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We show that despite fundamentally different situations, the wave functional of the vacuum in a res-
onator is identical to that of free space. The infinite product of the Gaussian ground state wave functions
defining the wave functional of the vacuum translates into an exponential of a sum rather than an in-
tegral over the squares of mode amplitudes weighted by the mode volume and power of the mode wave
number. We express this sum by an integral of a bilinear form of the field containing a kernel given
by a function of the square root of the negative Laplacian acting on a transverse delta function. For
transverse fields, it suffices to employ the familiar delta function, which allows us to obtain explicit
expressions for the kernels of the vector potential, the electric field, and the magnetic induction. We
show for the example of the vector potential that different mode expansions lead to different kernels.
Lastly, we show that the kernels have a close relationship with the Wightman correlation functions of
the fields.
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1. Introduction

The standard approach [1, 2] towards quantiza-
tion of the electromagnetic field is straightforward:
decomposition of the field into modes and quantiza-
tion of the resulting harmonic oscillator amplitudes
by canonical commutation relations. The wave func-
tional of the vacuum proposed by John Archibald
Wheeler [3–5] and extended [6–10] and refined by
Iwo Białynicki-Birula does not rely on a mode ex-
pansion but involves the complete electromagnetic
field. The essence of the wave functional is best
summarized by the following quote from Białynicki-
Birula’s article [7] employing the wave functional to
obtain the Wigner phase space distribution of the
whole electromagnetic field:

“The whole electromagnetic field is treated as one
huge, infinitely dimensional harmonic oscillator. The

wave function and the corresponding Wigner function
become then functionals of the field variables.”

Recent impressive progress in cavity and circuit
quantum electrodynamics invites us to reconsider
the wave functional of the vacuum in the case of a
resonator. Indeed, so far, investigations have con-
centrated exclusively on free space. In the present
article, we show that the expressions for the wave
functional of the vacuum in the two situations are
identical.

1.1. The cradle of the quantum theory of fields

The year 1925 marks not only the birth of modern
quantum mechanics, but is also arguably the begin-
ning of quantum electrodynamics (QED). Indeed,
the “Drei-Männer-Arbeit” [11] not only provided the
foundations of matrix mechanics, but also presented
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the quantization of a free electromagnetic field for
the first time. This was extended only two years
later to include the interaction with quantized mat-
ter [12].

The discovery of the Lamb shift [13] and
the anomalous magnetic moment [14] in 1947
demonstrated that the theory, so far plagued by in-
finities, contained some truth. The renormalization
theory [15, 16], developed shortly after, removed
these infinities and gave rise to the field of QED, a
theory [17] with an unprecedented agreement with
experiment.

Almost 40 years later, new experimental mani-
festations of QED emerged from the use of high-Q
microwave cavities [18, 19] and the interaction of
individual atoms with single modes of the radiation
field. Whereas in the first era of cavity QED, the
experiments were only in the microwave domain,
the optical domain soon followed. The last 20 years
have seen the development of a new rapidly moving
branch of quantum optics summarized by circuit
QED [20] and, recently, waveguide QED [21].

Ever since the proposal of quantized electrody-
namics, there has been a constant drive toward
a deeper understanding of the associated vacuum
fluctuations and the measurability of the field com-
ponents. For example, Lev Davidovich Landau and
Rudolf Peierls [22] applied the uncertainty principle
to relativistic quantum theory and concluded:

“The assumptions of wave mechanics which have
been shown to be necessary in section 2 are therefore
not fulfilled in the relativistic range and the applica-
tion of wave mechanics methods to this range goes
beyond their scope. It is therefore not surprising that
the formalism leads to various infinities; it would be
surprising if the formalism bore any resemblance to
reality.”

Needless to say, this grim outlook was not shared
by Niels Bohr, who, together with Léon Rosenfeld,
immediately started to correct this article. However,
it took them two years to achieve this goal for the
case of free fields [23], and they stated:

“Not only is it an essential complication of the
problem of field measurements that, when comparing
field averages over different space-time regions,
we cannot in an unambiguous way speak about a
temporal sequence of the measurement processes.”

After the discovery of renormalization Bohr and
Rosenfeld returned [24] to this problem and in-
cluded charges. For an interesting commentary by
Rosenfeld providing the historical context of both
articles we refer to [25].

The analogous question of the measurability
of the gravitational field, pioneered by Helmut
Salecker and Eugene Paul Wigner [26], led to
Wheeler’s Geometrodynamics [3] and the quantum
fluctuations of gravity and the quantum foam. It

was in this context that he proposed to consider the
wave functional [4, 5] of electromagnetism as a guide
to linearized gravity. Armed with the insights from
electromagnetism, he was able to derive an estimate
for the fluctuations of the space-time geometry at
distances of the Planck length. For a detailed dis-
cussion of the wave functional of linearized gravity,
we refer to the classic paper by Karel Kuchař [27].

Similarly, but on more general grounds, Julian
Schwinger investigated the effect of the so-called
fluctuating sources (i.e., transient fields) in quantum
field theories [28]. Some of these ideas [29, 30] even-
tually found their way into the framework, which
later became effective (quantum) field theory.

Recent years have seen a renaissance of the
wave functional of the vacuum. It now appears
not only in the Schrödinger representation of quan-
tum field theory [31, 32] but also in possible re-
alizations [33, 34] of the Gedanken Experiment of
Richard P. Feynman [35] addressing the question
of measurability [36] of entanglement between two
quantum systems due to gravity which has recently
attracted significant attention. This field has be-
come quite an active area of research, due to the
emerging technical possibility of preparing almost
macroscopic systems in motional quantum states,
and also because direct tests of the quantum nature
of gravity via the detection of gravitons seem highly
unlikely, as suggested [37] by yet another founding
father of QED, Freeman Dyson.

For this reason, we find it appropriate to revisit
the wave functional of the vacuum and analyze it
for the case of a resonator. This situation is not
only timely, but the set of discrete modes makes
the derivation much cleaner. On the other hand,
the discreteness adds a different complication aris-
ing from the sum over the modal indices, confirming
the well-known adage: “There ain’t no such thing as
a free lunch.”

1.2. Road to the wave functional

We now summarize our path to the wave func-
tional of the vacuum in a resonator using the ex-
ample of the electric field representation. In Fig. 1,
we start from the decomposition of the electric field
E ≡ E(t, r) (left lower corner) into a discrete set
of modes u`. Here, the subscript ` combines the po-
larization index as well as the indices characterizing
the wave vector k` enforced by the boundary con-
ditions on the Helmholtz equation by the shape of
the resonator.

The subsequent quantization of the correspond-
ing electric field amplitudes E` ≡ E`p` using the
canonical commutation relations leads us to the
eigenvalue equation of the electric field operator
Ê` in mode u`. Together with the definition of the
ground state |0`〉 of the `-th mode in terms of the
annihilation operator â`, we find the Gaussian wave
function ψ`(E`) ≡ 〈E` | 0`〉 in the electric field rep-
resentation.
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Fig. 1. Road to the wave functional Ψ [E] of the vacuum in a resonator. We identify five different ingredients
marked by numbers: 1○ mode expansion of the electric field E = E(t, r), 2○ quantization of the field E` in each
mode u` according to the canonical commutation relations, 3○ definition of the electric field eigenstates |E`〉
and the ground state |0`〉 of the `-th mode, 4○ infinite product of all ground state wave functions ψ`(E`), and
5○ wave functional Ψ [E] of the vacuum after the elimination of the mode decomposition. The last ingredient,
i.e., the connection between the discrete sum over the modes and the space integrals of the bilinear form of
the electric field E and a kernel K (E), indicated by a dashed line, constitutes the topic of our article.

In the absence of matter and interactions, the
modes are independent of each other and corre-
spond to a product state with all modes in the
ground state. Hence, we arrive at an infinite product
of Gaussian wave functions. Due to the functional
equation of the exponential function, this product
reduces to a single exponential of an infinite sum
over the squares of the scaled fields E`/E` in the
modes.

The mode expansion we started with shows that
this sum is identical to an appropriate space integral
consisting of a bilinear form of the electric field and
a kernel. In this way, we have eliminated the mode
decomposition and have arrived at an expression
containing the quantum mechanics of the vacuum
as well as the complete electric field distribution
E = E(t, r) without resorting to modes.

We conclude this section by briefly addressing the
differences and detours enforced by free space due to
the continuous superposition of plane wave modes.

In the case of free space, the continuous super-
position of the plane waves, rather than the dis-
crete set of modes, involves an integration over the
wave vector rather than a summation over mode
indices `. The quantization of the field is identical
to that in a resonator, with the exception of the
commutation relation where the Kronecker delta in
` and `′ is replaced by the Dirac delta function in
the difference of the wave vectors k and k′.

However, the infinite continuous product of the
ground state wave functions now requires either a
discretization of the continuum of the wave vectors

or a more sophisticated technique. Once the func-
tional equation of the exponential function has
transformed the infinite product into an infinite
sum, we can continue with the integral, which is
a continuous superposition. In free space as well as
in the resonator, we arrive at the same expression
for the wave functional Ψ [E] of the vacuum.

1.3. In a nutshell

Before we dive into the mathematics, we motivate
our results without detailed derivations and summa-
rize them in Tables I and II. We start our discussion
by recalling in Table I the essential ingredients of
the expansion of a vector field into modes.

Throughout the article, we focus on an expansion
of the vector potential A, the electric field E, and
the magnetic inductionB into a set of discrete mode
functions.

Whereas the decomposition of A and E involves
the mode functions u`, the one of B brings in the
curl of u` due to the fact that there are no magnetic
monopoles. In order to make the curl of u` dimen-
sionless, we have introduced the inverse of the wave
number k`.

The field strengths A`, E`, and B` of A, E, and
B in the mode ` are determined by the products of
the corresponding vacuum fields A`, E`, and B`, and
a dimensionless amplitude. In the case of A` and
B`, this amplitude is given by q`, whereas for E` it
is p`. They are analogs of the familiar coordinate
and momentum variables of a harmonic oscillator.
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TABLE I

Elements of the expansion of a vector field F , such as the vector potential A, the electric field E, and the magnetic
induction B into a discrete set of mode functions u` of the vector potential. Here, ` denotes the mode index
consisting of the polarization and three integers characterizing the wave vector k` determined by the boundary
conditions of the Helmholtz equation imposed by the shape of the resonator. The field strengths A`, E` ,and B`

in the `-th mode are given by the products A` q`, E` p`, and B` q` of the vacuum field strengths A`, E`, and B` as
well as the dimensionless quadrature variables q` and p` of a harmonic mode oscillator of frequency ω`. Here we
have also included the mode expansions in terms of the eigenmodes of the individual fields defined by the solution
of the Helmholtz equation for each field. These are the eigenmodes u` of the vector potential A, the eigenmodes
ν` of the electric field, and the eigenmodes w` of the magnetic induction.

Field F Eigenmodes {f`} Eigenmode expansion {u`}-mode expansion
Mode field
strength

Vacuum field

A {u`}
∑̀
A` u`

∑̀
A` u` A` = A` q` A` =

√
~

ε0ω`V`

E {ν`}
∑̀
E` ν`

∑̀
E` u` E` = E` p` E` = A`ω`

B {w`}
∑̀
B`w`

∑̀
B`k

−1
` (∇× u`) B` = B` q` B` =

1

c
E`

We recall from the Maxwell equations that in the
Coulomb gauge, the electric field is determined by
the time derivative of the vector potential. As a re-
sult, the vacuum electric field E` differs from that of
the vector potential A` by the frequency ω` of the
mode.

In general, the ratio of the magnetic induction to
the electric field is governed by the speed of light c.
This property also holds true for the corresponding
vacuum fields. Thus, the ratio between the mag-
netic induction and the vector potential is given by
the wave number k` due to the dispersion relation
k` ≡ ω`/c of light.

This difference in the wave number dependence of
the vacuum fields has important implications when
we now make the transition to quantum mechanics
and motivate the wave functional of the vacuum in
a resonator. We summarize our path to this expres-
sion in Table II.

We start by recalling that the ground state
wave function ψ` of a single mode is determined
by a Gaussian. Since its argument f` has to be
dimensionless, it must involve the ratio of the
field strength F` divided by the associated vacuum
field F`.

The wave function of the complete electromag-
netic field describing a quantum state with every
mode in the ground state is defined by the infi-
nite product of the corresponding single mode wave
functions. Due to the functional equation of the
exponential function, this product of exponentials
reduces to a single exponential whose argument is
determined by the sum of the arguments of the in-
dividual exponentials. Hence, we arrive at a sum of
the squares of the dimensionless variables f` over all
modes.

When we recall from Table I the definitions of
these vacuum fields, we obtain for f2` the product
of the parameter β(F ), determined by fundamental

constants such as the dielectric constant ε0, reduced
Planck’s constant ~, speed of light c, and resonator
specific parameters such as the square of the field
strengths F 2

` , the mode volume V` and the wave
number k`, or its inverse.

Since F 2
` emerges in this sum, it is tempting to

replace it with an integral of a bilinear form of the
complete field. Indeed, this sum over modes is rem-
iniscent of the energy of the electromagnetic field
in a resonator. However, in contrast to the present
discussion, where the sums involve either the mode
wave number or its inverse, the expression for the
energy contains the square of it.

It is at this point that the difference in the de-
scriptions of the electromagnetic field in terms of
a continuous or a discrete superposition of modes
enters the stage. This subtle point originates from
the definition of the frequency of the mode.

Indeed, when we use a continuous superposition
of plane waves, the wave number given by the ab-
solute value of the wave vector is directly related
to the integration variable representing the super-
position. In contrast, for a discrete superposition of
mode functions, the summation is over the mode
indices defining the frequency, which is determined
by the boundary conditions for the Helmholtz equa-
tion.

It is this distinct feature that forces us to take
advantage of the concept of a fractional root of the
negative Laplacian. This tool allows us to represent
the kernel as an operator acting on the completeness
relation, which is ultimately a Dirac delta function.

Hence, the difference between the kernels of the
vector potential and the electric field or the mag-
netic induction manifests itself in an additional fac-
tor to the Fourier representation of what would
normally be the Dirac delta function by the same
power of the wave number as in the mode sum. This
feature stands out most clearly in Table II.
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TABLE II

Building blocks of the wave functional Ψ [F ] ≡ N (F ) exp(− 1
2
β(F )I(F )[G]) of the vacuum in a resonator for a

free field F = F (t, r), given either by the electric field E, the magnetic induction B or the vector potential A
emerging from the infinite product of ground state wave functions ψ`(F`) ≡ N (F )

` exp[−(F`/F`)
2/2] of the `-th

mode. For the example of A we obtain two different kernels and two different fields in the double integral. For the
modes u`, we find a kernel ∼ 1/r4 with A in the integral whereas for w`, we arrive at the same kernel as in E
and B, but now ∇×A appears. Here N (F ) ≡

∏
`N

(F )
` denotes a normalization constant, and the bilinear form

I(F ) ≡
∫
d3r

∫
d3r′G†(r)K (F )(r, r′)G(r′) associated with F can be reduced to a scalar kernel K (F ) ≡ K (F )(r)

in the mode basis {f`} and is given by the Fourier integral F{F (k)} ≡ (2π)−3
∫
d3k F (k) e ik·r extending over

all space.

Field F Mode basis {f`} F`/F` (F`/F`)
2 β(F ) F (k`) G Scalar kernel K(F )

A {u`}
A`

A`
β(A)A2

` k`V`
ε0c

~
k` A F{k} ∼ −1/r4

E {ν`} = {u`}
E`

E`
=

E`

A`ω`
β(E)E2

` k
−1
` V`

ε0
~ c

1/k` E F{1/k} ∼ 1/r2

B {w`} = {k−1
` ∇× u`}

B`

B`
=
cB`

E`
β(B)B2

` k
−1
` V`

ε0c

~
1/k` B F{1/k} ∼ 1/r2

A {w`} = {k−1
` ∇× u`}

A
(w)
`

A`
β(A)A

(w)2

` k−1
` V`

ε0c

~
1/k` ∇×A F{1/k} ∼ 1/r2

1.4. Overview

Our article is organized as follows: in Sect. 2, we
derive an expression for the wave function of the
vacuum in a resonator in terms of a sum over modes.
For this purpose, we start from the corresponding
probability amplitudes of every mode being in the
ground state for A, E, and B. Since these expres-
sions are identical in their form for the three fields
of interest, we confine ourselves to a general field F .

The wave function of the complete field in the
vacuum is then the infinite product of all Gaussian
wave functions, which translates into an exponen-
tial whose argument is a sum of all field strengths
weighted by a function F (k`) whose form depends
on the field F that we consider.

We devote Sect. 3 to the elimination of the modes
in the infinite product of the ground state wave
functions by expressing the sum over modes by a
double integral over space containing a bilinear form
of the fields and a kernel. For this purpose, we re-
place the expansion coefficient F` by the integral
over the product of the field and mode functions f`
and arrive, due to the appearance of the square of
F` in the mode sum, at a double integral of a bi-
linear form of F and a kernel. The kernel is then
determined by the function F of the square root of
the negative Laplacian acting on the completeness
relation of the modes given by the transverse delta
function. Since the field F is already transverse, it
suffices to work with the familiar delta function,
which allows us to derive an explicit expression for
the kernel and thus for the wave functional of the
vacuum in a resonator.

This analysis demonstrates that the kernels of E
andB are identical, but different from the one ofA.
In Sect. 4, we show that when we use the eigen-
modes of B to expand A, we find the same kernel
as for E and B.

We dedicate Sect. 5 to a comparison of the re-
sulting expressions for the wave functional of the
vacuum in the different representations. Moreover,
we connect our results to the literature.

In Sect. 6, we calculate the Wightman tensor of
the vacuum fields and show how it is related to the
kernels of E, B, and A. Furthermore, we sketch
how vacuum expectation values can be expressed in
terms of the wave functional.

We conclude in Sect. 7, by summarizing our re-
sults and providing an outlook.

In order to keep our article self-contained, we
have included additional material that is helpful in
understanding the main sections and keeping track
of factors of 2. For example, in Appendix A, we
summarize the essential building blocks of the free
electromagnetic field. Here we concentrate on the
expansions of A, E, and B into a complete set of
discrete modes. Moreover, we define the correspond-
ing vacuum electric fields by equating the energy in
a single mode of a given frequency to that of a quan-
tized harmonic oscillator of the same frequency.

In Appendix B, we re-derive the energy of an elec-
tromagnetic field in a resonator. This calculation
also most clearly brings out the difference in the
powers of the mode frequency in the energy and
the infinite product of the ground state wave func-
tions. Moreover, we verify that the mode volumes
of the u`-modes and the w`-modes are identical.
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We devote Appendix C to the derivation of the
ground state wave function in three different repre-
sentations, that is, in the variables of E, B, and A.
In each case, we find a Gaussian whose dimension-
less argument is determined by the ratio of the vari-
able and the vacuum field strength.

In Appendix D, we present an alternative deriva-
tion of the double integral containing the bilin-
ear form of the field and the kernel by reverse
engineering. In contrast to the derivation in Sect. 3,
we start by already assuming that the kernel is a
scalar function and given by a Fourier integral of
the function F . We then reduce this double integral
to a single one of the square of the root of the neg-
ative Laplacian acting on F . The mode expansion
of F then leads us straight to the mode sum of the
wave function of the vacuum. We also point out a
curious analogy to the P - and R-distributions [38]
of quantum optics.

Finally, in Appendix E, we provide an explicit
expression for the kernel by performing the relevant
integrations with the help of a convergence factor.

Finally, in Appendix F, we derive an identity for
the scalar product of two curls, evaluated at differ-
ent positional arguments, needed in the evaluation
of the Hamiltonian density of the electromagnetic
field in Appendix B.

2. Infinite product of ground state
wave functions

In this section, we derive the wave function of the
electromagnetic vacuum in a resonator in terms of
an infinite product of the ground state wave func-
tions. Throughout the section, we use the field F ,
which represents either the electric fieldE, the mag-
netic induction B, or the vector potential A, and
rely on the expansion

F (t, r) ≡
∑
`

F`(t)f`(r) (1)

of these fields into their natural modes f` deter-
mined by the Helmholtz equation subjected to the
boundary conditions of the resonator as outlined in
Appendix A. For the sake of simplicity in notation,
we have not attached a superscript F on the modes
f` but emphasize that they depend on the choice
of F .

The expansion coefficient F` denotes the field
strength in the mode f`. Hence, F` depends on
the choice of the modes. Obviously, in a different
mode expansion, the field strength would be differ-
ent. Again, for the sake of simplicity in notation, we
suppress this dependence in F` but keep it in mind.

2.1. Wave function of the ground state

In Appendix C, we have recalled the expressions
for the ground state wave functions ψ` in the rep-
resentations of the electric field E`, the magnetic

induction B`, or the vector potential A` in the `-th
natural mode given by f` = f`(r). Since the not yet
normalized ground state is completely symmetric in
phase space, it takes the same form in each of these
representations and reads

ψ`(f`) ≡
1
4
√
π

exp

(
−1

2
f2`

)
, (2)

where the dimensionless variable

f` ≡
F`
F`

(3)

involves the field F` in the `-th mode f`, and F`
is the corresponding field strength of the vacuum.
Here F` is either E`, B`, or A`.

The quantities F` are different for the three fields.
Indeed, the strength

A` ≡
√

~
ε0ω`V`

(4)

of the vector potential, which involves the mode vol-
ume V`, is defined by postulating the electromag-
netic energy of the ground state of the mode to be
identical to 1

2~ω`, where ω` denotes the frequency
of the `-th mode f`.

We emphasize that also the mode volume V` de-
pends on the choice of modes. For this reason, it
should also carry a superscript indicating the type
of eigenmodes used, such as u` for the eigenmodes
of A, v` for the eigenmodes of E, or w` for the
eigenmodes of B. However, for the sake of simplic-
ity in notation, we suppress it.

The strength

E` ≡ A` ω` =

√
~ω`
ε0V`

(5)

follows from the Maxwell equations, that is, from
the fact that in the Coulomb gauge without cur-
rents and charges, E is the time derivative of A.

Moreover, for B we obtain in Appendix A the
expression

B` ≡
A`ω`
c

=
E`
c

(6)

for the field strength B` of B. Hence, apart from
a factor of c, the field strengths B` and E` are
identical.

When we substitute the dimensionless variable f`
given by (3) into (2), the probability amplitude
ψ` = ψ`(F`) of finding the field F` of the mode `
in the ground state of this mode reads

ψ`(F`) ≡ N (F )
` exp

[
− 1

2

(F`
F`

)2]
, (7)

where the normalization constant N (F )
` takes the

form

N (F )
` ≡ 1

4
√
π
√
F1
`

. (8)

Due to the presence of F`, the normalization con-
stant π−1/4 of the Gaussian in (2) is modified to
achieve the condition∫ ∞

−∞
dF`

∣∣ψ`(F`)∣∣2 = 1, (9)

dictated by the Born interpretation.
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2.2. Sum over modes

Hence, the corresponding probability amplitude
Ψ({F`}) for finding the field F`1 in the mode `1,
F`2 in the mode `2, etc., in the ground state is the
infinite product

Ψ({F`}) ≡
∏
`

ψ`(F`) (10)

of the ground state wave functions ψ` of all modes.
With the expression (7) for ψ` and the elementary

property ea eb = ea+b of the exponential function,
we arrive at the formula

Ψ({F`}) = N (F ) exp

(
−1

2
β(F )Σ (F )

)
, (11)

where we have defined
N (F ) ≡

∏
`

N (F )
` (12)

representing the infinite product of all normaliza-
tion factors N (F )

` , and introduced the abbreviation

Σ (F ) ≡
∑
`

F 2
` F (k`)V` (13)

for the sum over all modes. Here we have taken into
account that F` is slightly different for the three
fields. For this reason, the factor β(F ) containing
constants of nature such as ~, ε0, and c, listed in
Table II, depends on the choice of F .

Moreover, since A` and E` depend differently on
ω`, as shown by (4) and (5), we have a different de-
pendence of Σ (F ) on the wave number k` ≡ |k`| ≡
ω`/c of the mode indicated in (13) by the contribu-
tion F (k`). Indeed, for E and B, we find

F (E/B)(k`) = k−1` , (14)
while for A, we obtain

F (A)(k`) = k`. (15)
It is this difference in F that leads to different ex-
pressions for the wave functional of the vacuum in
a resonator, as we shall show in the next section.

2.3. Connection to free space

We conclude this analysis of the product of all
ground state wave functions with a side, but not
snide, remark about the corresponding calculation
in free space. Since in this case we have a continu-
ous superposition of modes, we have to deal with a
continuous product of ground state wave functions.
One possibility to describe this unusual quantity,
which is fundamentally different from the discrete
product arising in the case of a resonator, is to em-
ploy the Volterra–Schlesinger product integral [39]
used to define in QED the quantum state after a
time-dependent interaction [40].

However, a much more elementary approach to
overcome this complication of a continuous prod-
uct is to first discretize the modes, perform the dis-
crete product and then replace the sum over modes
again with the appropriate integral. Hence, in free
space, we retreat from the continuous superposition

of modes to a discrete set and then return again to
the continuous one.

In contrast, in the case of a resonator, we always
deal with a discrete set, and the complication of
the infinite product never occurs. We note that it
would be interesting to perform the calculation in
free space evaluating the continuous product, for
example, with the help of the Volterra–Schlesinger
product integral.

3. Bilinear forms and kernels

The goal of the present section is to construct
from the mode expansion and the mode sum Σ (F )

given by (13), an equivalent expression in terms of
the complete field F rather than the field ampli-
tudes F`. For this purpose, we note that the terms
in Σ (F ) are quadratic in the fields F`. Therefore,
Σ (F ) might be represented by a quadratic form of
the total field F . Since Σ (F ) is independent of the
coordinate, there must be an integration over space
involved.

However, this integral cannot just contain F 2 ≡
F †F = F · F , since that would lead to a quantity
proportional to the energy in the resonator. Indeed,
as shown in Appendix B, the contribution of the
electric field or the magnetic induction to the energy
scale is ω2

` in the field oscillator frequency. Hence, a
bilinear form of F and a position-dependent kernel
are necessary to obtain the scaling in k` required by
the function F (k`) given by (14) and (15).

In the present section, we pursue this approach in
four steps. (i) We first obtain an explicit expression
for the expansion coefficients F` of F into the natu-
ral modes f` and establish the completeness relation
of f`. (ii) Then we cast the mode sum Σ (F ) into a
double integral of the fields F and F ′ together with
a matrix kernel. (iii) Since F is transverse, this ker-
nel reduces to a scalar, and (iv) we finally evaluate
this kernel.

3.1. Completeness relation of transverse modes

Central to the representation of Σ (F ) by a double
integral of a bilinear form of F and a kernel is the
expansion

F =
∑
`

F`f` (16)

of the free field F into the modes f` discussed in
Appendix A.

Indeed, the strength F` of F in the mode f`,
which appears quadratically in Σ (F ), follows
from (16) by multiplication of fm, integration over
space, and using the orthonormality relation

1

V`

∫
d3r f †` (r)fm(r) = δ`m (17)

of the modes. Moreover, the integration extends
over the resonator volume, unless specified other-
wise.
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Indeed, the models f` y form a complete and or-
thonormal basis of transverse mode-space since they
are eigenfunctions of the self-adjoint Helmholtz op-
erator applied to the field F as discussed in Ap-
pendix A.

We arrive at the explicit form

F` =
1

V`

∫
d3r′ f †` (r′)F (t, r′) (18)

or

F` =
1

V`

∫
d3r′ f ′`

†
F ′. (19)

Here we have attached a prime on F and f` to em-
phasize the fact that both depend on the integration
variable r′ rather than r.

Since the field F and the modes f` are hermitian
fields, we have the identity F †` = F`, and thus,

1

V`

∫
d3r′ F ′

†
f ′` =

1

V`

∫
d3r f`

†F . (20)

When we substitute (19) into the expansion (16),
we find

F =
∑
`

1

V`

∫
d3r′

(
f ′`
†
F ′
)
f`, (21)

which when we interchange the sum and the inte-
gral reduces to

F =

∫
d3r′

[∑
`

1

V`
f(r)f †(r′)

]
F ′ (22)

or

F ≡
∫

d3r′ D(r, r′)F ′, (23)

where we have introduced the term

D(r, r′) ≡
∑
`

1

V`
f`(r)f †` (r′). (24)

In order to maintain the identity F = F in (23),
the kernel D has to act as a delta-function-like ob-
ject with respect to the spatial coordinates. How-
ever, since our modes are in the Coulomb gauge
and are thus transverse, D cannot be an ordinary
delta function, but must be a transverse delta func-
tion δ⊥. Thus (24) takes the form

D(r, r′) ≡ δ⊥(r − r′) (25)
with the expansion (24) in terms of the modes f`.

Hence, the matrix D defines a completeness rela-
tion and represents the kernel of a projection oper-
ator P⊥ onto the (function) space spanned by the
transverse (generalized Fourier) modes, i.e.,

P⊥(•) =

∫
d3r′ D(r, r′) •, (26)

where (•) acts as a placeholder for an arbitrary vec-
tor field to be projected onto that space.

3.2. Mode sum as double integral

We are now in the position to cast the sum Σ (F )

over modes defined by (13) into a double integral
containing a bilinear form of F and a kernel K .
In particular, we can obtain an exact expression
for K .

For this purpose, we substitute the expression
(19) for F` combined with the symmetry rela-
tion (20) of F` into Σ (F ) and find the identity

Σ (F ) ≡ Σ (F )[F ] =

∫
d3r

∫
d3r′ F †K (r, r′)F ′

(27)
with the kernel

K (r, r′) ≡
∑
`

1

V`
F (k`)f`(r)f †` (r′). (28)

When we compare K to the completeness rela-
tion (24), we find that, apart from the appearance
of F (k`) from Table II, which is due to the differ-
ent powers of k` in the vacuum field strength F`,
they are identical. Therefore, we want to eliminate
F (k`) from the sum over modes in (28) by recalling
the Helmholtz equation in the form(

−∆
)
f` = k2`f`, (29)

which shows that f` is the eigenvector of the nega-
tive Laplacian associated with the eigenvalue k2` .

As a result, we find the identity

F (k`)f` = F
(√
−∆

)
f`, (30)

and the kernel K given by (28) reduces to

K (r, r′) = F
(√
−∆

)
δ⊥(r − r′) (31)

or equivalently

K
mn

(r, r′) = F
(√
−∆

)
δ⊥
mn

(r − r′) (32)

in component notation. Here we have recalled (25).
We emphasize that in (31) and (32), the differ-

entiation in the Laplacian could be with respect to
r or r′. This fact follows directly from the defini-
tion, (28), of the kernel or from the argument of the
transverse delta function. For this reason, we have
not attached a subscript r to the Laplacian.

3.3. Simplification of the kernel

Next, we recall that the tensorial version δ(r)1
3

of the familiar Dirac delta function δ(r) contains
not only the transverse part δ⊥(r), but also the
longitudinal part δ‖(r), and reads in components

δ(r)δmn = δ⊥
mn

(r) + δ‖
mn

(r) (33)
or
δ⊥

mn
(r) = δ(r)δmn − δ‖mn(r). (34)

The operator F
(√
−∆

)
acting on δ‖ does not

change the directionality of the longitudinal part.
This property stands out most clearly in its Fourier
representation

δ‖
mn

(r) ≡
∫

d3k

(2π)3
e ikr kmkn

k2
. (35)

Indeed, we find

F
(√
−∆

)
δ‖
mn

=

∫
d3k

(2π)3
e ikrF (k)

kmkn
k2

, (36)
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where we have used the fact that a plane wave is
also an eigenfunction of the negative Laplacian in
free space corresponding to the eigenvalue k2, i.e.,

(−∆)e ikr = k2 e ikr. (37)
As a result, the kernel K

mn
given by (32) reads

K
mn

= δmnK
(F ) + K ‖

mn
, (38)

where the part
K (F )(r − r′) ≡ F

(√
−∆

)
δ(r − r′) (39)

of the kernel, which is diagonal, arises from the op-
erator F (

√
−∆) acting on the familiar Dirac delta

function.
On the other hand, according to (36), the expres-

sion
K ‖
mn = F

(√
−∆

)
δ‖
mn

(r − r′) (40)

is still longitudinal.
Next, we recall that in the double integral (27),

the fields F and F ′, on which the kernel acts, are
already transverse, since they are expanded into
the transverse modes f`. Hence K ‖ does not con-
tribute, and we arrive at the expression

Σ (F ) =

∫
d3r

∫
d3r′ K (F )F †F ′, (41)

where we have made use of the fact that K (F ) is a
scalar, which can now be moved out of the matrix
products.

3.4. Evaluation of the kernel

Finally, we evaluate the scalar kernel K (F ) given
by (39). Here, two possibilities offer themselves:

(i) We recall the Green’s function relation(
−∆

)1

r
= 4πδ(r), (42)

which leads us to the expression

K (F )(r) =
1

4π
F
(√
−∆

)
(−∆)

1

|r|
(43)

for K (F ), or

(ii) we employ the Fourier representation

δ(r) ≡ 1

(2π)3

∫
d3k e ikr (44)

of the Dirac delta function to evaluate K (F ).

In this article, we pursue the second approach since
it is straightforward. Indeed, from (39) we immedi-
ately find with (37) the representation

K (F )(r) =
1

(2π)3

∫
d3k F (k) e ikr. (45)

In Appendix E, we evaluate this integral for the
two cases F (k) = k−1 or F (k) = k corresponding
to the fields E and B or A, and we find

K (E)(r) = K (B)(r) =
1

2π2

1

|r|2
(46)

or

K (A)(r) = − 1

π2

1

|r|4
. (47)

We note that apart from slightly different pref-
actors, the power laws of the two kernels in (46)
and (47) are different. While K (E) = K (B) decays
as K (E/B) ∼ 1/r2, the one for A, i.e., K (A), de-
cays as K (A) ∼ 1/r4. Moreover, they also differ in
sign. While K (E/B) is positive, K (A) is negative.

At first sight, this sign change might cause a prob-
lem in the exponential. However, when we recall
that the double integral with the bilinear form of A
and K (A) is identical to the mode sum Σ (A) where
each term is positive, we recognize that there is re-
ally no problem here.

3.5. Wave functional

We conclude by combining our results to obtain
the wave functional Ψ [F ] of the vacuum in a res-
onator expressed by the field F . Indeed, when we
use the connection (41) between the mode sum Σ (F )

and the double integral, we find the expression

Ψ [F ]=N (F ) exp

[
−β

(F )

2

∫
d3r

∫
d3r′K (F )F ·F ′

]
,

(48)
where the kernel K (F ) involves the difference r−r′
of the two integration variables only.

We emphasize that in contrast to the infinite
product Ψ({F`}), which is in terms of the set
{F`} of field strengths in all modes and given by
(11), we now have the complete field F . Hence,
the quantity Ψ defined by (48) represents a func-
tional of F as indicated by the square brackets
in Ψ [F ].

4. Vector potential once more

In the preceding section, we have derived the
wave functional Ψ [A] in terms of the vector
potential A and have found a kernel (47), which is
different from the ones of E and B, given by (46).
However, it has been argued [4, 7, 41] that an
expression for a wave functional solely in terms of
A is problematic since the vacuum, and hence the
wave functional should be gauge invariant, and the
full vector potential is not gauge invariant. This
line of reasoning was first used by Wheeler [4] in
his original article on the wave functional, where
we find the quote:

”Often the dynamics of the electromagnetic field
is discussed in terms of the vector potential A, con-
nected with H, by the equation
H = curl A.

Then the probability amplitude is evaluated in the first
instance as a functional of A. Only later is it discov-
ered, as a consequence of gauge invariance, that A
comes into evidence in the state functional only in the
form of H = curl A.”
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Other authors [7, 41] argued in the same vein
and thus concentrated their effort on expressions
for the wave functional of the vacuum in terms of
∇×A ≡ B instead of A. However, we found in (48)
exactly such a wave functional Ψ [A] and a corre-
sponding kernel (47). Hence, we are led to the ques-
tion of how to reconcile these opposing points of
view.

Our answer to this question rests on the fact
that the appearance of ∇×A is not a consequence
of gauge invariance but a specific choice of mode
expansion. Indeed, we first argue that due to the
expansion in transverse modes, our expression is al-
ready gauge invariant. We then obtain an expression
for the wave functional Ψ [A] in terms of ∇×A by
use of the eigenmodes {w`} of the magnetic induc-
tion B without appealing to gauge invariance.

4.1. Field functionals, quantization and
gauge invariance

While the gauge invariance argument seems su-
perficially sound, it contains a very subtle flaw and
is thus not applicable. Indeed, we start by noticing
that electromagnetism is a gauge field theory [29],
and it is thus essential to remove redundant gauge
degrees of freedom during the quantization proce-
dure. It is then, and only then, that we can identify
the actual physical degrees of freedom of the the-
ory. Any observable, such as correlation functions
or the wave functional, are afterwards expressed
solely in terms of the quantized physical degrees of
freedom.

In contrast to earlier works of Wheeler [4] and
Białynicki-Birula [7, 41], we state and rely on a spe-
cific gauge choice from the beginning. Accidentally,
the gauge-fixing of the Coulomb gauge directly iso-
lates easy-to-interpret physical degrees of freedom
in non-relativistic situations for the electromagnetic
field. However, this comes at the cost of sacrific-
ing the manifest Lorentz invariance of the theory.
This procedure partitions the electromagnetic de-
grees of freedom into quantized (transverse) and
non-quantized (longitudinal) degrees of freedom by
enforcing the conditions A0 ≡ 0 and ∇ ·A ≡ 0 for
the vector potential.

These quantized physical degrees of freedom are
exactly our transverse fields A, E, and B. Only
these fields are associated with quantum states, that
is the wave functions of our theory.

In Appendix C, we determine these wave func-
tions for the ground state of the respective fields.

Since these wave functions form the starting point
of our derivation, any expression we obtain from
them is naturally expressed in terms of gauge in-
variant quantities, even if the transverse part of the
vector potential, namely A, appears in it. Conse-
quently, our expression for the wave functionalΨ [A]
of the vector potential (48), together with the asso-
ciated kernel (47), is perfectly valid.

We conclude by returning to the subtle flaw in
the argument of gauge invariance we have alluded
to. Ultimately, a wave functional can only be de-
fined after quantization of a gauge theory such as
electromagnetism has already been achieved, as it
is a fundamentally quantum object. More specifi-
cally, the fields F appearing in it are not classical
fields and, in general, do not even obey the classical
field equations, but are mere c-number fields that
parameterize all quantum mechanically valid field
configurations interfering in an appropriate func-
tional integral.

Simultaneously, at this point in the development
of the theory, the gauge-freedom is already incor-
porated in the choice of the quantized degrees of
freedom, since all physically relevant quantities that
appear, are by construction expressed without the
gauge-redundant degrees of freedom. As a conse-
quence, we cannot argue about the gauge-invariance
of a quantity like a wave functional anymore when
it is expressed in these quantities. Thus ultimately,
it is the simple oversight that not the vector po-
tential but only its transverse part can appear in
field functionals, which leads to the demise of any
post-quantization argument relying on gauge trans-
formations/invariance.

Finally, although we worked in Coulomb gauge
throughout this article, our reasoning applies to
any gauge-fixing chosen during quantization. More-
over, it translates to the wave-functional of other
theories featuring gauge-invariances [42], e.g., the
quantization of weak field gravity [36]. However, we
note that when one is studying such cases, start-
ing from a more modern path-integral formulation
seems preferable [43] since gauge-fixings are imple-
mented more easily via functional δ-functions inside
the path integral.

With these ideas in mind, we briefly comment
on possible generalizations of our calculation to rel-
ativistic situations using the standard QED ap-
proach. While we have sacrificed the manifest
Lorentz covariance by our choice of the Coulomb
gauge, this was simply due to our interest in the
cavity QED situation of the quantization in a res-
onator. If wanted, retaining Lorentz covariance and
determining relativistically invariant analogs of the
expressions (48) for the wave functionals is possible
by resorting to the Gupta–Bleuler [45, 45] method
or the more general approach of BRST quantiza-
tion [46, 47]. For a modern discussion contrasting
these approaches as applied to electromagnetism in
ξ-gauge, a generalization of Lorenz gauge, we refer
to [47].

4.2. Wave functional in eigenmodes of
magnetic induction

In order to reexpress the wave functional Ψ [A],
as suggested by Wheeler and Białynicki-Birula, in
terms of ∇×A, we expand A into the eigenmodes
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TABLE III

Wave functional Ψ [F ] of the vacuum in a resonator for the three fields F = E,B, or A and their
corresponding kernel K ≡ K(r, r′) when expressed in the mode basis {f`} = {u`}, {ν`}, or {w`}. Here,
the prime indicates the field at the integration variable r′ rather than r.

Field F Mode basis {f`}
Mode basis kernel

K(r, r′)
Wave functional Ψ [F ] in field basis

E {ν`} = {u`}
∑
`

k−1
`

V`
ν` ν

′†
` N (E) exp

(
− 1

4π2

ε0
~c

∫
d3r

∫
d3r′

E ·E′

|r − r′|2

)

B {w`} = {k−1
` ∇× u`}

∑
`

k−1
`

V`
w`w

′†
` N (B) exp

(
− 1

4π2

ε0c

~

∫
d3r

∫
d3r′

B ·B′

|r − r′|2

)

A {w`} = {k−1
` ∇× u`}

∑
`

k−1
`

V`
w`w

′†
` N (A(w)) exp

(
− 1

4π2

ε0c

~

∫
d3r

∫
d3r′

(∇×A) · (∇×A′)
|r − r′|2

)

A {u`}
∑
`

k`
V`
u` u

′†
` N (A) exp

(
1

2π2

ε0c

~

∫
d3r

∫
d3r′

A ·A′

|r − r′|4

)

w` ≡ k−1` ∇× u` (49)
of the wave equation for B, rather than the one
for A, i.e.,

A ≡
∑

`
A

(w)
` w`. (50)

Here we have attached a superscript w to the am-
plitude A` to reflect the fact that this expansion is
in the set of modes {w`}.

When we now take the curl of this representation
of A, recall the Coulomb gauge condition, as well
as the Helmholtz equation for u`, we find

∇×A =
∑

`
A

(w)
` k`u`. (51)

Consequently, the expansion coefficient A(w)
` in

the w-representation takes the form

A
(w)
` =

1

k`

1

V`

∫
d3r u†`(∇×A). (52)

When we compare this expression to the cor-
responding one for F`, expressed in the natural
modes f`, i.e., to (19), we note an additional fac-
tor k−1` , which allows us to regain the same kernel
in the double integral as in E and B.

Since the quantization of A now takes place in
the w`-modes, the wave function of the vacuum in
the resonator reads

Ψ [A] = N (A) exp

(
−1

2
β(A)Σ (A(w))

)
, (53)

where now the sum

Σ (A(w)) ≡
∑

`

(
A

(w)
`

)2
k−1` V` (54)

runs over the w`-modes.

When we substitute the explicit form (52) of the
expansion coefficients A(w)

` into the mode sum (54),
we arrive at

Σ (A(w))=

∫
d3r

∫
d3r′ (∇×A)†K (r, r′)(∇′×A′),

(55)

where according to (15) the term F (k`) in the kernel
K defined by (28) takes the form

F (k`) = k−1` , (56)
and is thus identical to the one for E and B in their
natural modes.

As a consequence, the kernel for the vector po-
tential A expanded into w`- rather than u`-modes
is identical to that of E and B. However, now the
wave functional of the vacuum in the representa-
tion of A contains only A in the form ∇ × A. In
this way, Ψ [A] is expressed in terms of the magnetic
induction, which is a gauge invariant quantity.

5. Discussion of wave functionals

We are now in a position to present the explicit
expressions for the wave functionals of the vacuum
in a resonator, as summarized in Table III. More-
over, we compare and contrast the corresponding
expressions to the ones in the literature.

5.1. Dependence on mode expansion

The central message of Table III is that the ker-
nel of the wave functional depends on the mode ex-
pansion of the field. At first sight, this property is
surprising since the creation of the bilinear form of
the complete field removes the field expansion. How-
ever, the wave functional Ψ [A] of the vacuum in the
representation of the vector potential A, summa-
rized in the first and last row of Table III, demon-
strates this feature in a striking way.

Indeed, when we use the eigenmode expansion
of A, given by {u`}, which is identical to the one of
the electric field E, we find a kernel that is propor-
tional to 1/r4 and negative. In this case, the bilinear
form involves only A.

S62



The Wave Functional of the Vacuum in a Resonator

However, when we employ the eigenmode expan-
sion of the magnetic induction B, i.e., the modes
{k−1` ∇×u`}, the kernel of E, which is identical to
that of B, emerges and enjoys the decay 1/r2. In
this case, the kernel is positive. However, most im-
portantly, the bilinear form does not involve A but
∇×A ≡ B.

This dependence of the kernel on the mode rep-
resentation, and the associated form of the bilin-
ear form, is reminiscent of the different operator
orderings in quantum mechanics and the associ-
ated quasi-probability distribution functions. We
recall [48] that symmetric ordering requires the use
of the Wigner function, whereas anti-normal order-
ing leads us to the Husimi or Q-function. Normal
ordering brings in the P -distribution.

Hence, the same quantum state can enjoy differ-
ent phase space distribution functions depending on
the choice of the operator ordering. Nevertheless,
the quantum mechanical average of interest is al-
ways the same.

This analogy draws attention to the quantity so
far not addressed in our article, that is, the field op-
erators. Indeed, we have concentrated excessively on

the wave functional, which of course, could be em-
ployed to calculate expectation values of the field
operators. In order to perform this evaluation in
an effective way, it is necessary to have the op-
erators to be averaged in the same modes as the
wave functional. Indeed, an identical mode expan-
sion in operators and wave functionals is neces-
sary to express the operator in a c-number repre-
sentation. This requirement is analogous to the fa-
miliar technique of one-particle quantum mechan-
ics to perform averages using wave functions in
the eigenrepresentation of the operator. In this
way, we can evaluate the expectation values by
functional integration as discussed in the next
section.

5.2. Connection to free space

We conclude by comparing and contrasting the
form of the functionals in a resonator to the ones
in free space first suggested by Wheeler [4] and dis-
cussed and extended by Białynicki-Birula. Here we
confine ourselves to the one involving ∇×A, which
according to [7, 41], reads

Ψ [A] = N (A) exp

(
− 1

4π2~

√
ε0
µ0

∫
d3r

∫
d3r′

(∇×A) · (∇′ ×A′)
|r − r′|2

)
. (57)

The only difference to the expression in the fourth
row of Table III is in the prefactor β(A) contain-
ing fundamental constants. Whereas we always use
ε0 and c, Białynicki-Birula’s expression involves the
ratio

√
ε0/µ0. Here µ0 denotes the permeability of

the vacuum.
However, the Kirchhoff identity

1

µ0ε0
= c2 (58)

immediately yields the connection formula√
ε0
µ0

= ε0c, (59)

in complete agreement with our expression in
Table III.

6. Wave functionals and expectation values

In the preceding sections, we have made our way
to explicit expressions for the wave functional of
the electromagnetic vacuum, beginning with the
quantization of the electromagnetic field in a res-
onator. Most of the expressions we obtained coin-
cide with the ones found previously by Wheeler [4]
and Białynicki-Birula [7, 41] for free space, although
now obtained for the case of a resonator. However,
one expression in terms of a bilinear functional of
A is new to the best of our knowledge.

While these functionals are certainly interesting
from a fundamental point of view, we ultimately
go through the trouble of setting up field theory in
order to calculate observables, i.e., scattering cross-
sections, correlation functions, and their more com-
plicated cousins. Naturally, we must thus face the
question of how these calculations can be performed
with the field wave functions and functionals. This
problem constitutes the topic of this section, and
we shall show by the example of such a calculation
for a specific correlation function how this can be
done.

We focus our effort on the Wightman tensor
W (F )

rr′(t) for the field F , which contains all first-
order correlation functions of the vector field F eval-
uated at two points, r and r′, in space. Further-
more, it is of specific interest because it can be used
to easily determine the excitation probability [49]
for an atom in a cavity due to the vacuum field.

6.1. A general correlation function

We begin by stating the definition [49] of the
equal-time two-point Wightman tensor

W (F )

rr′(t) ≡ 〈0|F̂ (t, r)F̂ †(t, r′)|0〉 (60)

for the field F , which is the expectation value of the
outer product of the field operators F̂ (t, r)F̂ †(t, r′)
at fixed time t but in different locations r and r′.
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In fact, (60) describes the spatial correlations in the
vacuum field F at the respective positions r and r′.

For the purpose of illustrating the formalism,
W (F )

rr′ may be seen as a tensorial version of the cor-
relation functions introduced by Glauber [38, 50]
in quantum optics. For example, taking the trace
of the Wightman tensor yields an intensity correla-
tion function, which is a precursor of the (spatial)
first-order coherence function G(1)(t, r; t, r′).

6.2. Wightman tensor via mode decomposition

We begin by expressing the Wightman tensor in
terms of the f`-modes (16), which for (60) yields
the decomposition

W (F )

rr′(t) =
∑
`,`′

〈
0
∣∣F̂`(t)F̂`′(t)∣∣0〉f`(r)f †`′(r

′). (61)

Here we have used the linearity of the mode sums
and acted with the vacuum directly on the operator
parts of the fields. Note that in the process we used
the fact that the fields are hermitian operators, i.e.,
F̂ †`′ = F̂`′ .

6.2.1. Determination of vacuum
expectation value

Proceeding from (61), our next task is to calculate
the field operator expectation value with respect to
the vacuum state O(F )

``′ , for which we introduce the
abbreviation
O(F )
``′ ≡

〈
0
∣∣F̂`(t)F̂`′(t)∣∣0〉. (62)

Since the time argument is identical for both field
operators and is immaterial for what follows, we will
suppress it going forward and simply write F̂`(t) ≡
F̂` from now on to compactify the notation.

In order to evaluate the expectation value (62),
we recall that the non-interacting vacuum ket-state
|0〉 of the free (electromagnetic) field F is a direct
product

|0〉 ≡
⊗
k

|0k〉 = |01〉 |02〉 |03〉 . . . |0〉` . . . (63)

of all ground states of all modes and that the oper-
ator F̂` only acts on the `-th mode. Other ground
states |0k〉 with k 6= ` are not affected by F̂`.

Obviously, the same property holds true for the
vacuum bra-vector 〈0|, and none of the ground
states 〈0k′ | with k′ 6= `′ is affected by F̂`′ , and they
pass to the right, where they meet the ground states
|0k〉 from the ket-vacuum.

Since we can only take the scalar product be-
tween the same modes, we have to distinguish the
two cases ` = `′ and ` 6= `′.

The first case of identical modes, i.e., ` ≡ `′, leads
us to the expression

O(F )
`` = 〈0`|F̂ 2

` |0`〉
∏
k 6=`

〈0k|0k〉 (64)

or
O(F )
`` = 〈0`|F̂ 2

` |0`〉 , (65)
where we have used the normalization condition
〈0k|0k〉 = 1 of the ground state, which in the field
representation reads

∞∫
−∞

dFk 〈0k|Fk〉 〈Fk|0〉 =

∞∫
−∞

dFk
∣∣ψk(Fk)

∣∣2 (66)

and is satisfied, since according to Appendix C we
find

ψk(Fk) =
1
4
√
π

1√
Fk

exp

[
−1

2

(
Fk
Fk

)2
]
. (67)

Moreover, the field operator of the `-th mode
obeys the eigenvalue equation

F̂` |F`〉 = F` |F`〉 (68)
and as a consequence, we have the spectral repre-
sentation

g(F̂`) ≡
∞∫
−∞

dF` g(F`) |F`〉 〈F`| (69)

for integrable functions g ≡ g(x).
When we introduce this spectral representation

for the `-th mode into (66), we obtain

O(F )
`` =

∞∫
−∞

dF` F
2
` |ψ`(F`)|

2
, (70)

which with the help of the Gaussian wave function
(67) reads

O(F )
`` =

1

2
F2
` . (71)

Next, we consider the case ` 6= `′, which yields
the expression

O(F )
``′ = 〈0`′ |F̂`′ |0`′〉 〈0`|F̂`|0`〉

∏
k 6=`,`′

〈0k|0k〉 .
(72)

We emphasize that, in contrast to (64), the mode
indices ` and `′ appear now. Nevertheless, the nor-
malization condition is again 〈0k|0k〉 = 1 for each
mode and reduces (72) to

O(F )
``′ = 〈0`|F̂`|0`〉 〈0`′ |F̂`′ |0`′〉 . (73)

When we now employ the field representation,
again we find with the eigenvalue equation (68) for
` 6= `′ the formula

〈0`′ |F̂`′ |0`′〉 =

∞∫
−∞

dF` F` |ψ`(F`)|2 = 0, (74)

where in the last step we have used the symmetric
Gaussian wave function (67) of the ground state.

When we combine the results (71) and (74), we
find

O(F )
``′ =

1

2
δ``′F2

` . (75)

With the respective definitions of the vacuum
fields F` in (4) and (6), we can bring (75) into the
final form

O(F )
``′ =

δ``′

2

1

β(F )F (k`)

1

V`
, (76)
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which constitutes our result for the vacuum expec-
tation value (62). This expression for the field F is
determined by the physical constants contained in
β(F ), the wave number k` together with the function
F , and the mode volume V` of the `-th mode.

6.2.2. Wightman tensor and kernels

With the result for the vacuum expectation value,
we are now in a position to determine the Wight-
man tensor of the field F . Using the result from (76)
and inserting it into (61), we arrive at

W (F )

rr′(t) =
1

2β(F )

∑
`

F−1(k`)
1

V`
f`(r)f †` (r′)

(77)
for the mode-expanded version of the Wightman
tensor. We observe that this expression seems rem-
iniscent of the expression for the transverse delta
function in terms of the modes (24).

Actually, with the help of the square root of
the negative Laplacian, we can move the function
F−1(k`) out of the sum by reversing its action on
the modes via

F−1(k`)f`(r) = F−1
(√
−∆r

)
f`(r) (78)

and using the independence of the right-hand side
from the summation index `. Together with the rep-
resentation of the transverse delta function (24), we
arrive at the expression

W (F )

rr′(t) =
1

2β(F )
F−1

(√
−∆r

)
δ⊥(r − r′)

(79)
for the Wightman tensor, which is fully consistent
with the results obtained in [49] in free space for the
electric or magnetic field.

When we now compare the expression (79) for the
Wightman tensor W (F )

rr′ with the one (31) of the ker-
nel K (F ), we find that F (

√
−∆r) is either in the

denominator or in the numerator. At the same time
we obtain from the definitions (14) and (15) of F
for E, B, and A the relation

F (E) = F (B) = 1/F (A). (80)
As a result, we arrive at the connection formulae

W (E)

rr′(t) =
~c
2ε0

K (A)(r − r′) =

~c
2ε0

(−∆r) K (E)(r − r′) (81)

and

W (B)

rr′(t) =
~

2ε0c
K (A)(r − r′) =

~
2ε0c

(−∆r) K (B)(r − r′) (82)

for the Wightman tensors W (E)

rr′ and W (B)

rr′ .
From (81) and (82), we make the observation that

the Wightman tensors W (E/B)

rr′ are intimately re-
lated to our kernels K (A/E/B) — either via the ap-
plication of a negative Laplacian or even directly
identical to the Wightman tensor except for a
dimensionful proportionality constant.

While the existence of a relation like this seems
initially surprising, it is only partially so, since ker-
nels can be seen as the field theoretical analog of
covariance matrices for the Gaussian vacuum state.
The Wightman tensors, in turn, collect all possible
quadratic field correlation functions. Thus an inti-
mate relationship between both quantities is to be
expected.

6.3. Wightman tensor using functional integrals

While our approach to determine the explicit
form of the Wightman tensor W (F )

rr′ via mode ex-
pansion and vacuum wave functions was ultimately
successful, it did not rely on wave functionals them-
selves. Thus, the task arises how similar questions
can be framed and answered using the wave func-
tional. We will now give a sketch using functional
methods on how this might be achieved.

We start by recalling the relation [38, 50] between
the functional integration measure and the field ba-
sis,∫

D [F ] ≡
∏
`

∫ ∞
−∞

dF`. (83)

Moreover, we note that the field operators F̂ =
F̂ (t, r) and F̂ ′ = F̂ (t, r′) can be expressed as func-
tional Schrödinger integrals via

F̂ (t, r) =

∫
D [F ] |F 〉 〈F |F (t, r) (84)

and

F̂
′†(t, r′) =

∫
D [F ′] |F ′〉 〈F ′|F

′†(t, r′), (85)

where |F 〉 ≡ |{F`}〉 = |F1〉 |F2〉 . . . and |F ′〉 ≡
|{F ′`}〉 = |F ′1〉 |F ′2〉 . . . correspond to the state vec-
tors of the field.

With these preliminaries settled, we recall the definition of the Wightman tensor (60)

W (F )

rr′ (t) = 〈0|F̂ (t, r)F̂ †(t, r′)|0〉 (86)

and obtain, by inserting the operator expansions from (84) and (85), the double functional integral

W (F )

rr′ (t) =

∫
D [F ]

∫
D [F ′] 〈0|F 〉 〈F |F ′〉 〈F ′|0〉F (t, r)F ′†(t, r′) (87)

representation for the Wightman tensor of the field F .
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At first, this result appears to be too cumbersome
for actual practical use. However, with the help of
the functional Dirac delta function and the relation
δ[F−F ′] ≡

∏
`

δ(F`−F ′`)=
∏
`

〈{F`}|{F ′`}〉= 〈F |F ′〉 ,
(88)

we can collapse one of the functional integrations
in (87) and arrive at

W (F )

rr′ (t)=

∫
D [F ] |〈F |0〉|2 F (t, r)F †(t, r′). (89)

Note that in the process of collapsing the inte-
gration, only a relabeling due to the replacement
F ′ 7→ F has taken place, while the spatial depen-
dence on r′, characteristic of a two-point correlation
function in the expression, was completely retained.

At this point in the development of the functional
approach, we are finally in the position to identify
our wave functionals of the vacuum by
|〈F |0〉|2 ≡ N exp(−β(F )Σ (F )[F ]), (90)

where we have made use of the mode sum in func-
tional form (27), and defined the normalization con-
stant N ≡ (N (F ))2 of the functional.

As a consequence we are lead to a single func-
tional integral representation

W (F )

rr′(t) = N
∫

D [F ] e−β
(F )Σ(F )[F ]F (t, r)F †(t, r′),

(91)
for the Wightman tensor.

Moreover, the normalization constant can be
expressed [32, 51] as another functional integral,
namely

N−1 = Z(F )[F ] ≡
∫

D [F ] exp
(
−βFΣ [F ]

)
, (92)

which we have named Z(F ) to allude to a close anal-
ogy with the partition sum in statistical physics.

In summary, we obtain the now purely functional
expression

W (F )

rr′(t) ≡
∫

D [F ] e−βFΣ [F ]F (t, r)F †(t, r′)

Z(F )[F ] (93)
for the Wightman function W (F )

rr′ . This expression is
the moment of a Gaussian functional integral [51]
and can, in principle, be computed, similar to its
distant cousin — the Gaussian integral in Rn —
by completing the square and calculating a (func-
tional) determinant. However, since we are dealing
with a vector field and not the usual case of a scalar
field [32], things are a bit more complicated. Hence,
we postpone this task together with the detailed dis-
cussion of how the partition sum (92) may be used
together with functional differentiation as a gener-
ating functional to calculate more complex correla-
tion functions.

7. Conclusions

Motivated by the thriving fields of cavity QED
and circuit QED, we analyzed the wave functional
of the vacuum in a resonator. We have found

expressions identical to those of free space discussed
in the literature.

At first sight, this identity is surprising since the
two situations differ considerably in the way the fre-
quency of the mode enters into the mode expansion.
In the continuous superposition of free space, it is
the integration variable governed by the wave num-
ber. In the discrete case of the resonator, summation
rather than integration extends over the mode in-
dices, which in turn determines the mode frequency
in a nontrivial way.

We were able to overcome this complication with
the help of the introduction of the square root of the
negative Laplacian. In this way, we could express
the mode sum by the double integral of a bilinear
form of the fields and of a scalar kernel given by
the Fourier integral of the function reflecting the
difference in the dependence of the vacuum fields
on the wave number.

Moreover, our analysis emphasizes the important
role of mode choice. Although modes have been
eliminated in the wave functional, its form still
depends on them. We have illustrated this phe-
nomenon for the wave functional Ψ [A] of the vector
potential A, which involves either A or ∇ ×A re-
sulting from the u`- or w`-modes.

In hindsight of our calculation, one could argue
that this is not as surprising as one might have
thought. Especially since the wave functional for
the quantum state of the vacuum fields is most nat-
urally expressed in eigenmodes, as they correspond
to physical degrees of freedom that are quantized.
Once we retreat from employing explicit mode ex-
pansion, all the information that is left to fix the
quantum state needs to be retained in the associ-
ated kernel.

We conclude by noting that despite the beauty
of the wave functional, we are not aware of any
application of evaluating, for example, the vacuum
expectation values prevalent in QED. One elemen-
tary example of its usefulness could be the sum of
modes appearing in the second moment of the dis-
placement of an electron due to a vacuum electric
field. This quantity determines the Lamb shift in
the Welton picture [52] and leads to the Bethe log-
arithm.

Indeed, due to the integration of the second-order
time derivative in the Lorentz equation, the dis-
placement contains ω−2` in the mode expansion of
the electric field. Since we deal with the second mo-
ment, the electric field appears in a bilinear way,
and actually, ω−4` enters into the sum of the modes.

Moreover, the vacuum electric field is propor-
tional to ω

1/2
` , reducing to the bilinearity of the

second moment of the displacement in the field the
power to ω−3` . When we replace the sum with an
integration, the volume element contains ω2

` leav-
ing us with ω−1` , creating, after the integration, the
Bethe logarithm.

It would be interesting to see how this expres-
sion emerges from the use of the wave functional,
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which would eliminate the need for performing the
sum over the modes. For this purpose, we first note
that the complication of the square of frequencies
appearing in the mode expansion of the free field
like ω−2` can be removed by the use of the inverse of
the negative Laplacian. Since we deal with the sec-
ond moment, the electric field appears in a bilinear
way, and functional integration with respect to the
wave functional should yield an expression for the
displacement in a straightforward way.

The result we obtained for the (electric field)
Wightman tensor might be a first step in such a di-
rection, as its elements contain all the necessary cor-
relation functions for such a calculation. However,
it is implicitly expected that it also has a singular
behavior in the coincidence limit due to it being a
derivative of a transverse delta function.

Unfortunately, this topic goes beyond the scope
of the present article and has to be postponed to
future publication.
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Appendix A: Modes

In this appendix, we briefly summarize the key in-
gredients of the description of the electromagnetic

field in a resonator with discrete modes in the ab-
sence of charges and currents. We concentrate on
the mode expansions and the energy of the elec-
tromagnetic field. Throughout this section and the
article, we employ the Coulomb gauge. Although
these expressions are well-established, we present
them here for the sake of completeness.

A1: Mode functions and amplitudes

Central to our review of the electromagnetic field
in a resonator are the Maxwell equations consisting
of the two sets of equations

∇ ·B = 0 and ∇×E = −∂B
∂t

(94)

and

∇ ·E = 0 and ∇×B =
1

c2
∂E

∂t
(95)

in the absence of currents and charges, where c de-
notes the speed of light.

We solve the homogenous equations by introduc-
ing the vector potential A = A(t, r) in Coulomb
gauge
∇ ·A = 0 (96)

and the ansatz

E ≡ −∂A
∂t

and B ≡ ∇×A. (97)

As a result, (95) implies the free-space wave equa-
tion

�A(t, r) ≡
[

1

c2
∂2

∂t2
−∆

]
A(t, r) = 0 (98)

for the vector potential A ≡ A(t, r), in the ab-
sence of currents and charges, where ∆ is the three-
dimensional Laplacian.

We emphasize that in the derivation of this wave
equation, we have already used the Coulomb gauge
condition (96) to simplify
∇× (∇×A) = ∇ (∇ ·A)−∆A = −∆A.

(99)
Next, we make the separation ansatz
A(t, r) ≡ A q(t)u(r) (100)

with a real dimensionless spatial real function u =
u(r) and the real dimensionless time-dependent
function q = q(t). In order to ensure that A has
the appropriate units, we have introduced the con-
stant A. The vectorial nature of A is contained in
the function u.

When we substitute the ansatz (100) into the
wave equation (98), we arrive at the Helmholtz
equation[

∆ +
(ω
c

)2]
u(r) = 0, (101)

and the harmonic oscillator equation
q̈ + ω2q = 0 (102)

with frequency ω. Here, dots denote differentiation
with respect to time.
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We emphasize that the solutions of the Helmholtz
equation (101) become unique once we specify a
proper boundary condition. For example, we could
choose
n(r)×A(t, r) ≡ 0 (103)

for all points r ∈ ∂V making up the cavity walls,
which corresponds to a perfectly conducting cavity
surface ∂V with normal vector n(r).

When we apply the Coulomb gauge condition
(96) to the separation ansatz (100), we obtain the
transversality constraint
∇ · u(r) = 0. (104)
While we work in the classical theory this con-

straint is no issue, but as Paul Dirac first no-
ticed [54], it can come to haunt us when we quan-
tize electromagnetism [55–57] or any other gauge
field [29].

The general solution of the harmonic oscillator
equation (102) reads

q(t) = q0 cos (ωt) +
q̇0
ω

sin (ωt), (105)

where we have introduced the arbitrary initial con-
ditions q̇0 ≡ q(t = 0) and q̇0 ≡ q̇(t = 0).

The time-derivative of q leads us to
q̇ = ω p (106)

with
p ≡ p(t) = −

(
q0 sin (ωt)−p0

ω
cos (ωt)

)
. (107)

The boundary conditions imposed by the res-
onator enforce a discrete set of mode functions
u of the vector potential enumerated by a set of
three indices [58] determining an effective wave vec-
tor. Moreover, due to the Coulomb gauge (96) and
(104), we find two polarization directions for u.

For the sake of implementing a concise notation,
we abbreviate these indices consisting of wave vec-
tor and polarization indices by a single quantity `,
and use the set {u`} for the eigenmodes of the vec-
tor potential.

A2: Vector potential

As a result of the linearity of the wave equa-
tion (98), the vector potential A in the resonator
is the superposition

A(t, r) =
∑
`

A`(t)u`(r) (108)

of all modes {u`} which are the eigen-(mode) func-
tion ofA. Here we have introduced the abbreviation

A`(t) ≡ A`q`(t) (109)
for the vector potential contribution originating
from the mode u`.

The mode functions {u`} of the vector potential
form an orthonormal basis of transverse vector fields
inside the resonator with the orthogonality relation

1

V`

∫
d3r u`

†(r)um(r) = δ`m, (110)

where V` denotes the mode volume.

A more general definition for the mode volume is
for example given by

V` ≡
∫

d3r
∣∣u`(r)

∣∣2∣∣u`(rc)∣∣2 , (111)

where rc is a point of special interest of a given
resonator.

For example, in a box resonator with perfectly
reflecting and conducting surfaces exhibiting sinu-
soidal modes, one typically [48] picks rc as the
point of maximal mode amplitude. Alternatively, in
the presence of an atomic dipole at a fixed loca-
tion inside the cavity, one can also use its position.
Such choices can be directly linked to single-atom
cavity QED analogs of the Purcell effect [59], i.e.,
the enhancement (or suppression) of the sponta-
neous emission rate of the dipole in a resonant cav-
ity environment. For recent generalizations to more
complicated systems and open cavities, we refer
to [60, 61].

A3: Electric field

Since there are no charges and currents present,
the electric field (97) in Coulomb gauge takes the
explicit form

E(t, r) = −
∑
`

A` q̇`(t)u`(r), (112)

where we made use of the mode expansion of the
vector potential (108).

With the general solution (105) of the harmonic
oscillator equation (102) and the connection (106)
between q̇` and p`, we find

E(t, r) =
∑
`

E`p`(t)u`(r), (113)

where we have introduced the relation
E` ≡ A` ω`. (114)

Hence, the contribution of each mode to the total
electric field is determined by the amplitude

E`(t) ≡ E` p`(t) (115)
in the mode expansion

E(t, r) =
∑
`

E`(t)u`(r). (116)

A comparison of this expression to the expansion of
the electric field
E(t, r) =

∑
`

E`(t)v`(r) (117)

in its eigenmodes {v`}, reveals that A and the
E share the same set of eigenmodes {u`}. Conse-
quently, the set {u`} of modes of the vector po-
tential can be mapped one-to-one to the set {v`}
of eigenmodes of the electric field. We emphasize
that this property is only true in the absence of
currents and charges, within and on the resonator
boundary, because otherwise the wave equations for
both fields A and E might differ in their bound-
ary conditions and thus lead to different eigenmode
expansions.
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A4: Magnetic induction

We conclude this discussion of the fields by pre-
senting a similar representation for the magnetic in-
ductionB in terms of the mode functions of the vec-
tor potential A. However, in contrast to the electric
field E, linked to A by differentiation in time, the
field B is linked to the vector potential by taking
the curl, that is a coordinate derivative.

Indeed, we find from the definition B ≡ ∇ ×A
of B in terms of A given by (108) the expression

B(t, r) =
∑

`
A`q`(t)

[
∇× u`(r)

]
. (118)

In order to bring out the analogy to E, we multi-
ply and divide in the expansion the mode function
by ω`/c, which yields

B(t, r) =
∑

`
B`(t)

c

ω`

[
∇× u`(r)

]
, (119)

where we have introduced the magnetic induction
in the mode

B` ≡ B` q`(t) (120)
with the vacuum magnetic induction
B` ≡ A`ω`/c = E`/c. (121)

In the last step, we have recalled from (114) the
definition of the vacuum electric field.

When we compare (119) to the eigenmode expan-
sion,

B(t, r) =
∑

`
B`(t)w`(r) (122)

of B, we can again find a one–to–one mapping be-
tween eigenmodes. However, now we have to make
the matching by comparing the expressions∑

`
B`(t)

c

ω`
[∇× u`(r)]

!
=
∑

`
B`(t)w`(r).

(123)
When we note that there can be no reshuffling

of the sequence of mode indices since only the co-
efficient B`(t) contributes to the field energy, the
eigenmodes of B must be related to the eigenmodes
of A by making the identification

w`(r) ≡ c

ω`
[∇× u`(r)] . (124)

However, when we recall that (eigen)-modes are
determined by the boundary conditions resulting
from (124), this is not surprising. The magnetic in-
duction has to fulfill different boundary conditions
to be consistent with Maxwell’s equations on the
resonator surface. We emphasize again that our el-
ementary treatment is valid only in the absence of
currents and charges within and on the resonator
surface. Otherwise, significant changes can arise.
For more details, we refer, for example, to the clas-
sic text [62] on nano-photonics, or more recent work
referenced therein.

A5: Determination of the vacuum
field amplitude

In order to define the quantity A`, we recall from
Appendix B that the energy

H(t) =
ε0
2

∫
d3r

[
E(t, r)2+

(
cB(t, r)

)2] (125)

of the electromagnetic field in the resonator takes
the form

H =
∑
`

ε0A2
`ω

2
`

V`
2

[
p2`(t) + q2` (t)

]
, (126)

where we have used the expansions (112) and (119)
for E and B.

When we compare (126) to the representation

H =
∑
`

~ω`
2

[
p2`(t) + q2` (t)

]
(127)

of the total energy as a sum of all modes, where
each mode contains the energy ~ω`, we obtain the
explicit expression

A` ≡
√

~
ε0ω`V`

(128)

for the amplitude A` of the vector potential due to
a single mode.

Due to the connection (114) between E` and A`,
we find the corresponding relation

E` ≡
√

~ω`
ε0V`

(129)

for the electric field. In the quantized theory, dis-
cussed in Appendix C, E` will become the amplitude
of the vacuum field.

In Table I, we summarize key features of the
mode expansions based on the eigenmodes or the
u`-modes, such as the strength of the fields and the
vacuum field amplitude in each mode. Here, we em-
phasize the different power laws of the mode fre-
quency ω` in A`, E`, and B`.

A6: Natural modes

In this appendix, we have expanded the three
fields A, E, and B into the modes u` of A. How-
ever, since we focus on a situation with no charges
and currents, we can also express E and B in their
natural modes, v` and w`. Indeed, E and B also
satisfy the homogeneous wave equations, i.e.,

�E(t, r) =

[
1

c2
∂2

∂t2
−∆

]
E(t, r) = 0 (130)

and

�B(t, r) =

[
1

c2
∂2

∂t2
−∆

]
B(t, r) = 0 (131)

following from the Maxwell equations, (94)
and (95), in the absence of currents and charges.

Needless to say, E and B have to obey bound-
ary conditions imposed by the resonator, leading
us to the natural modes f` = f`(r) defined by the
Helmholtz equation(

∆ + k2`
)
f` = 0, (132)

and the boundary conditions with k` = ω`/c.
For the sake of simplicity, we have not included

in the modes f` a superscript A, E, or B to express
the fact that they depend on the choice of the field.
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Indeed, for A and E, the natural modes are obvi-
ously u`, i.e.,

u` ≡ f (A)
` = f

(E)
` ≡ v`, (133)

but for B, we find

f
(B)
` ≡ k−1` (∇× u`) ≡ w`. (134)

The introduction of natural modes allows us to
represent the mode expansions of all three fields by
the single expression

F =
∑
`

F`f`, (135)

where F denotes either A, E, or B, and the modes
f` depend on the choice of F .

Appendix B:
Field energy in a resonator

In order to bring out most clearly the similarities
and differences between the total energy H of the
radiation field and the mode sum Σ (F ) defining the
wave functional of the vacuum and, in particular,
the difference in the powers of the frequency of the
mode in H and Σ (F ), we re-derive in this appendix
the energy

H =
ε0
2

∫
d3r

[
E2 + (cB)

2
]

(136)

of the electromagnetic field in a resonator in two
slightly different ways: (i) first, we calculate in typi-
cal textbook fashion the electric and magnetic con-
tribution to the field energy, (ii) then, we use the
previously defined eigenmodes of the field B to find
the magnetic contribution to the field energy.

B1: Textbook quantum optics approach

We begin with the textbook treatment, following
along the lines of [48]. The contribution

H(E) ≡ ε0
2

∫
d3r E2 (137)

to H due to the electric field
E =

∑
`

E` u` (138)

leads us immediately to the expression

H(E) =
ε0
2

∑
`,`′

E`E`′

∫
d3r u`(r) · u`′(r),

(139)
which reduces with the orthonormality relation
(110) of the modes to

H(E) =
ε0
2

∑
`

E2
`V`. (140)

It is slightly more complicated to calculate the
term

H(B) ≡ ε0
2

∫
d3r (cB)

2 (141)

associated with the magnetic induction

B =
∑
`

B`
c

ω`

[
∇× u`

]
. (142)

Indeed, when we substitute the mode represen-
tation (142) into H(B) given by (141), we find the
expression

H(B) =
ε0c

2

2

∑
`,`′

B`B`′
c2

ω`ω`′
J``′ , (143)

where we have introduced the abbreviation

J``′ ≡
∫

d3r
[
∇× u`(r)

]
·
[
∇× u`′(r)

]
.
(144)

With the help of the identity proven in
Appendix F, the integrand in (144) can be rewrit-
ten as

[∇× u`] · [∇× u`′ ] = ∇ · [u`′ × (∇× u`)]

+u`′ · [∇× (∇× u`)] , (145)

where the first term on the right-hand side is a
complete divergence. Hence, the application of the
Gauss theorem converts the volume integral J``′
into a surface integral, which vanishes due to the
mode functions respecting the boundary conditions
of the resonator.

The remaining term
∇× (∇× u`) = ∇(∇ · u`)−∆u` (146)

in (145) reduces with the Coulomb gauge condi-
tion (104) and the Helmholtz wave equation (101)
to [
∇× (∇× u`)

]
=
(ω`
c

)2
u`. (147)

Hence, the integral J``′ given by (144), yields

J``′ =
(ω`
c

)2∫
d3r u`(r) · u`′(r) =

(ω`
c

)2
V`δ``′ ,

(148)
where in the last step we have used the orthonor-
mality relation (110) of the mode functions.

Consequently, we arrive at the expression

H(B) =
ε0
2

∑
`

c2B2
`V` (149)

for the magnetic field energy (143).
We conclude by combining the formulae for the

electric H(E) and magnetic part H(B) given by
(140) and (149), and arrive at the representation

H =
ε0
2

∑
`

A2
` ω

2
` V`

(
p2` + q2`

)
(150)

of the energy in terms of modes. Here, we have re-
called the definitions (115) and (120) of E` and B`,
respectively, together with the connections (114)
and (121).

B2: Magnetic field energy via eigenmodes

When we recall our discussion of the respective
eigenmodes of E and B, and their relation to the
eigenmodes of A, one might think that we could
have avoided the cumbersome calculation of the
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scalar product of the curls of the modes entirely.
However, this suspicion is not quite true, and to
show why, we perform the relevant calculation in
this section.

When we expand the magnetic induction in its
eigenmodes {w`}, we directly obtain for the mag-
netic field energy (141) the expression

H(B) =
ε0
2

∑
`,`′

c2B`B`′

∫
d3r w`

†(r)w`′(r).

(151)
Next, we make use of the orthonormality of the

eigenmodes w`, i.e.,
1

Ṽ`

∫
d3r w`

†(r)w`′(r) = δ``′ , (152)

which leads us to the preliminary result

H(B) =
ε0
2

∑
`

c2B2
` Ṽ`. (153)

We emphasize that, instead of the mode volume
V` of the vector potential modes u`, the mode vol-
ume Ṽ` corresponding to the eigenmodes w` of B
has appeared. Hence, if one wants to express the
total field energy H solely in terms of one mode
volume, a connection between V` and Ṽ` is needed.

However, the only link available between the
eigenmodes w` and u` is (124), i.e.,

w`(r) =
c

ω`

[
∇× u`(r)

]
. (154)

When we take the scalar product of this equation
with itself and integrate over the resonator volume,
we obtain the relation

Ṽ` =

∫
d3r

∣∣w`(r)
∣∣2 =

c2

ω2
`

∫
d3r

[
∇× u`(r)

]
·
[
∇× u`(r)

]
. (155)

The integrand on the right-hand side of this equa-
tion is an old acquaintance of ours — (144) evalu-
ated at ` = `′.

Hence, even in the approach with the eigenmodes
ultimatly no true simplification is gained, but it is
just a slightly different detour. As a consequence,
we again need to apply (145) to (147) to simplify
the scalar product of the two curls, and we obtain

Ṽ` =

∫
d3r

∣∣w`(r)
∣∣2 =(ω`

c

)2( c

ω`

)2 ∫
d3r |u`(r)|2 = V`, (156)

where we have made use of (110) defining the mode
volume of the vector potential modes u`.

As a consequence of the identity V` = Ṽ`, we also
arrive at the expression

H(B) =
ε0
2

∑
`

c2B2
` Ṽ` =

ε0
2

∑
`

c2B2
`V` (157)

for the field energy H(B) due to the magnetic in-
duction.

As an afterthought, we note that one could have
naively imagined that the mode volumes might be
defined independently such that they differ by a nu-
meric factor — maybe via choosing different ref-
erence points in their respective definition of the
mode volume. However, then the expression for the
Hamiltonian (150) would be rescaled in the mode
oscillator coordinate q` corresponding to the mag-
netic field by the factor of Ṽ`/V`. In turn, this fea-
ture would lead to problems in the Hamilton equa-
tions of motion since the symmetry between q` and
p` would be broken, leading to a rescaled Poisson
bracket. This would directly impact quantization
by also rescaling the commutator [q̂`, p̂`] = i by the
factor Ṽ`/V`, which is undesirable. Nevertheless, we
note that the simple argument we have formulated
here might not be as clear-cut when complicated
boundary conditions enter, or open resonators in
the presence of currents and charges are considered.

Appendix C: Wave function
representations of the ground state

In this appendix we derive the wave function ψ`
of the ground state of the electromagnetic field in
the modes u`, v`, or w` specified by the mode in-
dex ` and the field. Indeed, for the vector poten-
tial A and the electric field E, the eigenmodes are
u`. However, for the magnetic induction B they are
w` ≡ k−1` ∇× u`.

Although the material in this appendix is par-
tially contained in standard textbooks on quantum
optics [48], we find it useful to include it in our
article to gain a complete understanding of the ori-
gin and form of the dimensionless arguments of the
Gaussian ground state wave function in the different
representations. We first address in detail the case
of E, and then we will turn briefly to the analogous
calculations for B and A.

C1: Electric field representation

We start from the mode decomposition

E(t, r) =
∑
`

E` p`(t)u`(r) (158)

of the electric field and make a transition to quan-
tum mechanics, namely to the electric field opera-
tor Ê, by promoting the dimensionless amplitude
functions q` and p` of the harmonic field oscillator
of the `-th mode defined by the mode function u`
to operators q` 7→ q̂` and p` 7→ p̂`, and demanding
the canonical commutation relations[

p̂`, q̂`′
]

=
1

i
δ``′ . (159)

Hence, Ê takes the form

Ê(t, r) =
∑
`

Ê`(t)u`(r) (160)
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with
Ê`(t) ≡ E`p̂`(t), (161)

which forces us to introduce a quantum state space
for each mode.

A representative state could be, for example, the
eigenstate |E`〉 defined by the eigenvalue equation

Ê` |E`〉 ≡ E` |E`〉 (162)
for the electric field operator, where E` ≡ E`q` cor-
responds to the eigenvalue. Thus, |E`〉 describes a
state, where the electric field in the `-th mode as-
sumes the well-defined value E`.

The ground state |0`〉 of the `-th field oscillator
is determined by the condition

â` |0`〉 = 0, (163)
where the linear combination

â` ≡
1√
2

(
q̂` + i p̂`

)
(164)

of q̂` and p̂` represents the annihilation operator â`.
When we now substitute the expression for â`

given by (164) into the definition (163) of the
ground state and multiply by the bra-vector 〈E`|,
we arrive at the equation
〈E`| q̂` + i p̂` |0`〉 = 0 (165)

determining the ground state wave function
ψ`(E`) ≡ 〈E` | 0`〉 . (166)

in the electric field representation, which corre-
sponds to the first-order differential equation[
−1

i

d

d(E`/E`)
+ i(E`/E`)

]
ψ`(E`) = 0 (166)

Here we have used the fact that, according
to (162), |E`〉 is an eigenstate of Ê`, and therefore
of p̂`, leading us to the identifications

p̂` 7→ p` and q̂` 7→ −
1

i

d

dp`
(168)

to satisfy the canonical commutation relation (159).
Moreover, in (167), we have expressed the derivative
with respect to p` by E`p` ≡ E`.

Hence, we arrive at the Gaussian wave function

ψ`(E`) = N (E)
` exp

[
−1

2

(
E`
E`

)2
]
, (169)

where the normalization constant

N (E)
` ≡ 1

4
√
π
√
E`

(170)

follows from the condition∫ ∞
−∞

dE`
∣∣ψ`(E`)∣∣2 = 1, (171)

imposed by the Born interpretation.

C2: Magnetic induction representation

Next, we turn to the magnetic inductionB, where
the corresponding operator reads

B̂(t, r) =
∑
`

B̂`(t)w`(r) (172)

with
B̂`(t) ≡ B`q̂`(t). (173)

This decomposition leads us to the eigenvalue equa-
tion

B̂` |B`〉 = B` |B`〉 (174)
for the state |B`〉 of a well-defined value B` of the
magnetic induction B in the `-th mode w`(r) ≡
k−1` (∇ × u`). Here, similarly to the electric field
case, the expression

B` ≡ B`q` (175)
denotes the eigenvalue.

Indeed, in this representation, we have to make
the identification

p̂` 7→
1

i

d

dq`
and q̂ 7→ q` (176)

leading us directly to the differential equation
d

d(B`/B`)
ψ`(B`) = −(B`/B`)ψ`(B`) (177)

for the wave function
ψ`(B`) ≡ 〈B` | 0`〉 (178)

of the ground state of the `-th mode in the magnetic
induction representation.

The differential equation (177) also admits a
solution in the form of a Gaussian

ψ`(B`) ≡ N (B)
` exp

[
−1

2

(
B`
B`

)2
]

(179)

with the normalization constant

N (B)
` ≡ 1

4
√
π
√
B`
. (180)

The only difference from the electric field repre-
sentation discussed in the preceding section is the
fact that the eigenstates |B`〉 are now, apart from
the vacuum fields B`, eigenstates of q̂` rather than
of p̂`.

C3: Vector potential representation

We conclude by briefly discussing the vector po-
tential representation

ψ`(A`) ≡ 〈A` | 0`〉 (181)
of the ground state wave function in the `-th mode
resulting from the operator

Â(t, r) ≡
∑
`

Â`(t) û`(r) (182)

of the vector potential with
Â`(t) ≡ A` q̂`(t). (183)
Since the operator Â` like B̂` is also proportional

to q̂`, we immediately find

ψ`(A`) = N (A)
` exp

[
−1

2

(
A`
A`

)2
]

(184)

with the normalization constant

N (A)
` ≡ 1

4
√
π
√
A`

(185)
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in complete analogy to the distributions (169)
and (179) in the electric field and magnetic induc-
tion variables E` and B`, respectively.

Appendix D:
Reduction scheme for the kernel

In the main body of this article, we have derived
an exact expression for the kernel K of the wave
functional of the vacuum in a resonator represented
by the field F in terms of the natural modes f`.
This kernel is a matrix according to (31), this ker-
nel is a matrix, defined by the action of the func-
tion F containing the root of the negative Laplacian
on the transverse delta function. Since the fields in
the double integral are transverse, we can replace it
with the familiar Dirac delta function of free space.
As a result, the kernel reduces to a scalar K (F ).

In this appendix, we rederive the expression for
the scalar kernel from a slightly different perspec-
tive. From the outset, we assume the kernel to be
a scalar in the form of a Fourier representation of
a root of the negative Laplacian. We first obtain an
exact expression for the double integral containing
the bilinear form of a field F and the scalar kernel
K (F ) expressed as a single integral of the square of
F containing the fourth root of the negative Lapla-
cian acting on F . We then evaluate this integral for
a given mode representation and match the result
with the formula for the mode sum.

This procedure yields the individual scalar ker-
nels. We conclude by comparing and contrasting
this approach to the diagonal and non-diagonal
representation of the density operator in terms
of coherent states, and given by the P - and R-
distribution [38], respectively.

D1: A general identity for Fourier
transformable kernels

We now verify the identity

Ĩ(F ) ≡
∫

d3r

∫
d3r′ F · F ′ K (F )(r − r′) =∫

d3r
∣∣F 4
√
−∆F

∣∣2 (186)

for a vector field F = F (t, r), where the kernel

K (F )(r) ≡ 1

(2π)3

∫
d3k F (k)e ik·r (187)

appears in the double integral with the difference
r − r′ of the integration variables r and r′. Here
F is not a generic scalar function but the function
F (k) = k or F (k) = 1/k appearing in the mode
sum Σ (F ) defined by (13), and given for E and B
by (14), and for A by (15).

Central to the relation (186) is the eigenvalue
equation (37) of e ik·r leading us immediately to
the representation

K (F )(r) = F
(√
−∆r

)
δ(r), (188)

where we have recalled the Fourier representa-
tion (44) of the Dirac delta function.

When we substitute (188) into the left–hand side
of (186), we arrive at the expression

Ĩ(F ) ≡
∫

d3r

∫
d3r′ F ·

[
F
(

4
√
−∆r

)
×F

(
4
√
−∆r′

)
δ(r − r′)

]
F ′. (189)

Here we have used the relation
F
(√
−∆

)
δ(r) = F 4

√
−∆r F

4
√
−∆r′δ(r−r′),

(190)
which is only true for F (k)=k and F (k)=1/k and
follows from the fact that the delta function is in the
difference of the integration variables, i.e., r−r′.

When we recall that the field F vanishes outside
of the resonator, we can integrate both integrals by
part. As a result, we arrive at the representation

Ĩ(F ) =

∫
d3r

∫
d3r′ δ(r−r′)

×
[
F
(

4
√
−∆r

)
F
][
F
(

4
√
−∆r′

)
F ′
]

(191)

of the integral Ĩ(F ). The Dirac delta function allows
us to reduce the double integral into a single one
leading us to the identity (186).

D2: Evaluation of the integral

Next, we evaluate the integral on the right-hand
side of the identity (186) using the expansion

F =
∑
`

F` f` (192)

of F into the natural modes f`, and find∫
d3r

∣∣∣F ( 4
√
−∆

)
F
∣∣∣2 =

∑
`

F 2
` F (k`)V` = Σ (F ),

(193)
where we have used the identity (29) for the action
of the fourth root of the negative Laplacian on f`,
and the orthonormality relation (17). In the last
step in (193), we used the indentities F (k) = 1/k
and F (k) = k and have recalled the definition (13)
of the mode sum Σ (F ).

Together with the identity (186), we finally
arrive at the relation

Σ (F ) =

∫
d3r

∫
d3r′ F · F ′ K (F )(r−r′)

(194)
with the kernels

K (A)(r) ≡ 1

(2π)3

∫
d3k k e ik·r (195)

and

K (E/B)(r) ≡ 1

(2π)3

∫
d3k

1

k
e ik·r, (196)

in complete agreement with the derivation
in Sect. 3.
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D3: A curious analogy

This approach is reminiscent of the representa-
tion [48] of the density operator %̂ in terms of co-
herent states. Multiplying the completeness relation
of the coherent states from the left and from the
right onto the density operator %̂, we obtain the
non-diagonal representation

%̂ =
1

π2

∫
d2α

∫
d2β |α〉 〈α|%̂|β〉 〈β| . (197)

When we compare this expression to the corre-
sponding one of the double integral Ĩ(F ), given by
(186), we note three similarities: (i) the two differ-
ent coherent states |α〉 and |β〉 play the role of the
fields F and F ′, (ii) the matrix element 〈α|%̂|β〉 cor-
responds to the kernel, and (iii) the two integration
over the coherent states translate into a double in-
tegral over coordinates.

Needless to say, there are also fundamental dif-
ferences between the two expressions. For example,
coherent states live in the state space and describe
the quantum mechanics of a single mode. In con-
trast, the bilinear form involves the classical total
fields. Nevertheless, in both cases, states and fields
are associated with vector spaces and therefore take
advantage of similar mathematical tools.

Roy Glauber and George Sudarshan, indepen-
dently, introduced the diagonal representation

%̂ =
1

π

∫
d2α P (α) |α〉 〈α| (198)

of the density operator %̂ involving the P -
distribution.

In our problem, this concept corresponds to the
right-hand side of (186) which, according to (193), is
identical to the mode sum Σ (F ), which only contains
the squares of the field strength and is therefore di-
agonal. This transition from non-diagonal to diag-
onal representation is made possible by derivatives
acting on delta functions. Indeed, the P -distribution
of a coherent state is already a Dirac delta function,
and non-classical states are more singular [48].

Appendix E:
Explicit expressions for kernels

In this appendix, we derive an explicit expression
for the kernel

K (j)(r) ≡ 1

(2π)3

∫
d3k kj e ik·r, (199)

and consider especially the two cases j = 1 and
j = −1 corresponding to K (A) and K (E/B).

We note that while we formally calculate the inte-
gral for all integer values of j in this section, the re-
sulting expressions and integrals are obviously prob-
lematic from the simple viewpoint of Riemann or
Lebesgue integration of functions, since they are ei-
ther singular at the origin or at infinity depending
on the j value. Methods to deal with such singu-
lar integrals have been developed in the theory of

generalized functions [63–65] in terms of Hadamard
finite part regularization. This is the framework in
which the following calculation should be under-
stood.

In the case of an integral with a singularity at the
origin, the standard Hadamard regularization [63]
can be directly applied. In the case of a singularity
at infinity, tools with similar scope were developed
in [66]. For an example of the necessary procedures,
we refer to [64], where the regularization of 1/rj is
discussed in detail. In our calculation, we implic-
itly assume that such a regularization is performed
and the kernel expressions are understood in this
way. After the dust settles, the resulting kernel may
be made sense of as a pseudo-function/generalized
function induced by the meromorphic continuation
of the remaining finite part, with the singular parts
removed.

We begin the formal integration by choosing
spherical coordinates k ≡ |k|, ϑ and ϕ, noting that
the integrand does not depend on ϕ. Thus we im-
mediately arrive at the two-dimensional integral

K (j) =
1

(2π)2

∞∫
0

dk kj+2

π∫
0

dϑ sin (ϑ)e ikr cos(ϑ),

(200)
which after integration over ϑ yields the expression

K (j) =
1

(2π)2 r

1

i

∞∫
0

dk kj+1
(

e ikr − e− ikr
)
.

(201)
Next we eliminate the power kj+1 by j+1 by dif-

ferentiating the radial wave exp(± ikr) with respect
to r in total j+1-times and find

K (j) = − 1

(2π)2
1

r

1

i j

× ∂j+1

∂rj+1

 ∞∫
0

dk e ikr + (−1)j
∞∫
0

dk e− ikr

 .
(202)

In order to evaluate the two remaining integrals,
we introduce the convergence factor exp(−εk) to
calculate the resulting integral, and then let ε > 0
approach zero afterward. With the help of the rela-
tion

∞∫
0

dk e−(ε∓ ir)k =
1

ε∓ ir
, (203)

we finally obtain

K (j)(r) = Pf
1

2π r

(−1)

i j
∂j+1

∂rj+1
d(j)ε (r). (204)

Here we have introduced the abbreviation

d(j)ε (r) ≡ 1

π

ε

ε2+r2
1+(−1)j

2
+

i

π

r

ε2+r2
1−(−1)j

2

(205)
and added the pseudo-function [63, 64] operator
Pf to remind us that the kernel is a pseudo-
functions/generalized function resulting from im-
plicitly performing Hadamard finite part regular-
ization on the integral leading to it, if necessary.
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With the representation

lim
ε→0

1

π

ε

ε2 + r2
= δ(r) (206)

of the Dirac delta function and the identity

lim
ε→0

r

ε2 + r2
= P

(1

r

)
, (207)

where P denotes the Cauchy principal part, we ob-
tain the expression

d(j)(r) =
1 + (−1)j

2
δ(r)

+
i

π

1− (−1)j

2
P
(1

r

)
. (208)

Hence, for even values of j only the delta function
contributes to

d(j) ≡ lim
ε→0

d(j)ε , (209)

whereas for odd ones only the contribution due to
the derivatives of the Cauchy principal part ap-
pears, leading us to the expressions

K (2n) = Pf
(−1)n+1

2π r

∂2n+1

∂r2n+1
δ(r) (210)

and

K (2n+1) = Pf
(−1)n+1

2π2 r

∂2(n+1)

∂r2(n+1)
P
(1

r

)
. (211)

Both kernel expressions should be understood as
pseudo-functions including an implicit regulariza-
tion lending the needed context [63] in which, e.g.,
the derivatives of the Cauchy principal part are to
be interpreted. As is often done in physics, we will
from now on suppress the pseudo-function opera-
tor again for brevity in the notation, assuming the
resulting kernels and objects involving them are un-
derstood implicitly in that sense from now on.

With these considerations, after performing the
derivatives for j = −1 that is n = −1, we find the
kernel

K (−1) = K (E/B) =
1

2π2 r2
, (212)

whereas for j = +1, that is n = 0, we arrive at the
kernel

K (1) = K (A) =
(−1)

π2 r4
. (213)

This expression for K (1) also follows in a
straight-forward way when we note from the defi-
nition (199) of K (j) the connection

(−∆) K (−1) = K (1) (214)

between K (−1) and K (1), i.e., between K (E/B)

and K (A).

Indeed, by direct differentiation of (212), we ob-
tain

K (A) = (−∆)K (E/B) =

− 1

2π2

(
∂2

∂r2
+

2

r

∂

∂r

)
1

r2
= − 1

π2 r4
, (215)

in complete agreement with (213).

Appendix F:
Scalar product of two mode functions

The scalar product of the curls of two-mode func-
tions is crucial for calculating the contributionH(B)

of the magnetic induction to the total energy H of
the electromagnetic field in a resonator performed
in Appendix B.

In (145) we applied an identity for the scalar
product of the curl of two vector fields, which we de-
rive here. We start with a more general identity for
the three vector fields f = f(r, r′) and g = g(r, r′)
and h = h(r, r′).

When we take the divergence of the cross product
between f and h, we obtain

∇r ·
[
f(r, r′)× h(r, r′)

]
= h · (∇r × f)

−f · (∇r × h), (216)

where from now on we suppress the functional de-
pendencies of the fields for brevity.

Replacing h 7→ ∇r′ × g yields

(∇r × f) · (∇r′ × g) = ∇r ·
[
f × (∇r′ × g)

]
+f ·

[
∇r × (∇r′ × g)

]
. (217)

Using the definition of the cross product in terms
of the Levi–Civita symbol, i.e., a× b = ej εjk` akb`
with summation over double-indices implied, the
terms on the right-hand side of the previous equa-
tion can be transformed into
f × (∇r′ × g) = ∇r′(f · g)− (f · ∇r′)v

(218)
and
∇r × (∇r′ × g) = ∇r′(∇r · g)− (∇r · ∇r′)g.

(219)

Reinsertion of these identities into (217) leads to
the desired identity
(∇r × f) · (∇r′ × g) = ∇r ·

[
∇r′(f · g)

]
−∇r ·

[(
f · ∇r′

)
g
]

+
(
f · ∇r′

)(
∇r · g

)
−f · [(∇r · ∇r′) g] (220)

for the scalar product of two curls with differ-
entiation with respect to different arguments r
and r′.

Alternatively, starting from (217) and using the
case of r ≡ r′ and the definition of the vector Lapla-
cian we obtain the identity

(∇r × f) · (∇r × g) = ∇r ·
[
f × (∇r × g)

]
+f ·

[
∇r(∇r · g)−∆rg

]
, (221)

used in (145).
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