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Free electromagnetic fields, satisfying Maxwell’s equations with no charges and electric currents, can
be described by complex vector fields. In the standard formulation with fields sharply dependent on
position and time, one obtains integrals that are mathematically ill-defined. This happens for the
massless Pauli–Jordan function, which is used to describe the time evolution of fields and appears in the
Poisson brackets for classical fields. This difficulty can be solved by introducing smeared fields as linear
functionals with test functions. In this way, the massless Pauli–Jordan function becomes a tempered
distribution, allowing a mathematically rigorous analysis.
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1. Introduction

The electric and magnetic fields in empty space
can be expressed in terms of a pair of com-
plex vector fields F (x) = E(x)− i cB(x) and
F ∗(x) = E(x)+i cB(x), where x = (t,x) and
c = (µ0ε0)−1/2 [1]. This can be extended to an
arbitrary homogeneous and isotropic dielectric [2].
These fields are called the Riemann–Silberstein
(RS) vectors [3] and can be analysed in various as-
pects in both classical and quantum physics. In [3]
Białynicki-Birula claims that it is a complex vector-
function of space and time coordinates that ad-
equately describes the quantum state of a single
photon. It is also argued that it can be practi-
cal for describing the quantum states of excitation
of a free electromagnetic field, the electromagnetic
field acting on a medium, the vacuum excitation of
virtual electron–positron pairs, and for comparing
the photon with other quantum particles that have
their wave functions. Also, the Schrödinger equa-
tion for a photon and the Heisenberg uncertainty
relations can be formulated in terms of the RS vec-
tors [4]. More mathematical aspects of this formal-
ism are presented in [5] and [6]. An overview of
many features of classical and quantum electromag-
netic fields described by RS vectors can be found
in [7].

In this article, we will discuss other aspects of
classical fields in empty space, with particular ref-
erence to objects defined by momentum integrals
that do not converge, as this can lead to self-
inconsistency.

2. Poisson brackets and temporal evolution

In a free space with no charges and currents, the
RS vectors allow us to express Maxwell’s equations
in a compact form
∂tF (x) = ic∇× F (x), ∇ · F (x) = 0,

∂tF
∗(x) = − ic∇× F ∗(x), ∇ · F ∗(x) = 0.

(1)
The electromagnetic energy density can be written
as a simple expression if we scale the RS vectors by
a constant factor

H(x) =
ε0
2
E2(x) +

1

2µ0
B2(x) = V ∗(x) · V (x),

V (x) =

√
ε0
2
F ∗(x),

V ∗(x) =

√
ε0
2
F ∗(x).

(2)
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This leads to the Hamiltonian that generates the
equations of motion for V (x) and V ∗(x) by means
of the Poisson brackets (PB) for fields at equal time
t = t0,{
Vi(t0,x), V ∗j (t0,y)

}
PB

= i c εikj ∂
x
k δ

3(x− y),{
V ∗i (t0,x), Vj(t0,y)

}
PB

=− i c εikj ∂
x
k δ

3(x− y),{
Vi(t,x), Vj(t0,y)

}
PB

=
{
V ∗i (t,x), V ∗j (t0,y)

}
PB

=0,

(3)
where Einstein’s summation convention for re-
peated indices is applied. Moreover, the equa-
tions of motion can be solved by means of the
integral [8]

V (t,x) =

∫
R3

d3y

[
∂

∂t
D(t−t0,x−y)V (t0,y)

− icD(t−t0,x−y)∇× V (t0,y)

]
, (4)

where the function D(t,x) should satisfy the follow-
ing properties(

∂2t − c2∇2
)
D(x) = 0, D(0,x) = 0,

∂tD(t,x)
∣∣
t=0

= δ3(x). (5)
The general solution (4) can be used to transform

the Poisson brackets for equal time (3) into the gen-
eralized Poisson brackets for arbitrary instants [8]{
Vi(t,x), V ∗j (t0,y)

}
PB

=(
c2δik∇2−c2∂i∂k+ic εikj∂

x
k∂t
)
D(t−t0,x−y),{

Vi(t,x), Vj(t0,y)
}

PB
= 0

(6)
The standard definition of D(t,x), called the

massless Pauli–Jordan function [9], is given by the
momentum integral

D(t,x) = i

∫
R3

d3k

2ω (2π)3
(

e− ik·x − e ik·x), (7)

(k · x = ωt− k · x; ω = c|k| = ck), which is clearly
ill-defined. However, it is generally argued that this
divergent integral defines a distribution that can be
written explicitly using the Dirac delta distribution
accordingly

D(t,x) =
sgn(t)

2πc
δ
(
c2t2 − x2

)
. (8)

Formally, the standard definition (7) is the in-
verse Fourier transform of a function that is not in-
tegrable but is only locally integrable in R3. For this
type of function, the corresponding Fourier trans-
form can be consistently defined and calculated us-
ing tempered distributions, as recently proposed
in [10]. One might expect that the appearance of
such divergent momentum integrals as in formula
(7) is a consequence of the use of fields with a sharp
dependence on the position vector. Therefore, we
can try a different approach, using smeared fields to
check whether the new results are consistent with
the previous ones.

3. Smeared Riemann–Silberstein vectors

Smeared fields are linear functionals for test func-
tions, which vanish rapidly at infinity, so one may
define smeared fields as integrals with test functions
of the Schwartz class S(R3) ∈ f : R3 → R [11]

Vi[t, f ] :=

∫
R3

d3x Vi(t,x)f(x),

V ∗i [t, f ] := (Vi[t, f ])∗ =

∫
R3

d3x V ∗i (t,x)f(x).

(9)
Thus, all these integrals converge, and integra-

tion by parts can be easily performed without the
boundary term at infinity. This smearing can eas-
ily be applied to relations for fields with a sharp
dependence on the position vector. From Maxwell’s
equations (1) one obtains the relations for smeared
RS vectors

∂tVi[t, f ] = − iVk[t, uikf ], Vi[t, ∂if ] = 0,

∂tV
∗
i [t, f ] = iV ∗k [t, uikf ], V ∗i [t, ∂if ] = 0,

(10)
where uik := c εijk∂j . Next, smearing of non-
vanishing Poisson brackets for equal time (3) gives
Poisson brackets for smeared RS vectors at equal
time t = t0
{Vi[t0, f ], V ∗j [t0, g]}

PB
= i(uijg, f),

{V ∗i [t0, g], Vj [t0, f ]}
PB

= − i(g, uijf),
(11)

where the inner product in the space of the Schwartz
test functions f, g ∈ S(R3) is [11]

(g, f) =

∫
R3

d3x g(x)f(x). (12)

The equations of motion for smeared fields can
be easily diagonalized as

∂ta
(+)
i [t, f ] = ia

(+)
i [t, ωf ],

∂ta
(−)
i [t, f ] = − ia

(−)
i [t, ωf ],

(13)
with auxiliary smeared fields defined as

a
(+)
i [t, f ] := Vi[t, ωf ] + Vj [t, uijf ],

a
(−)
i [t, f ] := Vi[t, ωf ]− Vj [t, uijf ],

(14)
where a new test function ωaf : R3 → R, is given
by means of the inverse Fourier transform (a ∈ N)

(ωaf)(x) :=

∫
R3

d3k

(2π)3
e ik·x(c|k|)aF{f}(k).

(15)
The equations of motion for auxiliary smeared

fields can be easily solved as

a
(+)
i [t, f ] := a

(+)
i [t0, e iω(t−t0)f ],

a
(−)
i [t, f ] := a

(−)
i [t0, e− iω(t−t0)f ],

(16)

S108



Smeared Field Description of Free Electromagnetic Field

where one has(
e± iωtf

)
(x) =

∞∑
n=0

(± it)n

n!
(ωnf)(x) =

∫
R3

d3k

(2π)3
e± iω(k)tF{f}(k). (17)

These solutions enable us to write the smeared
RS vector at an arbitrary instant t as

Vi[t, f ] :=
1

2

(
a
(+)
i [t, ω−1f ] + a

(−)
i [t, ω−1f ]

)
=

Vi
[
t0, cos(ωτ)f

]
+ iVk

[
t0, uik sin(ωτ)ω−1f

]
=∫

R3

d3y
(

cos(ωτ)f
)
(y)Vi(t0,y)

− i

∫
R3

d3y
(

sin(ωτ)ω−1f
)
(y)Ui(t0,y), (18)

where τ = t−t0, Ui(t0,x) = uikVk(t0,x), and we ex-
tend the previous definition (15) to the case a = −1.
When we integrate both sides of (4) with the test
function f(x) ∈ S(R3), assuming local integrabil-
ity of D(τ, x), we obtain the tempered distribution
S ′(R3). Next, by switching the order of the inte-
grals, we get a functional, which can be compared
with (18)
Vi[t, f ] =∫

R3

d3y
∂

∂t

 ∫
R3

d3x f(x)D(τ,x−y)

Vi(t0,y)

− i

∫
R3

d3y

 ∫
R3

d3x f(x)D(τ,x−y)

Ui(t0,y).

(19)

Hence, we conclude that the massless Pauli–
Jordan function D(τ,x−y) satisfies the integral
equation∫

R3

d3x f(x)D(τ,x−y) =
(
sin(ωτ)ω−1f

)
(y).

(20)
If we choose t0 = 0 and y = 0, then the integral
equation (20) becomes the definition of the tem-
pered distribution D[t, f ] as a linear functional

D[t, f ] :=

∫
R3

d3x f(x)D(t,x) =
(
sin(ωt)ω−1f

)
(0),

(21)
which can be taken as a starting point for further
analysis.

4. Analysis of the Pauli–Jordan
functional D[t, f ]

Our analysis of D[t, f ] will use the calculation
method proposed in [10], thus we start with

D[t, f ] =
(
sin(ωt)ω−1f

)
(0) =∫

R3

d3k

(2π)3
sin(ckt)

ck
F{f}(k) =

∫
R3

d3k

(2π)3
sin(ckt)

ck

 ∫
R3

d3x f(x)e− ik·x

 . (22)

The next step requires switching the order of the in-
tegrals and if we do this directly in its present form,
we get a divergent momentum integral, so such a fi-
nal step would be mathematically incorrect,

D[t, f ] =

∫
R3

d3x f(x)

 ∫
R3

d3k

(2π)3
sin(ckt)

ck
e− ik·x

 .
(23)

Note, however, that the divergent integral in square
bracket in (23) is D(t,x), which was defined earlier
by (7). Since here it appears as the result of erro-
neous mathematical operations, hence we can con-
clude that the standard definition of (7) is flawed
or at best symbolic. For the smeared vector RS, we
can avoid this pitfall, but we must carefully follow
the steps below.

Firstly, the Fourier transform of the test func-
tion in S(R3) allows integration by parts without
a boundary term, so we can perform the following
transformation of integrals

D[t, f ] =

∫
R3

d3k

(2π)3
sin(ckt)

ck

 ∫
R3

d3x f(x)e− ik·x

=

∫
R3

d3k

(2π)3
sin(ckt)

ck

1

k2

 ∫
R3

d3x (−∆)f(x)e− ik·x

=

∫
R3

d3x (−∆)f(x)

∫
R3

d3k

(2π)3
sin(ckt)

ck3
e− ik·x. (24)

This yields a convergent momentum integral,
which can be calculated analytically using formula
(3.741.3) in [12],∫

R3

d3k

(2π)3
sin(ckt)

ck3
e ik·x =

sgn(t)

2π2c r

∫
R3

dk
sin(c k |t|)

k2
sin(k r) =

sgn(t)

4πc

(
1 +

c|t|−r
r

Θ(r−c|t|)
)
, (25)

where r = |x| and R+ = {x ∈ R : x ≥ 0}. This
leads to the final stage of the calculation, where we
have to perform integration by parts for the conver-
gent integral in R3. Omitting details, which will be
presented elsewhere, we give the final result

D[t, f ] =
t

4π

∫
Ω3

dωx f(c|t|x̂), (26)
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where dωx is the hypersurface element on the unit
sphere Ω3 embedded in R3, with its surface area
|Ω3| = 4π and x̂ = x/r being the versor of the po-
sition vector. This formula is the main result of this
work and can be used to study various properties
of the massless Pauli–Jordan function D(t,x) for
arbitrary time t.

First, one finds D[0, f ] = 0 =⇒ D(0,x) = 0 and
d

dt
D[t, f ]

∣∣∣
t=0

=
1

4π

∫
Ω3

dωx f(0) = f(0) =∫
R3

d3x f(x)δ3(x) =⇒ ∂

∂t
D(t,x)

∣∣∣
t=0

= δ3(x).

(27)
The other equations for D[t, f ] require more com-

plicated calculations, but the use of equations pre-
sented in the Appendix can be quite helpful. First,
using (39) in the Appendix, we obtain

∂

∂t
D[t, f ] = D[t, ∂r(r f)] =⇒

=⇒
(
t
∂

∂t
+ r

∂

∂t
+ 2

)
D(t,x) = 0, (28)

which is the manifestation of the covariance at
an infinitesimal dilation transformation. Then, (38)
and (40) in the Appendix allow us to find

1

c

d

dt
D[t, xi f ] = c tD[t, ∂if ] =⇒

=⇒
(
xi

c

∂

∂t
+ c t

∂

∂xi

)
D(t,x) = 0, (29)

which is the manifestation of the invariance at
an infinitesimal Lorentz boost transformation. Fi-
nally (41) and (42) in the Appendix lead to the
d’Alambert equation of motion

d2

dt2
D[t, f ] = D[t,∇2f ] =⇒

=⇒
(

1

c2
∂2

∂t2
−∇2

)
D(t,x) = 0. (30)

All the above implications are valid in the sense of
the distributions S ′(R3).

Finally, we can give the explicit form of the dis-
tribution D(t,x) starting from the functional (26),
for which the Dirac delta distribution can be
introduced according to the equations

f(|a|) =

∫
R+

dr δ(r − |a|)f(r) =

2

∫
R+

dr r δ(r2 − a2)f(r), (31)

which are valid for a 6= 0. Thus for t 6= 0, we find
two equivalent functionals∫
Ω3

dωx f(c|t|x̂) =

∫
Ω3

dωx

∫
R+

dr δ(r−c|t|) f(rx̂) =

∫
R3

d3x
δ(r − c|t|)

r2
f(x), (32)

∫
Ω3

dωx f(c|t|x̂)=2

∫
Ω3

dωx

∫
R+

dr δ(r2−c2t2) f(x̂) =

2

∫
R3

d3x
δ(r2 − c2t2)

r
f(x). (33)

This leads to two equivalent expressions for

D(t,x) =
t

4π

δ(r−c |t|)
r2

=
t

2π

δ(r2−c2t2)

r
, (34)

and we can check that they satisfy the differen-
tial equations (28), (29), and (30), in the sense of
distributions S ′(R3). We must be aware that as
long as t 6= 0 these distributions are well defined,
but for t = 0 they would contain either δ(r) or
δ(r2) that are not well-defined distributions on R+.
This caveat applies equally to formula (7), which
agrees with the second expression in (34). Unfortu-
nately, this caveat is usually omitted or even un-
known, and therefore there are attempts to calcu-
late ∂tD(t,x) exactly at t = 0, as in [13], which
cannot lead to the correct result. Moreover, the
Poisson brackets for the sharp RS vectors at dif-
ferent instants of time, given by (6), do not have
a simple limit for equal times if we use (7) for the
distribution, which implies the appearance of incon-
sistency. On the contrary, if we take the Poisson
bracket for the smeared RS vectors, then from (11)
and (18) we obtain the relation that is smooth at the
limit τ → 0, i.e.,

{
V ∗i [t0, g], Vj [t, f ]

}
PB

= − i
(
g, uij cos(ωτ)f

)
+
(
g, uik ukj sin(ωτ)ω−1f

)
=

− i

∫
R3

d3x g(x)uij
(

cos(ωτ)f
)
(x) +

∫
R3

d3x uik ukj
(

sin(ωτ)ω−1f
)
(x). (35)

5. Conclusions

The smeared RS vectors correctly describe classi-
cal free electromagnetic fields, with no ill-defined
mathematical expressions at any stage of the

calculations; instead, tempered distributions appear
naturally. We have explicitly calculated the dis-
tributions appearing in Poisson brackets and in
the time evolution formula. Such analysis can be
extended to both quantum electromagnetic field
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theory and massive fields. In particular, for massive
fields we can determine the Pauli–Jordan function
as a tempered distribution using an improved
scheme to the one presented in [13]. While the mass-
less part carries the most singular contribution, the
remaining part can be calculated quite easily.
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Appendix:
Some useful integral equations

By performing direct integration over the unit
sphere embedded in R3, the following integral re-
lations can be proved∫

Ω3

dωx ∂if(x) =
1

r2

∫
Ω3

dωx
∂

∂r

[
r xif(rx̂)

]
,

(36)∫
Ω3

dωx ∇2f(rx) =
1

r

∫
Ω3

dωx
∂2

∂r2

[
r f(rx̂)

]
.

(37)
Then, (36) applied to (26) gives D[t, ∂if ]

D[t, ∂if ] =
1

4πc2t

∫
Ω3

dωx

[
∂

∂r

(
rxif(rx̂)

)]
r=c|t|

.

(38)
The temporal derivative of (26) is

d

dt
D[t, f ] =

1

4π

∫
Ω3

dωx

[
∂

∂r

(
rf(rx̂)

)]
r=c|t|

,

(39)
which for a test function xif(x) ∈ S(R3) takes the
form

d

dt
D[t, xif ] =

1

4π

∫
Ω3

dωx

[
∂

∂r

(
rxif(rx̂)

)]
r=c|t|

.

(40)
The second order temporal derivative of (26) is
∂2

∂t2
D[t, f ] =

c sgn(t)

4π

∫
Ω3

dωx

[
∂2

∂r2

(
rf(rx̂)

)]
r=c|t|

.

(41)
If one inserts (37) into (26), then one finds

D[t,∇2f ] =
t

4π c|t|

∫
Ω3

dωx

[
∂2

∂r2

(
rf(rx̂)

)]
r=c|t|

.

(42)
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