidally time-dependent interaction into a state characterized by quantum numbers, which
represent the factors of the number encoded in the frequency of the perturbation. We also discuss the
complete single-particle spectrum as well as the limitations of our method caused by decoherence.

topics: factorization, logarithmic energy spectrum, central potential, cold atoms

1. Introduction

It is well-known that the decomposition of a pos-
itive composite integer into a product of prime
factors is a difficult problem in number theory
since it requires non-polynomial time on a classi-
cal computer, which makes it attractive for crypto-
logical applications [1]. Indeed, decoding a message
encoded by the famous Rivest–Shamir–Adleman
(RSA) protocol [2] requires the decomposition of
a large semiprime, i.e., an integer composed by two
primes, in a reasonable time. Such a decomposi-
tion can be easily prevented by choosing larger and
larger semiprimes. The topic of prime factorization
is intimately connected to Peter Shor because on
an ideal quantum computer Shor’s factorizing algo-
rithm [3] takes only polynomial time and is therefore
expected to break the RSA scheme in the future.

1.1. Factorization based on a central potential
with logarithmic spectrum

As an alternative method, we have studied [4–6]
the factorization of integers using bosonic atoms
in one- and two-dimensional potentials, both with
a logarithmic energy spectrum. Our present

theoretical study represents an extension of these
thoughts and is motivated by two features: (i) it is
possible [7] to create and control almost any kind
of potential for the center-of-mass motion of the
atom using adiabatic potentials, and (ii) bosons in
a spherically symmetric parabolic potential as well
as in a spherical box provide textbook examples
for the thermodynamics of the Bose–Einstein con-
densation [8, 9]. For this reason, in this article, we
numerically construct a central potential with a log-
arithmic energy spectrum and propose a factoriza-
tion algorithm.

The two bosons originally trapped in the ground
state of this potential are excited by a periodic
perturbation with a frequency governed by the
semiprime we want to factor. At a later time, the
bosons are found with a probability of about one-
half in a state where the energies of the individual
bosons contain the factors of the semiprime. Thus
a measurement of these energies provides us with
the factors we are looking for.

Many ways to experimentally implement our
scheme are offered. The most promising one takes
advantage of the fact that the interaction of an atom
with an electromagnetic wave, which is far de-
tuned from the atom’s resonance, experiences [10]
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a potential for its center-of-mass motion determined
by the spatial dependence of the light intensity.
Hence, by tailoring the intensity distribution to the
predetermined shape of the potential, one creates
the desired spectrum. In this way, it was possible
to create [11], for example, a potential whose en-
ergy eigenvalues are given by prime numbers. Obvi-
ously, in the context of factorization, the potential
with an energy spectrum given by the logarithm of
primes is of interest and was proposed in [5].

Malcolm G. Boshier at Los Alamos National
Laboratory has kindly informed us [12] that he is
presently pursuing our approach to factor numbers.
By shaking the one-dimensional potential associ-
ated with a logarithmic energy spectrum, he and his
team could already excite individual energy states
as well as their coherent superposition. Energy mea-
surement is achieved by imaging the atoms and
counting the number of nodes and anti-nodes of the
energy wave functions.

We emphasize that the spherical symmetry of
the unperturbed potential is crucial for the pro-
tocol proposed in this article. Among the neces-
sities to experimentally obtain symmetry of this
kind is microgravity [13]. Hence, a drop tower,
for example, the one in Bremen [14], a sounding
rocket in space [15], or the International Space Sta-
tion [16, 17] could provide such an environment.

Moreover, central to our considerations are
s-states, i.e., the states of vanishing angular mo-
mentum. It is worthwhile mentioning that such
states have also played a major role in the stud-
ies [18–20] of the unusual dynamics of free wave
packets. Indeed, they display focusing or defocus-
ing effects even in the absence of external poten-
tials or position-dependent phase factors, and are
the result of the dependence of the Laplacian in
the Schrödinger equation on the number of space
dimensions. This manifestation of the dimension-
ality of space in quantum mechanics [21] is the
analogue of the violation of Huygens’s principle in
electrodynamics.

1.2. Overview

This article is organized as follows. In Sect. 2
we introduce the logarithmic energy spectrum and
discuss the distribution of a given energy onto two
single-particle states. Moreover, we recall a one-
dimensional potential giving rise to such a spec-
trum. We then solve in Sect. 3 the Schrödinger
equation in three dimensions and show that the
s-states, i.e., states corresponding to the zero az-
imuthal quantum number, suffice to determine the
central potential with a logarithmic energy spec-
trum. Moreover, we take into account the bound-
ary condition at the origin and demonstrate that
the single-particle s-states exhibit an energy spec-
trum identical to the one introduced in Sect. 2. In
Sect. 4, we define the corresponding two-particle
states using the bra–ket notation.

Section 5 constitutes the main part of our arti-
cle. Here we discuss the realization of our factor-
izing scheme by two bosonic atoms moving in the
central potential determined in Sect. 3, and being
excited by a time-dependent interaction into the
factor state. We derive the solution of the corre-
sponding Schrödinger equation within the rotat-
ing wave approximation and demonstrate that after
measuring the single-particle energies at random
times the factor state is found with a probability
of about 1/2. A brief discussion of the limitations
of our method completes this section. We conclude
with a short summary in Sect. 6.

Central to our proposal is the fact that the en-
ergy spectrum of our central potential does not
display any accidental degeneracies. For an el-
ementary discussion of this point, we refer to
Appendix.

2. Logarithmic spectrum and potential
in one dimension

In the present section, we first introduce the loga-
rithmic energy spectrum and discuss its special role
in finding factors of an integer. We then turn to
the distribution of the given energy onto two sub-
systems. This discussion constitutes the foundation
for our factorization protocol. We conclude by re-
calling [4, 22] the potential in one space dimension
that gives rise to such a spectrum.

2.1. Central idea for factorization

Our scheme is based on the logarithmic energy
spectrum

Ek(L) ≡ ~ω0 ln

(
k

L
+ 1

)
(1)

with k = 0, 1, 2, . . . and E0(L) = 0. Here, the con-
stant L plays the role of a scaling parameter and
~ω0 is the unit of energy.

In order to find the factors of a given semiprime
N ≡ p q, we distribute the total energy

Etotal(N ;L) ≡ ~ω0 ln

(
N

L2

)
(2)

onto two subsystems, each with the spectrum de-
fined by (1) according to the relation

Etotal(N ;L) = ~ω0 ln
( p
L

)
+ ~ω0 ln

( q
L

)
(3)

that is
Etotal(N ;L) = Ep−L(L) + Eq−L(L). (4)

Since L appears in the indices of the energies in (4),
it has to be an integer. No negative indices are
present in (1), therefore N cannot contain the fac-
tors q < L and p < L.

Moreover, the factor q = L or p = L causes the
unwanted case that the total energy given by (3)
may be transferred to one of the two subsystems
while the other one remains in the ground state
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Fig. 1. The one-dimensional potential V = V (ξ; 3)
(dotted line) creating a logarithmic energy spec-
trum for the scaling parameter L = 3 as a func-
tion of the dimensionless coordinate ξ ≡ αx with
α2 ≡ µω0/~. This potential is determined [22] nu-
merically by an iteration algorithm based on a per-
turbation theory using the Hellmann–Feynman the-
orem, and is designed to obtain a logarithmic depen-
dence of the energy eigenvalues Ek(L = 3) on the
quantum number k as given by (1). In the neighbor-
hood of the origin, the potential is approximately
harmonic whereas for large values of ξ it is loga-
rithmic. The solid lines depict the numerically de-
termined energy wave functions uk = uk(ξ, 3) of
the first seven states in their dependence on the
dimensionless position. Both, the energies Ek(3),
k = 0, 1, . . . 6 (dashed lines) as well as the poten-
tial V = V (ξ; 3) are expressed in units of ~ω0.

and no factorization takes place. Hence, we have to
remove the factors 2, 3, . . . , L, which can be done
by the division before we start our factorization
protocols.

However, if L is chosen to be unity the trivial
factorization N = 1×N cannot be excluded. More-
over, in Sect. 3 we shall see that L has to be odd.
Therefore, throughout our article, we consider the
case L ≥ 3.

The question of the uniqueness of the distribution
according to (3) is easily answered because the fun-
damental theorem of arithmetics guarantees that
the decomposition of the integer N is unique if both
factors, p and q, are prime.

For our factorization protocol, the two subsys-
tems have to be brought into a state of total en-
ergy (3), followed by a measurement of their indi-
vidual energies which allows us to determine the
factors p and q, as described in Sect. 5. In the re-
mainder of our article, we shall concentrate on the
factorization of semiprimes.

2.2. The inverse problem

Next, we briefly address the problem of creat-
ing such a logarithmic energy spectrum by deter-
mining the appropriate potential V in one space
dimension denoted by the coordinate x. For the
sake of simplicity, we assume a symmetric poten-
tial V (x) = V (−x) with −∞ < x < ∞, where the
time-independent Schrödinger equation for a parti-
cle of mass µ reads[
− ~2

2µ

d2

dx2
+ V (x;L)− Ek(L)

]
uk(x;L) = 0.

(5)
Since the eigenvalues Ek(L) depend on the scaling

parameter L, the potential V = V (x;L) and the
eigenfunctions uk = uk(x;L) must also display the
same dependence.

Under standard circumstances, the potential V =
V (x;L) is given and the eigenvalues must be found.
However, now the energy spectrum is prescribed,
and we have to determine the potential V = V (x;L)
from the Hellmann–Feynman theorem and the it-
eration algorithm described in the previous arti-
cle [22]. In Fig. 1 we show the so-obtained poten-
tial V = V (x;L = 3) together with the eigenfunc-
tions uk = uk(x;L = 3) and energy eigenvalues
Ek(L = 3) for 0 ≤ k ≤ 6.

We conclude by noting that in [22], we con-
structed this potential with a logarithmic energy
spectrum to obtain wave packets whose auto-
correlation function yields the Dirichlet represen-
tation of the Riemann zeta function [23]. How-
ever, it has also become crucial for our factor-
ization proposals [4–6] in one and two dimen-
sions and plays a crucial role in the present ar-
ticle when we propose an algorithm for three
dimensions.

3. Logarithmic energy spectrum
in three dimensions

In the present section, we realize the logarithmic
spectrum (1) for a particle of mass µmoving in three
space dimensions in a central potential V = V (r)
that we shall determine. For this purpose, we start
from the time-independent Schrödinger equation in
three dimensions and concentrate on the radial wave
functions. Due to the vanishing boundary condi-
tion at the origin, the corresponding eigenfunctions
are the odd ones of the symmetric one-dimensional
problem in Sect. 2. We conclude by discussing the
resulting energy spectrum.

3.1. From three dimensions to one dimension

We start from the Schrödinger equation[
− ~2

2µ
∆ + V (r)− E

]
ψ(r, θ, ϕ) = 0 , (6)
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in spherical coordinates r, θ and ϕ and employ the
ansatz

ψj,`,m(r, θ, ϕ) ≡ Rj,`(r)Y
m
` (θ, ϕ) (7)

for the energy eigenfunctions ψj,l,m that are simul-
taneous eigenfunctions of the Hamiltonian Ĥ, the
square of the angular momentum L̂2 and its z-
component L̂z forming a complete set of commut-
ing operators with the eigenvalues Ej,`, ~2 `(` + 1)
and ~m, respectively. The radial quantum num-
ber j, as well as the azimuthal quantum number `,
takes value 0, 1, 2, . . . while the magnetic quantum
number m assumes 2` + 1 values given by −` . . . `.
The functions Y m

` = Y m
` (θ, ϕ) are the spherical

harmonics.
Since the solution of (6) can be found in standard

textbooks on quantum mechanics, we jump directly
to the radial equation[
− ~2

2µ

1

r

d2

dr2
r+

~2 `(`+1)

2µr2
+V (r)−Ej,`

]
Rj,`(r)=0

(8)
valid in the region r ≥ 0 with the condition that
Rj,` = Rj,`(r) has to be square integrable and finite
at the origin r = 0.

We consider s-states defined by ` = 0 and set

Rj,0(r) ≡ vj,0(r)

r
(9)

with the boundary condition
vj,0(0) = 0 (10)

at the origin.

3.2. Potential

For the sake of simplicity in the notation, we now
suppress the index ` = 0 for the time being. In
Sect. 2, we obtained the potential V = V (x, L) and
the functions uk = uk(x, L) for one space dimension
associated with a logarithmic energy spectrum. The
three-dimensional potential V (3d) = V (3d)(r;L) as
well as the eigenfunctions vj(r;L) follow by replac-
ing the coordinate x by r in both, where now only
the region r ≥ 0 is considered that is

V (3d)(r, L) ≡ V (x = r, L). (11)
However, only odd solutions uk = uk(x;L) of (5)
with k ≡ 2j + 1 can satisfy the boundary condition
(10). Therefore, the energies Ek(L) as well as the
eigenfunctions uk(x;L) with even index k, which
are present in one dimension in (5), do not appear
anymore in three dimensions.

Figure 2 shows the potential V (3d) = V (3d)(r;L)
for the position vector r in the x–y plane. We em-
phasize that states with quantum numbers ` > 0
are not needed to determine V .

3.3. Energy eigenvalues and wave functions
of s-states

We now show that the remaining spectrum
E2j+1(L) does indeed have the form of (1) and
therefore guarantees the validity of the results from

Fig. 2. Three-dimensional potential V (3d) =
V (3d)(r;L = 3) in units of ~ω0 creating the loga-
rithmic energy spectrum (13) with the scaling pa-
rameter K = 2 as a function of the dimensionless
coordinates ξ ≡ αx and η ≡ αy, represented in the
plane z = 0.

Sect. 2 which are essential for our factorization pro-
cedure. For this purpose, we shift the energies

E2j+1(L) = ~ω0 ln

(
2j + 1

L
+ 1

)
(12)

with j = 0, 1, 2, 3 . . . by a constant amount δE ≡
−~ω0 ln(1/L+ 1) leading us to new spectrum

E
(3d)
j (K) = ~ω0 ln

(
j

K
+ 1

)
, (13)

which is identical to the single-particle spectrum (1)
except that L has to be replaced by the new scaling
parameter

K ≡ L+ 1

2
. (14)

For K to be a positive integer, L has to be odd.
All the statements made in Sect. 2 referring to the
scaling length L remain valid here provided L is
replaced by K.

The eigenfunctions vj = vj(r;K) corresponding
to E(3d)

j (K) read
vj(r;K) ≡ u2j+1(r;L). (15)

Figure 3 shows the radial wave functions

Rj(r) ≡
vj(r;K)

r
(16)

for indices j = 0, . . . 5 together with the poten-
tial V (3d) = V (3d)(r;K = 2) and the energy levels
E

(3d)
j (K = 2) given by (13).

4. Two-particle bosonic states

So far we have concentrated on a single particle
exposed to a central potential giving rise to the log-
arithmic energy spectrum of (1). We now address
the two-particle situation which is central to our
factorization scheme.
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To simplify the notation we turn to the bra–ket
formalism and the time-independent single-particle
Schrödinger equation for s-states takes the form
(j = 0, 1, 2, . . . )

Ĥ(K) |j〉 = E
(3d)
j (K) |j〉 , (17)

where we have suppressed again the quantum num-
bers ` = m = 0. The Hamiltonian Ĥ(K) is charac-
terized by the parameter K defined by (14).

The corresponding Schrödinger equation for the
two non-interacting bosons denoted by 1 and 2
reads(

Ĥ1,2(K)− Em,n(K)
)
|m,n〉B = 0, (18)

where
Ĥ1,2(K) ≡ Ĥ1(K) + Ĥ2(K) (19)

is the Hamiltonian of both bosons with total energy
Em,n(K) ≡ E(3d)

m (K) + E(3d)
n (K), (20)

in accordance with (13) and (14).
We note that bosonic two-particle states are de-

fined by

|m,n〉B ≡
1√
2

(
|m,n〉+ |n,m〉

)
, (21)

where |m,m〉B ≡ |m,m〉.
If two identical non-interacting bosons are in

a state with energy

~ω0 ln

(
N

K2

)
= E

(3d)
p−K + E

(3d)
q−K , (22)

where N ≡ p q is semi-prime, then according to
(4) and (13) the bosons are in the factor state
|p−K, q−K〉B . A measurement of the energy of one
of the bosons can only result in ~ω0 ln(p/K) or
~ω0 ln(q/K) and immediately yields the prime fac-
tors p and q, respectively.

5. Factorization algorithm

The present section contains the main results of
our article. Here we propose and analyze the realiza-
tion of the factorization protocol of Sect. 2 by two
interacting identical bosons placed in the central
potential shown in Fig. 2, with the single-particle
spectrum given by (13).

Starting from the corresponding Schrödinger
equation, we first derive the equations of motion
for the probability amplitudes of the ground state
and the relevant excited states. Here we keep all
three quantum numbers and denote them by k =
(j, `,m). To simplify the notation further, in the
remainder of the article, we suppress the scaling
parameter K as well as the subscript B and the
superscript 3d.

We then derive an explicit expression for the ma-
trix element of the Fermi point interaction [24, 25]
and simplify the equations of motion for the re-
sulting probability amplitude with the help of the
rotating wave approximation (RWA) [26, 27]. The
approximation reduces the equations of motion to

Fig. 3. Central potential V (3d) = V (3d)(ρ;K = 2)
represented by a dotted line creating the logarith-
mic energy spectrum E

(3d)
j (K = 2) of (13) in units

of ~ω0 as a function of the dimensionless radius
ρ ≡ α r together with the corresponding radial func-
tions Rj = Rj(ρ) defined by (16) of the first six
states in their dependence on ρ. We shifted the en-
ergies to ensure that the ground state has vanishing
energy.

a two-level Rabi problem involving the ground state
and the factor state. This insight allows us to esti-
mate the probability of success of our factorization
scheme. Moreover, we briefly discuss the limitations
of our method.

5.1. Coupled set of equations

We prepare two bosons in the ground state |0,0〉
and expose them at t = 0 to the perturbation

δV (r1, r2; t) ≡ γ sin(ωextt)w(r1, r2) (23)

where γ is a constant and the frequency ωext is cho-
sen later in a way suitable for the factorization pro-
cedure. Moreover, the interaction term w contains
the coordinates r1 and r2 of both particles.

The time evolution of the two-particle state
|Ψ(t)〉 is now governed by the Schrödinger equa-
tion

i~
d

dt
|Ψ(t)〉 =

(
Ĥ1,2 + δV (t)

)
|Ψ(t)〉 (24)

in three dimensions with the unperturbed station-
ary states

Ĥ1,2 |k1,k2〉 = Ek1,k2 |k1,k2〉 . (25)

When we substitute the expansion

|Ψ(t)〉 =
∑
k1,k2

bk1,k2(t) e− iEk1,k2
t/~ |k1,k2〉

(26)
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of |Ψ(t)〉 by the two-particle eigenstates |k1,k2〉 of the unperturbed Hamiltonian Ĥ1,2 into (24), we arrive
at the coupled system

i~ ḃk1,k2
(t) = γ sin(ωextt)

∑
k′1,k

′
2

e
i (Ek1,k2

−Ek′
1
,k′

2
)t/~

Wk1,k2;k′1,k
′
2
bk′1,k′2(t) (27)

with the initial conditions bk1,k2
(0) = 1 for j1 +j2 +

`1 + `2 = 0, and bk1,k2
(0) = 0 otherwise, which has

to be solved for the probability amplitudes bk1,k2
(t).

We conclude by emphasizing that the eigenstates
|k1,k2〉 of Ĥ1,2, the amplitudes bk1,k2

(t), and the
matrix elements

Wk1,k2;k′1,k
′
2
≡ 〈k1,k2|w(r̂1, r̂2) |k′1,k′2〉 (28)

are “bosonic” ones in the sense of (21) and are built
out of the eigenstates |k1,k2〉 of Ĥ1,2 and the spa-
cial part w of the perturbation δV̂ defined by (23).
Moreover, in the summation in (26) and (27), the
same states must not be counted twice.

5.2. Matrix elements for the contact interaction

Next we derive an explicit expression for the ma-
trix elementWk1,k2;k′1,k

′
2
(28), assuming the contact

interaction
w(r1, r2) ≡ δ(3)(r1 − r2). (29)

between two particles, providing us with the selec-
tion rules of the transitions from the ground state.

Needless to say, we are well aware that we should
use the regularized delta function [24, 25] rather
than the delta function of (29) for the zero-range po-
tential. However, in order to bring out most clearly
the central points of our factorization algorithm, we
resort to the elementary version of (29) of the con-
tact potential and postpone the complete analysis
to a future publication.

Due to the delta function in w, the matrix ele-
ment (28) reduces in position space to

Wk1,k2;k′1,k
′
2
≡
∫

d3r ψ∗k1
(r)ψ∗k2

(r)ψk′1
(r)ψk′2

(r).

(30)

Having in mind that we start our algorithm at
time t=0 with the two particles in the ground state
|0,0〉, we consider the matrix elements W0,0;k1,k2

for a transition into the excited state |k1,k2〉. With
the product ansatz (7) for ψk, we therefore arrive
at the expression

W0,0;k1,k2 =
1

4π

∞∫
0

dr r2R0,0(r)2Rj1,`1(r)

×Rj2,`2(r) δ`1,`2δm1+m2,0. (31)

Here we have applied the well-known orthonor-
mality relation∫

dΩ Y m1∗
`1

(θ, ϕ)Y m2

`2
(θ, ϕ) = δ`1,`2 δm1,m2

(32)
of the spherical harmonics and the identity

Y m∗
` (θ, ϕ) = Y −m` (θ, ϕ) (33)

for their complex conjugate together with
Y 0

0 ≡ 1/
√

4π.

5.3. Encoding the number to be factored
and rotating wave approximation

We now employ the expression (31) for the ma-
trix element W0,0;k1,k2

to simplify the system of
coupled equations (27) considerably. For this pur-
pose, we set the two magnetic quantum numbers
m1 = m2 = 0 and omit them henceforth. This as-
sumption will be justified by the calculation below.
The single-particle state is now only characterized
by two quantum numbers j and `.

Thus we study the set of equations

i~ ḃ0,0;0,0(t) = γ sin(ωextt)
∑

j1,j2,`

e− i (Ej1,`+Ej2,`)t/~W0,0;0,0;j1,`,j2,` bj1,`;j2,`(t) (34)

with the matrix element (31) and vanishing energy
of the ground state of the two bosons.

The external frequency ωext is chosen such that
the energy ~ωext is identical to the sum

Ep−K,0;q−k,0=Ep−K,0+Eq−K,0=~ω0 ln
( N
K2

)
(35)

of the energies of the factor states, and is deter-
mined by the number N = p q to be factored.

Next, we address the product

E(t) ≡ 1

2i

(
e i (Ep−K,0+Eq−K,0)t/~ − e− i (Ep−K,0+Eq−K,0)t/~

)
e− i (Ej1,`+Ej2,`)t/~ (36)
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of time-dependent factors, which appears on the
right-hand side of (34) when we decompose the sine
function into the difference of two phase factors.

The essence of RWA, when applied to (34), is to
retain only terms with constant coefficients on the
right-hand side and to neglect all oscillating terms.
Indeed, when we assume that p ≥ q, only the term
with j1 ≡ p−K, j2 ≡ q−K, and ` = 0 survives,
providing us with the contribution (2i)−1.

The Appendix discusses the possibility of acci-
dental degeneracy in the logarithmic single-particle
spectrum Ej,` given by (1), the absence of which is
confirmed therein. None of the terms with ` ≥ 1 can
therefore lead to additional constant terms in (36).

Within RWA, (34) reduces to the equation

i~ ḃ0,0(t) =
γ

2i
W0,0;p−K,q−K bp−K,q−K(t),

(37)
where the index ` = 0 is present in the matrix ele-
ment, and in the probability amplitudes it is omit-
ted here for convenience.

We derive a second equation by selecting the term
with j1 ≡ p−K and j2 ≡ q−K from (27) and pro-
ceeding as before we arrive at the equation of mo-
tion

i~ ḃp−K,q−K(t) = − γ

2i
Wp−K,q−K;0,0 b0,0(t).

(38)
of the unperturbed s-states.

5.4. Factor state and its probability

We note that (37) and (38) characterize the dy-
namics of a two-boson system driven by the periodic
perturbation (23) with energy (35). Together with
the initial conditions b0,0(0) ≡ 1 and bp−K,q−K(0) ≡
0 as well as the symmetry relation

Wm,n;0,0 = W0,0;m,n, (39)
the resulting probability amplitude for the ground
state reads

b0,0(t) = cos(Ωt), (40)
whereas for the factor state we find

bp−K,q−K(t) = sin(Ωt). (41)

The Rabi frequency

Ω ≡ γ

2~
W0,0;p−K,q−K (42)

is proportional to the interaction matrix element
of (31).

In Sects. 2 and 4 we have shown that if the bosons
are in the factor state |p−K, q−K〉 they have a two-
particle energy ~ω0 ln(N/K2) given by (22) with
N = p q. As mentioned there, the factors p or q
are determined by a measurement of the single-
particle energies (3), and the factorization protocol
has ended successfully.

At the time t, the system can be found with prob-
ability |bp−K,q−K(t)|2 in the factor state, and at
the time equal to an odd multiple of π/(2Ω), it is
there with 100% certainty. Unfortunately, the Rabi

frequency Ω is not known. Instead, we content our-
selves with measuring at a time chosen randomly
from a time interval [0, T ] much larger than π/Ω .
According to (41), the probability to find the fac-
tor state is about one-half. Then the measurement
of the single-particle energy gives one of the factors
while the other one follows from division.

An estimate for a time of measurement by making
a guess for the factors p and q and so determining
the Rabi frequency (42) was presented in a previous
article [4].

5.5. Limitations

In the present section, we briefly address the ob-
stacles that prevent our protocol from factoring
larger and larger semiprimes, and in particular, we
derive the condition for the largest number N we
can factor. Here we address especially limitations
due to decoherence.

According to [26], there is a high probability for
a periodic transition into the factor state as long
as the difference between the energies of this state
and of the next off-resonant state is larger than the
energy ~Ω of the Rabi oscillation. This condition
translates into the requirement

~ω0

∣∣∣∣ln(N ± 1

K2

)
− ln

(
N

K2

)∣∣∣∣ ≈ ~ω0

N
� ~Ω .

(43)
Since the Rabi frequency Ω defined by (42) is pro-
portional to the strength γ of the perturbation (23),
the inequality (43) can easily be satisfied by choos-
ing γ as small as needed.

Unfortunately, the second condition arises from
the fact that we randomly choose the time of mea-
suring the energies of the two bosons from the inter-
val [0, T ]. To find the factor state with a probability
of approximately 1/2, the interval length T has to
fulfill the condition Ω T � 1.

On the other hand, the system has to be free of
decoherence during the time interval T < Tdec lead-
ing to the two inequalities for the Rabi frequency

Ω � 1

Tdec
(44)

and
Ω � ω0

N
. (45)

Our aim is now to find an upper limit for the
number N to be factored. In [4] and [6] for different
experimental situations and models for the spatial
part of the interaction, we have found an approxi-
mate N -dependence

W0,0;p−K,q−K ∝ N−1/2 (46)
of the transition matrix element.

Due to (42) the same scaling holds true, of course,
for the Rabi frequency Ω , and the semiprime N to
be factored therefore has the upper limit

N < min

([
γ Tdec

~

]2

,

[
~ω0

γ

]2
)
. (47)
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Assuming that according to (23) the interaction
strength γ can be chosen at will, this relation shows
that the crucial limiting factor for the magnitude of
N is the decoherence time Tdec.

6. Conclusions

In the present article, we have proposed a method
to find the factors of a semiprime N based on
the quantum dynamics of two identical bosonic
atoms moving in a spherically symmetric trap
whose s-states exhibit a logarithmic single-particle
spectrum.

In the first part of our work, we have de-
termined the central potential, which displays
such an unusual spectrum. We started by nu-
merically calculating the one-dimensional potential
from a logarithmic single-particle spectrum. Tak-
ing advantage of the close relationship between
three-dimensional spherically symmetric and one-
dimensional problems, the central potential was eas-
ily found. As expected, it has an energy spectrum
with the logarithmic s-wave part, but with a scaling
length different from the one in the one-dimensional
spectrum.

In the second part, we have attacked the prob-
lem of how to force the bosons into the factor state.
For this purpose, we excite them from their ground
state by a periodic time-dependent contact interac-
tion with a frequency determined by the number N
to be factored. To exclude transitions between non-
s states, we have discussed in extenso the absence
of degeneracies.

Then we showed within the framework of the ro-
tating wave approximation that the bosons perform
a Rabi oscillation between the ground state and the
factor state. The latter emerges with a probability
of about one-half when the energies of the bosons
are measured at a randomly chosen time. These en-
ergies provide us with the factors of N , and our
factorization protocol has ended successfully.

Since holographic methods allow us to create al-
most arbitrary potentials for the center-of-mass mo-
tion of atoms and detect them by their fluorescence,
an experimental implementation of our factoriza-
tion scheme is within reach. Indeed, the group of
Donatella Cassettari has already used this tech-
nique to experimentally realize a potential whose
energy eigenvalues are given by the lowest prime
numbers. Moreover, the team of Malcolm Boshier
even implemented a one-dimensional potential for
the logarithmic energy spectrum and observed well-
defined excitations of atoms from the ground state
to individual energy eigenstates of this potential.
Unfortunately, the demonstration of our factoriza-
tion scheme is still awaiting.

Hence, today’s technology already allows us to
factor small numbers using this technique. How-
ever, three phenomena make the straight-forward
application to large composite integers impossible:

(i) decoherence during Rabi oscillations, (ii) scal-
ing of separation between neighboring energy levels
with an inverse of the quantum number n requir-
ing increasing accuracy in determining the levels,
and (iii) the non-vanishing time for the transition
of the two atoms from the ground state to the fac-
tor states given by the inverse of the Rabi frequency,
which grows with the square root of the number N
to be factored.

It is interesting that the same scaling appears in
the naive approach towards factoring just trying out
all the primes below to the square root of N . Hence,
it appears that the RSA scheme is saved by the fact
that quantum transitions are not quantum jumps,
but rather follow the continuous dynamics given by
the Rabi oscillation as dictated by the Schrödinger
equation.
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Appendix A: Absence of accidental
degeneracy in the logarithmic spectrum

The energy spectrum of any central potential ex-
hibits the familiar (2`+1)-fold essential degeneracy
as the energy levels Ej,` do not depend on the mag-
netic quantum number m. It has been proven long
ago [28] that the only potentials that show acci-
dental degeneracy are the Coulomb potential and
the harmonic oscillator. This fact is a consequence
of the existence of a conserved quantity [29], which
does not commute with any member of the com-
plete system of commuting operators of the prob-
lem. In the Coulomb case, this constant of the mo-
tion is the well-known Runge–Lenz vector [30, 31],
whereas, for the harmonic oscillator, we shall dis-
cuss it below. Since our central potential leading
to the logarithmic energy spectrum is none of the
above, accidental degeneracy must be absent. We
shall now study this problem in more detail.

A.1: Non-closed trajectory of a classical particle

We recall that the trajectories of a classical par-
ticle in the harmonic oscillator as well as in the
Coulomb potential are closed, the latter only for
negative energies. Following the textbook [32], we
calculate the trajectory of a mass µ, energy E, and
angular momentum J oscillating in the effective po-
tential

Fig. 4. Scaled effective potential Veff (solid line)
formed by the angular momentum barrier (dotted
curve) and the potential V (3d) = V (3d)(r;K = 2)
(dashed line) which in the quantum case creates the
logarithmic energy spectrum given by (13) for the
scaling parameter K = 2 defined by (14), as a func-
tion of the dimensionless radius ρ ≡ αcl r with
αcl ≡ (µV0/J

2)1/2. The horizontal line denotes the
energy E = 0.86V0 of the radial coordinate r = r(t)
of a classical particle moving periodically between
the left and right turning point. The angle θ = θ(t)
is not periodic, as is the orbit r = r(θ) shown
in Fig. 5.

Veff(r) ≡ J2

2µr2
+ V (3d)(r,K) (48)

with energy E = 0.86V0 periodically between the
two turning points depicted in Fig. 4.

In Fig. 5 we display five periods of the trajectory
r = r(θ). It is evident that the orbit of the par-
ticle precesses around the center of force and does
not close, thus indicating the absence of accidental
degeneracy.

A.2: Energy spectrum

The most direct way to check for degeneracy is to
calculate the energies Ej,` for the potential under
consideration with radial and azimuthal quantum
numbers j and `, respectively. If two or more of
energies with different indices are equal, degeneracy
is present.

Before we get to our potential, we recall the situ-
ation for a three-dimensional isotropic harmonic os-
cillator where the lowest energy levels are displayed
in Fig. 6. Indeed, here the energies Ej,` depend on
the combination of both indices j and ` on the prin-
cipal quantum number n = 2j + ` leading to the
degeneracy [33] of levels En = ~ω(n+ 3/2) demon-
strated by the levels with n = 2, 3, 4. If the x- and
y-axis are oriented along the symmetry axes of the
elliptic orbit of the oscillator, then the additional in-
tegral of the motion reduces [34] to the scalar func-
tion Ex−Ey, i.e., a difference between the energies
of the motion projections onto the x- and y-axis,
respectively.

For our central potential V (3d) = V (3d)(r,K),
defined by (11), leading to the logarithmic energy
spectrum Ej,`(K) given by (13), we numerically

Fig. 5. Trajectory r = r(θ) of a classical particle
with mass µ and energy E = 0.86V0 moving in
the effective potential shown in Fig. 4. The motion
starts from an inner turning point at the angle θ =
0. After having covered five periods it reaches again
the inner turning point, but now at the angle θ ≈
11π/8.
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Fig. 6. Lowest dimensionless energies εj,` ≡
Ej,`/(~ω) of an isotropic three-dimensional har-
monic oscillator. The levels with the energies En =
~ω(n+3/2) show degeneracy as the principal quan-
tum number n = 2j + ` depends on both the ra-
dial quantum number j and the azimuthal quantum
number `. For example, the level n = 2 is doubly de-
generate for pairs of quantum numbers j = 1, ` = 0
and j = 0, ` = 2 leading to the same energy.

Fig. 7. Scaled energies of a particle with mass µ
moving in a three-dimensional potential, leading to
a spectrum where the s-state part is given by (13)
and the scaling parameter K = 2 by (14). Each
energy level is characterized by two quantum num-
bers j and `. No principal quantum number can be
identified and evidently, no accidental degeneracy is
taking place.

solved the radial wave equation (8) and display the
lowest energy levels in Fig. 7. At first sight, the
scheme resembles that of the harmonic oscillator.
However, closer inspection reveals that the levels,
which for the harmonic oscillator were degenerate,
now differ slightly. We conjecture that higher en-
ergy levels behave similarly and that no accidental

degeneracy occurs. We emphasize once more that
the (2` + 1)-fold essential degeneracy with respect
to the magnetic quantum number m is caused by
the central potential.
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