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1. Introduction

Arguably one of the most surprising predictions
of quantum field theory is the Casimir effect, a phys-
ical force arising solely from the presence of quan-
tum fluctuations in the vacuum [1–3]. Since its
original formulation in 1948 [4], the phenomenon
has garnered a lot of interest, in particular giv-
ing rise to many alternative formulations and gen-
eralizations. One such generalization, dubbed the
dynamical Casimir effect, predicts the spontaneous
production of particles in a medium following from
non-trivial time dependence of either its boundary
or its material coefficients [5–8].

In 2008, Professor Iwo Białynicki-Birula work-
ing together with Professor Zofia Białynicka-Birula†
established a third mechanism generating the dy-
namical Casimir effect — oscillatory motion of

†This is a good opportunity to acknowledge the fact that
59 papers out of a total of 206 so far published by Profes-
sor Białynicki-Birula, as well as the comprehensive textbook
on quantum electrodynamics [9], have been written in this
admirable collaboration which started as early as 1957 [10].

a medium [9–11]. In fact, this mechanism is more
general and applies to all kinds of motion, as long
as its speed varies in time, and one carefully picks
the “incoming” and “outgoing” annihilation and cre-
ation operators (see an example of a uniformly
accelerated medium [12]). A loosely related phe-
nomenon occurs around large rotating and/or grav-
itating bodies [13].

The dynamical Casimir effect is obtained by per-
forming a Bogoliubov transformation, i.e., a linear
transformation of the creation and annihilation op-
erators of the quantum field preserving canonical
commutation relations [14]. If the Casimir effects
are among the most interesting phenomena in quan-
tum theory, Bogoliubov transformations are among
its most reliable tools. Originally used to describe
superconductivity [15, 16], today they are widely
used in many branches of quantum physics, from
optics and theories of magnetism to field theory in
a curved spacetime (Unruh effect, Hawking radia-
tion) [14, 17–19].

While the most prominent applications of the Bo-
goliubov transformations suggest the latter to be
inherently quantum, we observe that from the for-
mal point of view, Bogoliubov transformations are
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essentially equivalent to a change of basis of the
Hilbert space. For this reason, one may expect that
at least some Bogoliubov transformations could
have classical analogs, similar to local unitary ro-
tations of the Hilbert space, which do not entangle
the system. If so, this could shed new conceptual
light on the phenomena described by them.

In this paper, we derive an exact set of condi-
tions under which Bogoliubov transformations can
be considered semi-classical. By semi-classical (fur-
ther also referred to as just “classical”), we under-
stand models which can be described by certain
kinetic equations for reduced single-particle states
and their displacements — so-called reduced state
of the field formalism [20]. This framework has
recently been proven to be an effective tool in
probing the classicality of quantum Gaussian evo-
lution [21].

In the case of isolated systems, the transforma-
tions allowed by our conditions turn out to have
a simple interpretation in terms of passive oper-
ations, which correspond to classical devices such
as beam splitters. In the case of open systems, the
conditions are less restrictive, which we interpret as
some of the total dynamics’ “quantumness” being
encoded into the environment. Our findings allow us
to conduct an in-depth discussion of the classicality
of the dynamical Casimir effect derived in [11]. We
find that, while the overall phenomenon is quan-
tum in nature, the individual photons experience
each other as semi-classical dissipative effects.

This paper is organized as follows. In Sect. 2, we
introduce the dynamical Casimir effect in moving
media. In Sect. 3, we briefly summarize the most
important properties of our main tool — the re-
duced state of the field (RSF). In Sect. 4, we de-
rive our main results, namely classicality conditions
for Bogoliubov transformations. In Sect. 5, we build
upon these findings to assess the classicality of the
dynamical Casimir effect. We conclude in Sect. 6.

2. Dynamical Casimir effect
in a moving medium

The electromagnetic field is fully described by the
set of four three-component vectors, D and E, de-
scribing the electric field, along with B and H, de-
scribing the magnetic field, which altogether fulfill
the Maxwell equations in vacuum [22, 23]
∂tD(r, t) = ∇×H(r, t),

∇ ·D(r, t) = 0,

− ∂tB(r, t) = ∇×E(r, t),

∇ ·B(r, t) = 0.
(1)

In the Heisenberg picture, the operators associated
with these fields fulfill exactly the same set of equa-
tions.

Assuming the field propagates through a homo-
geneous, isotropic medium moving with a velocity v
and characterized by constant material coefficients
µ, ε, the field vectors are related by the Minkowski
constitutive relations [24]

D +
v

c2
×H = ε (E + v ×B) ,

B − v

c2
×E = µ (H − v ×D) ,

(2)
where c is the speed of light.

In the convenient Riemann–Silberstein approach
(see a review [25]), the electromagnetic field is com-
bined into two vectors

F :=
1√
2 ε
D +

i√
2µ
B,

G :=
1√
2µ
E +

i√
2 ε
H.

(3)
The advantage of this approach can already be seen
in the considered problem, as the constitutive rela-
tions (2) can always be solved for G, yielding

G =
c

n

[
F +

n2−1

c2n2−v2
v ×

(
v × F + icnF

)]
,

(4)
where n := c

√
εµ > 1 is the refractive index of

the medium. Then, assuming position-independent
velocity, v(r, t)=cβ(t), the vacuum Maxwell equa-
tions (1) reduce to just one equation

∂tF = − ic δ(t)
(
β(t) ·∇

)
F +

c

n
α(t)∇× F

− c
n
δ(t)β(t)×∇

(
β(t) · F

)
, (5)

where

δ(t) :=
n2−1

n2−β2(t)
, α(t) := 1− δ(t)β2(t).

(6)

Under a further assumption that the velocity has
a constant direction m, and with the help of the
Fourier decomposition

F (r, t) =

∫
d3k√
(2π)3

e ik·r− iφ(k,t)

×
[
e(k)f+(k, t) + e∗(k)f−(k, t)

]
, (7)

where e are elliptic polarization vectors [11], the
Maxwell equations lead to a pair of ordinary differ-
ential equations for the functions f±

∂tf̂±(k, t) =

∓ iω(k)
[
η+(k, t)f̂±(k, t)− η−(k, t)f̂∓(k, t)

]
,

(8)
with

η±(k, t) :=
1

2

[
α(t)

σ2(k)
± σ2(k)∆(k, t)

]
,

∆(k, t) := 1− δ(t)β2(t) cos2
(
θ(k)

)
.

(9)
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The parameter θ denotes the angle between the
wave vector k and the velocity direction m, while
σ is a free real parameter defining the polarization
geometry. Last but not least, the phase

φ(k, t) := ω(k) cos
(
θ(k)

) t∫
0

dτ δ(τ)β(τ) (10)

has been extracted to achieve a simplification of the
resulting equations (β = |β|).

To obtain the dynamical Casimir effect, it is as-
sumed that the medium is moving with a time-
dependent velocity from time t = 0 up to t =
T [11, 12]. If the medium just before and after was
“still” (characterized by β(t) = const), the corre-
sponding operators f̂±, after a suitable choice of
σ [11], can be interpreted in terms of the creation
and annihilation operators of photons with right he-
licity

f̂+(k, t)=


√

~ω(k) âR,in(k)e− iω(k)t, t < 0√
~ω(k) âR,out(k)e− iω(k)(t−T ), t > T

,

(11)
and left helicity

f̂−(k, t)=


√
~ω(k) â†L,in(−k)e iω(k)t, t < 0√
~ω(k) â†L,out(−k)e iω(k)(t−T ), t > T

.

(12)
Here, âL/R,in/out and their Hermitian conjugates
fulfill all the expected properties of the standard
annihilation and creation operators. Note that such
interpretation is not possible during the accelera-
tion period t ∈ [0, T ] itself, due to the impossibility
of separation into positive and negative frequency
parts.

The final operators are given by the initial ones
via the relation [11]

âR,out(k)=e− iφ
[
fR+âR,in(k)+fR−â

†
L,in(−k)

]
,

â†L,out(−k)=e− iφ
[
fL+âR,in(k)+fL−â

†
L,in(−k)

]
,

(13)

where φ ≡ φ(k, T ), while fL± ≡ fL±(k, T ), fR± ≡
fR±(k, T ) are solutions to the differential equations
(8) subject to initial conditions

fR+(k, 0) = fL−(k, 0) = 1,

fR−(k, 0) = fL+(k, 0) = 0.
(14)

It is worth adding that, due to the canonical com-
mutation relations for the outgoing photons (13)[

âR,out(k), â†R,out(k)
]

= 1,[
âR,out(k), âR,out(k)

]
= 0,

(15)
we have
|fR+|2 = |fR−|2 + 1, (16)

with an analogous relation for fL+ and fL−.

Let us remark that in the original work [11],
the functions f were denoted as f1± ≡ fR± and
f2± ≡ fL±. Here, we change the notation to make
the connection to photon helicity more immediate,
as well as to avoid confusing the indices with expo-
nentiation. We stress, however, that despite corre-
sponding to different photon helicities, the two pairs
of functions are interrelated via the initial condi-
tions and have to be considered together.

The Casimir effect is finally obtained by consider-
ing the system initially in the vacuum and comput-
ing the photon number densities after the motion
〈n̂R(T )〉 = 〈0| â†R,out(k)âR,out(k) |0〉 =∣∣fR−(k, T )

∣∣2δ(0),

〈n̂L(T )〉 = 〈0| â†L,out(k)âL,out(k) |0〉 =∣∣fL+(k, T )
∣∣2δ(0),

(17)

where δ(0) is the Dirac delta singularity. Note that,
due to the symmetry of the evolution equations gov-
erning the left and right helicity functions, the two
densities are, in fact, equal
〈n̂R(T )〉 =

〈
n̂L(T )

〉
≡
〈
n̂(T )

〉
. (18)

As was verified in [11, 12], at least for some k, this
number is a growing function of T . Therefore, the
motion of the medium results in potentially un-
bounded particle production in the vacuum and,
hence, the prediction of the dynamical Casimir ef-
fect.

Transformation (13) at the heart of the discussed
phenomenon is an example of a Bogoliubov trans-
formation [15, 16], namely a linear transformation{
ân, â

†
n

}
→
{
â′n, â

′†
n

}
of the creation and annihi-

lation operators preserving the canonical commu-
tation relations [14]. As the main result of this
paper, we will derive the precise conditions under
which such transformations can be considered semi-
classical, with special emphasis put on the classi-
cality of the dynamical Casimir effect in a moving
medium.

3. Reduced state of the field

To assess the (semi)classicality of Bogoliubov
transformations, we first need to define a sensible
criterion for what is classical. To this end, we will
employ the mesoscopic formalism of the reduced
state of the field (RSF) [20], which was already used
for similar purposes before [21]. Since the framework
itself is not the main focus of our study, here we
provide only basic information about it. For more
details, see the introduction of the formalism by
Robert Alicki in [20], its semi-classical interpreta-
tion in [21], and its application to thermodynamics
in [26].

We consider an N -mode, continuous variable
Hilbert space described by a set of N annihila-
tion and creation operators âk, â

†
k′ fulfilling the
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canonical commutation relations[
âk, â

†
k′

]
= δkk′ ,

[
âk, âk′

]
=
[
â†k, â

†
k′

]
= 0.

(19)
As always, an arbitrary n-particle state in the
many-body Hilbert space can be constructed by act-
ing on the vacuum state with n appropriate creation
operators. Since, in principle, the number of parti-
cles in a given mode can be arbitrary, the N -mode
Hilbert space is infinitely dimensional, and so is the
density operator ρ̂ constituting the full quantum de-
scription of the system.

In some cases, however, the full quantum formal-
ism is not necessary and can be replaced by a sim-
pler, mesoscopic framework. For example, Gaussian
states and dynamics can be efficiently studied in
the symplectic picture [27–29]. Similarly, to describe
macroscopic fields and associated evolution, a for-
malism called reduced state of the field (RSF) has
been recently developed [20].

In the RSF framework, instead of by the density
operator, the system is described by the pair (r, |α〉).
Here,

r :=

N∑
k,k′=1

Tr
[
ρ̂ â†k′ âk

]
|k〉 〈k′| (20)

is the single-particle density matrix, while the aver-
aged field equals

|α〉 :=

N∑
k=1

Tr
[
ρ̂ âk

]
|k〉 . (21)

The single-particle density matrix contains the
simplest non-local information about the system.
Additionally, its diagonal elements equal the mean
particle numbers rkk = 〈â†kâk〉. Consequently, the
matrix is normalized to the mean total particle
number. Note that, by construction, the single-
particle density matrix is non-negative. The aver-
aged field, on the other hand, contains additional
local information.

Much like the previously mentioned symplectic
picture requires observables and transformations
that are Gaussian, the RSF formalism employs ob-
servables that are either additive [20]

Ô =
∑N

k,k′=1
okk′ â

†
kâk′ , (22)

or linear

σ̂ =
∑N

k=1

(
σ∗kâk + σkâ

†
k

)
. (23)

In the case of macroscopic fields, which are usually
modeled as non-interacting fields with dynamics
governed by equations linear in creation and annihi-
lation operators, the most relevant observables are
of this form. For example, the Hamiltonian is ad-
ditive, while the position and momentum operators
are linear.

Defining the reduced observables corresponding to
(22) and (23) as

o =
∑N

k,k′=1
okk′ |k〉 〈k′| , |σ〉 =

∑N

k=1
σk |k〉 ,

(24)

we can indeed see that the associated expectation
values can be rewritten in the RSF formalism as [21]

Tr
[
ρ̂ Ô
]

= tr
(
r o
)
, Tr

[
ρ̂ σ̂
]

= 〈σ|α〉+ 〈α|σ〉 .
(25)

The RSF framework comes equipped with ded-
icated entropy measures and evolution equations,
both derived from the standard quantum descrip-
tion. In the case of entropy, we have the reduced
von Neumann and Wehrl entropies [20, 21]
sv
(
r, |α〉

)
:= tr

[
(rα+1N ) ln

(
rα+1N

)
−rα ln

(
rα
)]
,

sw
(
r, |α〉

)
:= tr

[
ln
(
rα + 1N

)]
+N,

(26)
where rα := r− |α〉 〈α| and 1N denotes the iden-
tity matrix in dimension N . The reduced entropies
arise from applying the maximum entropy principle
to the standard von Neumann and Wehrl entropies,
respectively [30, 31].

Finally, RSF evolves according to the reduced ki-
netic equations [20, 21]

dr

dt
= − i

~
[
h, r
]

+ |ζ〉 〈α|+ |α〉 〈ζ|

+
1

2

{
γ↑ − γ↓, r

}
+ γ↑ +

∑
j

ηj
(
ujru

†
j − r

)
,

d |α〉
dt

= − i

~
h |α〉+

1

2

(
γ↑ − γ↓

)
|α〉+ |ζ〉

+
∑
j

ηj
(
uj − 1

)
|α〉 ,

(27)
which are derived from the Gorini–Kossakowski–
Lindblad–Sudarshan (GKLS) equation [32, 33] un-
der the assumption that the considered quantum
field can be treated as a set of individual particles
subject to spontaneous decay and production, as
well as interaction with coherent classical sources
and random scattering by the environment. The op-
erators entering (27) represent

• The Hamiltonian

h := ~
N∑
k=1

ωk |k〉 〈k| , ωk > 0; (28)

• Coherent sources

|ζ〉 :=

N∑
k=1

ζk |k〉 ; (29)

• Particle creation rates

γ↑ =

N∑
k,k′=1

γkk
′

↑ |k〉 〈k′| , γ↑ > 0, (30)

and analogously particle annihilation rates γ↓;

• Unitary interactions with rates ηj > 0
(
∑
j ηj = 1)

uj =

N∑
k,k′=1

ukk
′

j |k〉 〈k′| , u†juj=uju
†
j=1N .

(31)
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For a large number of non-commuting uni-
taries, the last term in either of the reduced
kinetic equations represents random scatter-
ing.

Note that, while not explicitly stated in the orig-
inal work [20], it is clear from the derivation of the
reduced kinetic equations that all the quantities en-
tering it may be time-dependent, provided they ful-
fill the respective constraints (imposed by complete
positivity) during every instant of the evolution.

Although RSF was originally designed to cap-
ture the quantum features of macroscopic fields, it
has been recently shown to have a convincing inter-
pretation as a semi-classical description of bosonic
many-body systems [21]. For example, it was proved
that the RSF formalism contains no information
about distillable entanglement in the system, and
that both of the reduced entropies are akin to
Wehrl’s semi-classical entropy [31], typically con-
sidered as such due to its close association with the
phase-space.

Because, by construction, the reduced kinetic
equations (27) preserve the RSF formalism’s semi-
classical set of degrees of freedom, any time evo-
lution model of the density operator, which can be
rewritten as reduced kinetic equations, must be nec-
essarily semi-classical itself. Based on this princi-
ple, in [21], quantum Gaussian evolution of light
was found to be classical if and only if it consisted
strictly of so-called passive optical transformations,
e.g., beam splitting and phase shifting. Contrary to
their remaining active counterparts, such as quan-
tum squeezing, passive transformations can be un-
derstood operationally by treating light as a classi-
cal wave. In this paper, we adopt a similar method-
ology for Bogoliubov transformations — if they pre-
serve the set of the degrees of freedom contained
within RSF, we will regard them as semi-classical,
and if not, we will regard them as inherently quan-
tum.

4. Classicality of Bogoliubov
transformations

We are now equipped with the tools necessary
to assess the classicality of Bogoliubov transforma-
tions. We will consider two distinct cases, i.e., Bo-
goliubov transformations in isolated (closed) sys-
tems and in open systems. The main results of
this section are presented in Propositions 1–3, with
proofs in Appendix A.

4.1. Isolated system

In the case of an isolated system, the most general
transformation of the density operator is unitary

ρ̂′ = Û ρ̂Û†. (32)
For the transformation to be of the Bogoliubov-
type, Û must be such that, for some complex
matrix X ,

Â′n := Û†ÂnÛ =

2N∑
m=1

XnmÂm, (33)

with

Ân :=

{
ân, n ∈ {1, . . . , N},

â†n, n ∈ {N + 1, . . . , 2N}.
(34)

To preserve the canonical commutation relations,
the matrix X has to fulfill the so-called symplectic
property [34, 35]
XSX † = S, (35)

where S = diag
[
1N ,−1N

]
. As a consequence of the

symplectic property,

X =

[
X↑ X↓
X ∗↓ X ∗↑

]
, (36)

where Xl are of size N ×N .
Calculating the change in RSF implied by

a generic Bogoliubov transformation and forcing
the result to be fully contained within the for-
malism, we obtain the classicality conditions for
the closed system Bogoliubov transformations. Fur-
thermore, if the unitary transformation in (32) de-
pends smoothly on time, then so does the matrix X ,
turning the discrete Bogoliubov transformation into
a continuous Bogoliubov evolution. In such a case,
the density operator can be differentiated with re-
spect to time, and the resulting evolution equation
can be compared with the reduced kinetic equa-
tions.

Proceeding in this way, we obtain our first major
result.

Proposition 1. Isolated system Bogoliubov transfor-
mations (as described above) are compatible with the
RSF formalism and are thus classical with respect to
it if and only if

0 = X↓. (37)
Additionally, if the transformation depends smoothly
on time, the corresponding reduced kinetic equations
(27) exist and are governed by

h =
i~
2

(
dX↑
dt
X−1↑ −X

−†
↑

dX †↑
dt

)
, (38)

with the remaining terms vanishing.

Proof. See Appendix A.

The obtained classicality condition is easy to in-
terpret. Substituting (37) into the symplectic condi-
tion (35), we immediately find that X is also unitary
in addition to being symplectic, which means that
it is passive. Thus, in a complete analogy to quan-
tum Gaussian evolution [21], Bogoliubov transfor-
mations in isolated systems are semi-classical only
if they correspond to passive transformations.

Let us also remark that while the absence of
the dissipative terms in the obtained reduced ki-
netic equations was to be expected in an isolated
system, the lack of coherent classical sources was
not. Indeed, it is easy to see that this lack is not
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a fundamental property of the Bogoliubov evolu-
tion, but rather a consequence of the Bogoliubov
transformations (33) being defined, for simplicity,
without constant terms (independent of the creation
and annihilation operators).

4.2. Open system

In the more general case of an open system, the
total density operator of the system and environ-
ment (also called bath) is as well transformed ac-
cording to (32). However, we are only interested in
the state of the system, given by a partial trace over
the degrees of freedom of the environment:

ρ̂S = TrE [ ρ̂ ] . (39)

The Bogoliubov transformation itself (33) remains
the same. Still, assuming the system and the envi-
ronment span NS and NE modes respectively, it is
convenient to additionally split the matrices enter-
ing the block decomposition (36) into

X↑ =

[
X↑S X↑C
X↑C′ X↑E

]
, X↓ =

[
X↓S X↓C
X↓C′ X↓E

]
,

(40)
where XlS is an NS×NS matrix associated with the
system, XlE is an NE ×NE matrix associated with
the environment, and XlC , XlC′ are appropriately-
sized matrices associated with both. Note that the
case of the closed system can be retrieved easily
by setting NE = 0 (which, in particular, implies
Xl = XlS) and dropping the then-redundant lower
indices S.

For a generic initial state of the bath-system en-
semble, the dynamics of the latter cannot be sepa-
rated from the dynamics of the former, making it
impossible to even compare with the RSF formal-
ism. Nonetheless, even in this completely general
setting, we were able to derive necessary conditions
for classicality of Bogoliubov transformations.

Proposition 2. Open system Bogoliubov transforma-
tions (as described above) can be compatible with the
RSF formalism and thus be classical with respect to it
only if

0 = X↓S . (41)

Proof. See Appendix A.

Unlike the condition (37) for the closed system,
the classicality condition for the open system is dif-
ficult to interpret. However, comparing it with its
closed system counterpart, we can at least see that
the latter is much more restrictive: it requires the
whole matrix X↓ to vanish, while the former requires
only its system part X↓S to vanish. Therefore, de-
pending on how we define the degrees of freedom of
the system, we may find the same total dynamics
to be either classical or quantum from the point of
view of the system. This will indeed be the case in

the next section, where we will find that the dynam-
ical Casimir effect falls exactly into this category.

Still, any such interpretation has to be made with
care, since it must be stressed that the condition
(41) is not equivalent to classicality, but only nec-
essary for it. In stark contrast to the closed sys-
tem, in the case of an open system, whether or
not a given Bogoliubov transformation is classical
from the point of view of RSF depends not only on
the matrix X defining it, but also on the total ini-
tial state of the system-environment ensemble. It is
possible that, for particularly strongly correlated to-
tal initial states, the only semi-classical Bogoliubov
transformations are those that induce completely
separate dynamics for the system and environment,
essentially defying the notion of an open system.

To make stronger statements, we are therefore
forced to make some restrictions. Firstly, we as-
sume that the initial total state is separable with
respect to the bipartition between the system and
the bath. This is a typical assumption in the theory
of quantum open systems. In particular, the GKLS
equation cannot be derived without it [36]. Since,
in particular, the reduced kinetic equations govern-
ing the time evolution in the RSF formalism are
derived from a GKLS equation, it is only natural to
also make this assumption in the present case.

Secondly, we assume that the bath is initially in
the vacuum state. Note that while this assumption
is a very strong one, it is fulfilled by many well-
studied and useful models, such as quantum-limited
amplification, quantum-limited attenuation, and
phase conjugation channels, utilized, e.g., in studies
of Gaussianity, entropy, and entanglement [37–39].
More importantly for us, as we will discuss in the
next section, it is also satisfied by the dynamical
Casimir effect.

Under the above assumptions, we obtain our final
main result for Bogoliubov transformations.

Proposition 3. The classicality condition (41) is both
necessary and sufficient for open system Bogoliubov
transformations with the environment initially in the
vacuum state. Additionally, if such transformations de-
pend smoothly on time, the corresponding reduced ki-
netic equations exist provided
W > 0, W −Yr > 0 (42)

and are governed by

h = −~Y i

2
, γ↓ =W, γ↑ =W −Yr, (43)

with the remaining terms vanishing. Here,

Yi := − i
(
Y − Y†

)
,

Y :=
dX↑S
dt X

−1
↑S ,

Yr := Y + Y†,
D := X↓CX †↓C ,
W := dD

dt − YD −DY
†.

(44)

Proof. See Appendix A.
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Interestingly, the obtained Bogoliubov reduced
kinetic equations do not depend on any compo-
nents of the matrix X labeled by the subscripts
C ′, despite depending on the components labeled
by C. At first, this may appear surprising, since
a priori both are equally responsible for describing
the correlations between the system and the envi-
ronment. The asymmetry is resolved by interpret-
ing the C components as encoding the influence of
the environment on the system, and the C ′ com-
ponents as encoding the influence of the system on
the environment. The lack of the C ′ components
in the description of the system then becomes ex-
pected. As an additional argument for this view, we
observe that if we exchanged the roles of the sys-
tem and the environment, the equations would de-
pend on the C ′ components, with the C components
missing.

Proposition 3 will be our main tool in the study
of the classicality of the dynamical Casimir effect.
Before we do it, however, let us illustrate our results
so far with a short but instructive example — the
Gaussian amplification process.

Example (Gaussian amplification process). In the
Gaussian amplification process, an arbitrary initial
state of the N -mode system

ρ̂(t0) =

∫
d2Nz0
πN

P0(z0) |z0〉 〈z0| (45)

is driven by a heat bath into the state [40]

ρ̂(t) =

∫
d2Nz0
πN

P0(z0)

N⊗
j=1

∫
d2zj
π

ρj(t) |zj〉 〈zj | ,

ρj(t) :=
1

nj(t)
exp

(
−|zj − z0j eκjt|2

nj(t)

)
.

(46)

Here, the integration is over the real and imaginary
parts of the complex vectors z0, z; P0(z0) denotes
the Glauber–Sudarshan P representation [41, 42] of
the initial state; |zj〉 are coherent states; κj is the
amplification rate of the j-th mode; and

nj(t) := (1 +mj)
(

e2κjt − 1
)
, (47)

wheremj is the mean number of photons in the j-th
mode of the bath, assumed to be effectively constant
throughout the whole process (this is true as long
as the bath is much bigger than the system).

The corresponding RSF can be easily calculated

rkk′(t) =

∫
d2Nz0
πN

P0(z0)

N∏
j=1

∫
d2zj
π

ρj(t)zkz
∗
k′ ,

αk(t) =

∫
d2Nz0
πN

P0(z0)

N∏
j=1

∫
d2zj
π

ρj(t)zk.

(48)
The integrals over zj can be performed using the
standard result [43]∫

d2Nz

πN
e−z

†µz+s†z+z†s =
es
†µ−1s

det[ µ ]
, (49)

where µ denotes an invertible matrix and s is a vec-
tor of size N . In our case,

µ−1 = n(t) :=
∑N

j=1
nj(t) |j〉 〈j| ,

s = n−1(t)
∣∣z0(t)

〉
,

|z0(t)〉 :=
∑N

j=1
z0j eκjt |j〉 .

(50)
This yields
r(t) = n(t) +

〈 ∣∣z0(t)
〉〈
z0(t)

∣∣ 〉
0
,∣∣α(t)

〉
=
〈 ∣∣z0(t)

〉 〉
0
,

(51)

where 〈·〉0 := (π−N )
∫

d2Nz0 P0(z0)(·). The formu-
lae (51) induce the following differential evolution
equations

dr

dt
=

1

2

{
2κ (1+m)− 2κm, r

}
+ 2κ (1+m) ,

d |α〉
dt

=
1

2

(
2κ (1 +m)− 2κm

)
|α〉 ,

(52)

wherem:=
∑N
j=1mj |j〉 〈j| and κ :=

∑N
j=1 κj |j〉 〈j|.

Clearly, the equations have the form of reduced
kinetic equations (27) with γ↑ = 2κ (1+m),
γ↓ = 2κm and h = |ζ〉 = µ(du) = 0.

According to Proposition 2, any open system Bo-
goliubov evolution that can be represented by re-
duced kinetic equations has to necessarily fulfill the
classicality condition (41). To see that this is indeed
the case in the Gaussian amplification process, we
observe that it is generated by a Bogoliubov trans-
formation of the form [37]

X↑ = cosh
(
κt
) [1N 0

0 1N

]
,

X↓ = sinh
(
κt
) [ 0 1N

1N 0

]
.

(53)

Clearly, X↓S , being the upper left-hand side block
component of X↓, vanishes, as required by the afore-
mentioned condition.

The fact that we found the Gaussian amplifica-
tion process to be semi-classical is not surprising
— intuitively, Gaussian amplification can be inter-
preted as pumping particles into the system until
it reaches essentially macroscopic size. The process
is well known for turning quantum phenomena into
more classical ones. For example, it was previously
shown that the Glauber-Sudarshan P distribution
of an infinitely amplified state approaches the semi-
classical Husimi Q distribution [44, 45]. Similarly,
the von Neumann entropy of the maximally ampli-
fied state approaches the semi-classical Wehrl en-
tropy [30, 38]. More recently, it has been shown
that the amplified Pegg-Barnett phase formalism
approaches the Paul phase formalism [46].
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5. Classicality of the dynamical
Casimir effect

Armed with the classicality conditions (37)
and (41), we are now ready to come back to the dy-
namical Casimir effect. We begin by observing that
while the phenomenon spans an infinite number of
modes of photons with both helicities, its defin-
ing Bogoliubov transformation (13) couples them in
pairs only. Any mode k of the right helicity photons
is coupled only to itself and the mode −k of the left
helicity photons. For this reason, we can restrict our
analysis to two modes with no loss in generality.

Written in terms of the matrix X , the Bogoliubov
transformation (13) reads

X =


e− iφfR+ 0 0 e− iφfR−

0 e iφf∗L− e iφf∗L+ 0

0 e iφf∗R− e iφf∗R+ 0

e− iφfL+ 0 0 e− iφfL−

 .
(54)

The interpretation of classicality depends on what
we consider to be the system.

In the most natural view, the system spans pho-
tons with both left and right helicity. Hence, we
have a closed, two-mode system. Comparing (54)
with (36), we easily find the classicality criterion
(37) to read explicitly

fR−(k, T ) = 0 = fL+(k, T ). (55)

Looking at (17), we can immediately see that this
implies no Casimir effect, i.e., the photon produc-
tion in the vacuum is zero. Thus, according to the
RSF formalism, any dynamical Casimir effect is nec-
essarily non-classical, as expected.

To see the physical reason for this, we go back
to the differential equations (8), along with the ini-
tial conditions (14). It is easy to see that (8) can be
fulfilled if and only if η−(k, t) = 0. This is equiv-
alent to σ(k) = [α/∆(k)]1/4, where, due to the
time-independence of σ, α and ∆ have to be time-
independent too, implying constant velocity. The
equations for the remaining functions can then be
easily solved, yielding [11]

fR+(k, t) = f∗L−(k, t) = e− i ω̃(k)t, (56)

where ω̃ = ω
√
α∆. Substituting this into (13), we

find that the final creation and annihilation opera-
tors simplify to just

âR,out(k) = e− i [φ(k,T )+ω̃(k)T ] âR,in(k),

â†L,out(−k) = e− i [φ(k,T )−ω̃(k)T ] â†L,in(−k),
(57)

i.e., they are multiplied by a phase. Obviously, this
phase is irrelevant to the expectation values of the
corresponding number operators on the vacuum,
which is why the dynamical Casimir effect cannot
take place for constant velocities.

However, there is another point of view. Nothing
stops us from interpreting exclusively the left he-
licity photons as the system, and the right helicity
photons as the environment. Then, we are dealing
with an open one-mode system subject to influence
from a one-mode environment. By comparing (54)
with (36), (40), we immediately find that now, the
classicality condition (41) always holds, regardless
of the form of the functions fR±, fL±. Crucially,
because the mode associated with the right helicity
photons is initially in the vacuum state, then, due
to Proposition 3, this classicality condition is both
necessary and sufficient. Does this mean that the
Casimir effect is, in the end, classical? Or maybe it
means that the RSF formalism is not a valid tool
for probing classicality after all?

In our opinion, neither. Consider, for ex-
ample, the maximally entangled two-qubit Bell
state [47, 48]
|Φ+〉 := 1√

2

(
|00〉+ |11〉

)
. (58)

If, in an analogy to the Casimir effect, we consider
only the first qubit as the system, we will find it to
be in the maximally mixed state

ρ̂S = Tr2nd qubit |Φ+〉 〈Φ+| = 1
2 1̂2, (59)

which can certainly be considered classical. Of
course, this does not mean that the Bell state that
we started with was classical. Instead, its “quan-
tumness” was contained in the correlations between
the two qubits, rather than any of the two qubits
themselves.

In the case of the Casimir effect and the Bogoli-
ubov transformations in general, it is even more ap-
parent what happens with the quantumness. Con-
sider the matrix element X↓12 = X↓C = fR−(k, T ),
which in our case, encodes the correlations be-
tween photons with left and right helicities. For
a generic initial state, these correlations are poten-
tially quantum. Thus, if a closed system is to be
considered classical, they must necessarily vanish
X↓12=X↓C=0, as they constitute an integral part of
the system. However, in the case of an open sys-
tem, the discussed correlations are no longer part
of the system, and instead enter it only at the
level of the environmental effects, most easily seen
through the evolution (44). Therefore, even if they
have a strictly quantum origin, the system experi-
ences them only as dissipation, which in this case
happens to have a semi-classical interpretation in
terms of particle annihilation and creation rates.

Alternatively, we can think of the Casimir process
as consisting of two parts. The first, captured by the
matrix X↑, describes the morphing of photons with
left helicity into those with right helicity and vice
versa. The second, captured by the matrix X↓, de-
scribes the creation of photons with both helicities.
The former, being semi-classical, is unconstrained
by the RSF formalism. The latter, however, being
more quantum in nature, is forbidden by RSF, un-
less the quantumness can be encoded into the envi-
ronment, as discussed previously.
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Finally, let us observe that even though the Bo-
goliubov transformation (13) is technically of the
discrete type, as the creation and annihilation op-
erators are formally ill-defined during the accelera-
tion period t ∈ [0, T ], the functions fR± and fL±
defining the transformation are well defined at all
times. Adding that to the fact that the final mo-
ment of acceleration T is completely arbitrary, we
can consider (13) as defining a smooth Bogoliubov
evolution in the parameter T .

Since, as explained previously, the initial total
state fulfills the requirements of Proposition 3, the
Bogoliubov evolution at hand must have a repre-
sentation in terms of the reduced kinetic equations
(27) with (43) at the input. Indeed, making use of
the latter equation, we find

h = ~ω
(
η+ + η−Re

[
fR−
fR+

]
+ δβ cos(θ)

)
,

γ↑ = 2ωη−
|fR−|2

|fR+|2
Im

[
fR+

fR−

]
,

γ↓ = 0.
(60)

For more details regarding the derivation of these
identities, see Appendix B. Here, we focus on their
physical significance.

To start with, we note that, as expected, the
Hamiltonian for the photons is proportional to their
frequency. Furthermore, the particle annihilation
rate is zero, which intuitively corresponds to the
fact that the dynamical Casimir effect results only
in the spontaneous creation of particles, not their
disappearance. Finally, once again abusing the dif-
ferential equations (8), we can easily calculate that
the time derivative of the total photon density (18)
equals

d 〈n̂〉
dT

= 2ωη−|fR−|2 Im

[
fR+

fR−

]
, (61)

which, using (16) and (60), can be rewritten as sim-
ply

d 〈n̂〉
dT

= γ↑ (〈n̂〉+ 1) . (62)

This result has three worthwhile implications.
Firstly, it has a sound physical interpretation: the

time derivative of the total photon density in the dy-
namical Casimir effect turns out to be simply pro-
portional to the current photon density times the
current particle creation rate. Secondly, it tells us
that the non-negativity of γ↑, which is required for
the result to be physical, is equivalent to the non-
negativity of photon number growth. In particular,
because of the initial condition (14), a valid matrix
γ↑ by its very construction prevents negative photon
numbers. Finally, because of the 〈n̂〉-independent
term on the r.h.s., our final result (62) proves that
the dynamical Casimir effect occurs for any non-
zero γ↑, which can be traced to any non-constant ve-
locity of the medium (γ↑ = 0 holds only for η− = 0,
which holds only for β = const).

6. Conclusions

In this paper, we employed the recent mesoscopic
formalism of the reduced state of the field to de-
rive the exact conditions under which Bogoliubov
transformations in either isolated or open systems
should be considered semi-classical. Applying our
result to the case of the dynamical Casimir effect
in the medium moving with a varying speed, we
found that, while the photons with left and right
helicity see each other as semi-classical objects, the
Casimir effect itself is genuinely quantum, as ex-
pected. Let us stress that the analysis is made pos-
sible because for each wave vector, we can consider
two polarization degrees of freedom. Therefore, it is
essential that the described phenomenon is “based
on full Maxwell equations in three dimensions” as
pointed out at the end of the Conclusions section
in [11].
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Appendix A

In this appendix, we prove our main results re-
garding the classicality of Bogoliubov transforma-
tions, i.e., Propositions 1–3.

To this end, in addition to RSF, we will employ
two auxiliary mesoscopic fields. The first, defined
originally in [21], is the conjugate RSF

c :=
∑N

k,k′=1
Tr
[
ρ̂ âk′ âk

]
|k〉 〈k′| ,

|α∗〉 :=
∑N

k=1
Tr
[
ρ̂ â†k

]
|k〉 .

(63)
The second is the generalized RSF

g :=
∑2N

k,k′=1
Tr
[
ρ̂ Â†k′Âk

]
|k〉 〈k′| ,

|A〉 :=
∑2N

k=1
Tr
[
ρ̂ Âk

]
|k〉 .

(64)
It is easy to see that the three reduced fields are
related to each other as follows

g =

[
r c

c∗ rT + 1N

]
,

|A〉 = |α〉 ⊕ |α∗〉 .
(65)

We add that, by definition, r = r†, c = cT , and
|α〉∗ = |α∗〉.
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Proof of Proposition 1

We start with Proposition 1. It is easy to see that
due to (64), (32), (33), under a generic Bogoliubov
transformation, the generalized RSF (g, |A〉) trans-
forms as

g′ = X gX †, |A′〉 = X |A〉 . (66)

Then, (65) and (36) imply

r′ := X↑rX †↑+X↑cX †↓+X↓c†X †↑+X↓
(
rTS+1N

)
X †↓ ,

|α′〉 = X↑ |α〉+ X↓ |α∗〉 . (67)

Clearly, this couples RSF to the conjugate field,
meaning that it does not preserve the set of the as-
sociated degrees of freedom. For an arbitrary initial
state, the coupling vanishes only if (37) is fulfilled,
which is what we wanted to show.

Assuming the time-dependent case with the clas-
sicality condition (37) fulfilled, (67) reduces to

r(t) = X↑(t)r(t0)X †↑ (t),

|α(t)〉 = X↑(t) |α(t0)〉 .
(68)

These equations are reversible, i.e.,
r(t0) = X−1↑ (t)r(t)X−†↑ (t),

|α(t0)〉 = X−1↑ (t) |α(t)〉 .
(69)

Taking the time derivative of (68) and making use
of (69), we obtain the reduced kinetic equations (27)
with (38) at the input. This concludes the proof.

Proof of Proposition 2

To prove Proposition 2, we observe that the re-
duced fields of the total state of the system and the
environment have the structure

r =

[
rS rC

r†C rE

]
, c =

[
cS cC

cTC cE

]
,

|α〉 = |α∗〉∗ = |αS〉 ⊕ |αE〉 , (70)
where (rS , |αS〉), (cS , |α∗S〉) are the reduced fields of
the system; (rE , |αE〉), (cE , |α∗E〉) are the reduced
fields of the environment; and rC , cC contain the
system-bath correlations. This fact follows directly
from the definitions of the fields. For example,

(rS)kk′ := Tr
[
TrE(ρ̂)â†k′ âk

]
=Tr

[
ρ̂ â†k′ âk

]
:=rkk′ .

(71)

The remaining relations are proved in a similar fash-
ion.

For a generic initial total state, the dynamics are
quite complex. Making use of the block-form decom-
positions (70) and (40) in (68), we obtain a rather
lengthy expression for the transformed RSF of the
system, which can be written as

r′S=F↑↑(r)+F↓↑(c
∗)+F↑↓(c)+F↓↓

(
rT + 1

)
,

|α′S〉=X↑S |αS〉+X↑C |αE〉+X↓S |α∗S〉+X↓C |α∗E〉 ,

(72)
where

Fab(x) := XaSxSX †bS+XaSxCX †bC + XaCx†CX
†
bS

+XaCxEX †bC . (73)

Similarly to the case with the closed system trans-
formation, (72) may preserve the set of the degrees
of freedom associated with the RSF formalism in
the system only if it does not depend on the conju-
gate field of the system, (cS , |α∗S〉). Close inspection
of (72) reveals that this is possible only if (41) is
fulfilled, which is what we wanted to prove.

Let us stress, however, that this condition is
merely necessary for the RSF degrees of freedom to
be preserved. Depending on the state of the bath,
the remaining fields rc, cC , rE , and cE will, in gen-
eral, cause the system to go beyond the RSF frame-
work. In the most radical case, the equations may
preserve the formalism’s set of degrees of freedom
only if all terms dependent on these additional fields
vanish, reducing the system-environment ensemble
to two separate closed systems.

Proof of Proposition 3

Finally, to prove Proposition 3, we note that, as
is easy to calculate from their definitions, the initial
reduced fields with the environment initially in the
vacuum state fulfill

rC = rE = cC = cE = 0, |αE〉 = |α∗E〉 = 0.

(74)
Plugging this into (72), we find that it simplifies to

r′S = X↑SrSX †↑S + X↓CX †↓C ,

|α′S〉 = X↑S |αS〉 , (75)
where we assumed the classicality condition (41).
Clearly, the final field depends only on the initial
RSF, preserving the associated degrees of freedom.
Therefore, in this case, the condition (43) is not only
necessary, but also sufficient for classicality.

It remains to show that if the transformation de-
pends smoothly on time, the corresponding reduced
kinetic equations are given by (43). In the time-
dependent case, (75) becomes

rS(t) = X↑S(t) rS(0)X †↑S(t) + X↓C(t)X †↓C(t),

|αS(t)〉 = X↑S(t) |αS(0)〉 .
(76)

These relations are reversible
rS(0) = X−1↑S (t)

[
rS(t)−X↓C(t)X †↓C(t)

]
X−†↑S (t),

|αS(0)〉 = X−1↑S (t) |αS(t)〉 .
(77)
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Differentiating (76) with respect to time, making
use of (77), and rearranging the terms, we arrive at
the differential evolution equations

dr

dt
=

1

2

[
Yi, r

]
+

1

2

{
Yr, r

}
+W,

d |α〉
dt

=
1

2
Yi |α〉+

1

2
Yr |α〉 ,

(78)
where the matrices Yr, Yi,W are as defined in (44).
Clearly, the derived equations have the form of
the reduced kinetic equations characterized by (43).
Thus, they describe valid dynamics provided the γl
matrices are non-negative, as required by (42). This
concludes the proof.

Appendix B: Proof of (60)

In this appendix, we derive the explicit forms of
the operators (60) governing the reduced kinetic
equations for the dynamical Casimir effect.

By comparing (54) with (36) and (40), we imme-
diately identify
X↑S = e− iφfR+, X↓C = e− iφfR−. (79)

Plugging this into (44) and then (43), on the way
utilizing the differential equations (8), we obtain,
after a lengthy but straightforward calculation,

h = ~ω
(
η+ + η−Re

[fR−
fR+

])
+ ~

dφ

dt
,

γ↑=2ωη−|fR−|2
(

Im
[fR+

fR−

]
+ Im

[fR−
fR+

])
,

γ↓=2ωη−

[
|fR−|2 Im

[fR+

fR−

]
+
(
|fR−|2+1

)
Im
[fR−
fR+

]]
.

(80)
It remains to show that these formulas reduce
to (60).

In the case of the Hamiltonian, all we need to do
is to differentiate (10) with respect to time. Due to
the Leibniz integral rule,

dφ(k, t)

dt
= ω(k)δ(t)β(t) cos θ(k), (81)

from which we immediately see that the first lines
of (80) and (60) coincide.

As for γ↑, we observe that for any complex num-
ber w

Im
[
w−1

]
= − Im[w]

|w|2
. (82)

Taking w = fR+/fR−, we get

γ↑ = 2ωη−|fR−|2
(

1− |fR−|
2

|fR+|2

)
Im
[fR+

fR−

]
.

(83)

Using (16) and simplifying, we quickly find that the
second lines of (80) and (60) also coincide.

Finally, we have to show that γ↓ = 0. Once again
utilizing the relation (16), we obtain

γ↓=2ωη−|fR−|2
(

Im
[fR+

fR−

]
+
|fR+|2

|fR−|2
Im
[fR−
fR+

])
.

(84)

It is easy to see that the bracketed term vanishes
upon the use of (82).
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