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We start this short note by remembering the beginnings of the Warsaw School of Quantum Optics, ev-
idently stimulated by Iwo Białynicki-Birula at the Warsaw University, and then Centre for Theoretical
Physics of Polish Academy of Sciences and Adam Kujawski and Zofia Białynicka-Birula at the Institute
of Physics of Polish Academy of Sciences. In the theoretical approaches of the Warsaw School, quantum
field theory was always present, and quantum optics was considered to be applied quantum electrody-
namics. All of us who grew up in this fantastic community have carried and are still carrying the gospel
to others. In particular, now quantum electrodynamics began her run on the red carpet of super intense
laser–matter interactions, attosecond physics, and ultrafast laser physics in general. We will elaborate
on the recent progress in this direction and on the open questions for future investigations. This paper
celebrates the 90th birthday of Professor Iwo Białynicki-Birula, our quantum electrodynamics guru!
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1. Introduction

1.1. Memories

On the occasion like this, it is appropriate to
start the paper with some personal memories, in
this case by M. Lewenstein: Me and one of my best
friends, Marek Kuś, were supposed to do our Diplo-
mas at the Department of Physics of Warsaw Uni-
versity in the academic year 1978–1979. Like many
other top theory students, our preference was Kat-
edra Metod Matematycznych Fizyki (KMMF), led
by Professor Krzysztof Maurin. I even had a fa-
vorite supervisor — Krzysztof Gawędzki. When I
asked him about the possibility, he told me lit-
erally: “Mr. Maciek, quantum field theory is diffi-
cult, and renormalization group even harder,”†1 and

†1(Polish translation) “Panie Maćku, kwantowa teoria
pola jest trudna, a teoria renormalizacji grup jeszcze trud-
niejsza”

he left Poland starting his Odyssey via Harvard,
Princeton, Institute of Advanced Scientific Stud-
ies (IHÉS), and École Normale Supérieure de Lyon
(ENS Lyon). Still, we wanted to go to KMMF,
but the Dean of the Department, Professor Jerzy
Pniewski, issued a rule that there would be no diplo-
mas in KMMF this year. We had to look for some-
thing comparably challenging, and we chose Zakład
Teorii Pola i Fizyki Statystycznej of Professor Iwo
Białynicki-Birula, the author of the seminal hand-
book of Quantum Electrodynamics [1]. It was in-
deed a Mekka of the Warsaw Statistical Physics
with Jarosław Piasecki, Łukasz Turski, and Bog-
dan Cichocki, but we were interested in quantum
field theory (QFT). And then came two younger
and very convincing guys, Kazimierz† Rzążewski
and Krzysztof Wódkiewicz, who said: “Let us do
quantum optics (QO), which is applied quan-
tum electrodynamics (QED).” And we both got
seduced.

†2Often called Kazik in the community

S42

http://doi.org/10.12693/APhysPolA.143.S42
mailto:maciej.lewenstein@icfo.es


Quantum Optics as Applied Quantum Electrodynamics is. . .

Indeed, the training of QO in Warsaw was heav-
ily biased toward QFT. Master equation approaches
were not “allowed,” one was using full Hamiltonian
and Heisenberg equations. This has taught us very
early that there are no Markov processes in Nature
— everything must have long-time tail corrections
and more. . .

There is another twist to this story related to
strong laser field physics. On the desk of Kazik
Rza̧żewski, I found a preprint of Luiz Davidovich
that Kazik got when they shared the same bureau
at the International Centre for Theoretical Physics
(ITCP) with Luiz. I got absolutely fascinated by
Keldysh’s theory of tunnel ionization and decided to
work on it. At the beginning of 1970, Pierre Agostini
in Saclay published the first result on the so-called
above-threshold ionization. Zofia Białynicka-Birula
published a seminal paper [2] on the subject in 1984.
That was the moment when I decided to join the
operation.

The situation of the super-intense laser–matter
physics is well described below in Sect. 1.2. We
clearly face the situation when QED is on the move
again. This paper is based on the thesis proposal of
Philipp Stammer, a PhD student at ICFO. So, the
plan is to present the motivation to bring quantum
optics as applied quantum electrodynamics back to
town. This is done by introducing various future in-
vestigations, all related to QED of strong laser fields
physics, so to the clear heritage of Iwo Białynicki-
Birula.

1.2. Quantum optics meets strong
laser field physics

For decades the interaction of intense and short
laser pulses with matter has been described suc-
cessfully with semi-classical methods, in which the
quantum nature of the electromagnetic field was not
taken into account. The characteristics of the ob-
served features in the spectra for the processes of
high harmonic generation (HHG) [3, 4] or above
threshold ionization (ATI) [5, 6] were well repro-
duced within the semi-classical picture. Further-
more, the semi-classical approach for the process of
HHG (or even fully classical [7]) provides a power-
ful picture by means of the so-called 3-step model to
gain intuition about the electron dynamics. There,
(i) an electron tunnel ionizes into the continuum
through the barrier formed by the Coulomb poten-
tial of the core and the electric field (via dipole cou-
pling), then (ii) the freed electron is driven in the
presence of the electric field and can (iii) eventu-
ally recombine to the core by emitting the gained
energy in terms of radiation. This description has
led to fruitful analysis in terms of quantum tra-
jectories [8–10] within the strong field approxima-
tion [11]. The progress of strong field and attosecond
physics based on the semi-classical description was
immense, but neglecting the quantum properties of
the field did not allow the use of the language for
posing specific questions about the field observables.

However, including the quantum electrodynami-
cal characteristics of the field can lead to new obser-
vations in the radiation field inaccessible from the
classical perspective, and further allows us to ask
questions unamenable before, for instance to obtain
insights about the quantum state of the field. In
fact, recent theoretical and experimental advances
have indicated that intense laser–matter interac-
tion can exhibit non-classical features. In particu-
lar, quantum optical approaches for the process of
high-order harmonic generation asked for the quan-
tum state of the harmonic field modes [12, 13] and
studied the back-action on the fundamental driv-
ing field [13, 14]. Furthermore, the experimental ad-
vances in combining strong field physics with meth-
ods known from quantum optics [15, 16] allowed
conceiving new experiments in which non-classical
states of light can be generated from the HHG pro-
cess [13, 14, 17]. This progress has then triggered the
subsequent analysis of quantum state engineering of
light using intense laser–matter interaction [18–20].
Nevertheless, and despite using Hilbert space con-
structs for the electromagnetic field, the investiga-
tion has not yet revealed inherent quantum signa-
tures in the emitted radiation from the HHG pro-
cess itself.

Besides these achievements in the quantum op-
tical description of intense laser-driven processes,
the full quantum optical properties of the emitted
radiation in the process of high harmonic genera-
tion have not been revealed yet. The radiation is
obtained from classical dipole antenna-like sources
and thus exhibits the same characteristics as clas-
sical coherent radiation sources. Furthermore, the
quantum state of the electromagnetic field is given
in terms of product coherent states, which are clas-
sical states. Those features originate from the ne-
glected dipole moment correlations in the current
theory [13, 18, 19, 21], which, if taken into account,
would eventually lead to non-classical contributions
in the properties of the emitted harmonic radia-
tion. Thus, further investigation towards accessing
this information with potential hidden and interest-
ing properties seems promising for a more detailed
understanding of the HHG process and for poten-
tial applications in optical technologies. Neverthe-
less, introducing conditioning measurements on the
field after the HHG process leads to the genera-
tion of non-classical field states by means of opti-
cal Schrödinger cat states with high photon num-
bers [14, 17–19]. This suggests the potential appli-
cability of these methods in modern optical quan-
tum technologies and could provide a new photonic
platform for information processing [22, 23]. In par-
ticular, since quantum information processing of-
ten requires entangled or superposition states as
a resource, there is a clear need to generate such
states.

The next section (Sect. 1.3) provides an intro-
duction to the current quantum optical formula-
tion of the process of high harmonic generation.
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This serves to define the stage for introducing the
current open question within the new formalism.
This will then allow us to propose further investi-
gation in this direction. In particular, it highlights
the assumptions and approximations used, which
are then questioned and analyzed in the proposed
future analysis.

1.3. Quantum optical high harmonic generation

In the process of high harmonic generation, coher-
ent radiation of higher-order harmonics of the driv-
ing laser frequency is generated [4, 24]. The trans-
fer of coherence and energy from the intense laser
source to the harmonic field modes (initially in the
vacuum) is achieved by a highly nonlinear interac-
tion of the driving field with the HHG medium, in
which the electron is used as an intermediary be-
tween the optical modes. Until recently, this was
mainly described in semi-classical terms, in which
only the electronic degrees of freedom are quan-
tized [4], although there have been early approaches
to introduce a fully quantized description of the
HHG process [21, 25, 26]. However, recent advances
in the quantum optical analysis of HHG have estab-
lished a new direction in the investigation of strong
field physics. This allows us to study the quan-
tum mechanical properties of the harmonic radia-
tion or to take into account the back-action on the
driving field [12–20, 27]. In particular, it has been
shown that conditioning procedures on processes in-
duced by intense laser–matter interaction can lead
to the generation of high-photon number control-
lable non-classical field states in a broad spectral
range [13, 14, 17–19].

What now follows is a brief introduction to the
quantum optical description of the process of HHG.
We will consider discrete field modes for the sake
of simplicity and would like to refer the reader to
the full quantum-electrodynamical description, in-
cluding a continuum of field modes given in [19].
To describe the process of HHG in the single-
atom picture (see [21], in which case this is legit-
imate), we assume that a single active electron is
initially in the ground state |g〉 and is driven by
a strong laser field which is described by a co-
herent state |α〉 in the fundamental driving mode.
The harmonic field modes q ∈ {2, . . . , N} are ini-
tially in the vacuum |{0q}〉 = ⊗q≥2 |0q〉. The in-
teraction Hamiltonian describing the process in the
length gauge and within the dipole approximation is
given by

HI(t) = −d(t) ·EQ(t), (1)
where the electric field operator

EQ(t) = − ig

N∑
q=1

√
q (b†q e

iqωt − bq e− iqωt) (2)

is coupled to the time-dependent dipole moment op-
erator

d(t) = U†sc(t, t0)dUsc(t, t0). (3)

The dipole moment is in the interaction pic-
ture of the semi-classical frame Usc(t, t0) =

T exp [− i
∫ t
t0

dτ Hsc(τ)], with respect to the Hamil-
tonian of the electron

Hsc(t) = HA − d ·Ecl(t). (4)
This semi-classical Hamiltonian is the same as tradi-
tionally considered in semi-classical HHG theory [4],
where HA = 1

2p
2 + V (r) is the pure electronic

Hamiltonian, and

Ecl(t) = Tr
[
EQ(t) |α〉 〈α|

]
=

ig
(
αe− iωt − α∗ e iωt

)
(5)

is the classical part of the driving laser field. A de-
tailed derivation of the interaction Hamiltonian
HI(t) can be found in [19]. It now remains to solve
the time-dependent Schrödinger equation (TDSE)
for the dynamics of the total system of electron
and field. Since we are interested in the quantum
optical dynamics of the field, and in particular in
the process of HHG, we consider the field evolution
conditioned on the electronic ground state (this is
because the electron returns to the ground state in
the HHG process). We thus project the TDSE on
|g〉, and it remains to solve

i∂t |Φ(t)〉 = −
〈
g
∣∣ d(t) ·EQ(t)

∣∣Ψ(t)
〉
, (6)

where |Φ(t)〉 = 〈g|Ψ(t)〉 with the state of the total
system |Ψ(t)〉. Taking into account that the elec-
tron is initially in the ground state, it is equivalent
to solving for the operator

KHHG =
〈
g
∣∣ T exp

[
i

∫ t

t0

dt′ d(t′) ·EQ(t
′)

] ∣∣g〉,
(7)

which solely acts on the initial field state |Φi〉 =
|α〉 |{0q}〉. This can be solved exactly when neglect-
ing correlations in the dipole moment of the elec-
tron [18, 21], such that we can write

KHHG ≈ T exp

[
i

∫ t

t0

dt′
〈
g
∣∣d(t′)∣∣g〉 ·EQ(t

′)

]
=

N∏
q=1

e iϕqD(χq), (8)

where the shift in each mode is given by the re-
spective Fourier component of the time-dependent
dipole moment expectation value

χq = − ig

∫ t

t0

dt′ 〈d(t′)〉e iqωt
′
. (9)

Thus, the solution to (8) is given by a displacement
operation acting on the field modes
|Φ〉 = KHHG |Φi〉 = KHHG |α〉 ⊗q≥2 |0q〉 =

|α+ χ1〉 ⊗q≥2 |χq〉 . (10)

The harmonic modes are described by coherent
states due to the fact that the source for the coher-
ent radiation is related to the electron dipole mo-
ment expectation value 〈d(t)〉 = 〈g|d(t) |g〉, which
acts as a classical charge current coupled to the
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Fig. 1. Schematic illustration of the HHG con-
ditioning experiment performed to generate opti-
cal cat states with controllable quantum features.
An intense laser field drives the process of HHG, in
which an entangled state of the fundamental mode
and all harmonics is generated. A conditioning mea-
surement on the harmonic field modes in the quan-
tum spectrometer (QS) leads to a coherent state
superposition in the driving field of the form (11),
and is measured with a homodyne detection scheme
after overlapping with a local oscillator of varying
phase delay ϕ. The reconstructed Wigner functions
of the homodyne measurement are shown in Fig. 2.

field operator. It thus only represents the coherent
contribution to the harmonic radiation field, and
no genuine quantum signature is found. Further-
more, the fact that the final state is a product co-
herent state over all modes is a consequence of the
approximation of neglecting the dipole moment cor-
relations. Otherwise, if going beyond the linear or-
der in EQ(t), the field operators for different modes
would mix when evaluating the exact propagator
in (7) (see Sect. 2.3). Nevertheless, a phenomeno-
logical approach to take into account the entangle-
ment between the field modes was performed by the
authors in [17, 18].

However, we can employ conditioning schemes
on certain field modes, which allows for quantum
state engineering of light with non-classical proper-
ties [18, 19]. In particular, it has been shown ex-
perimentally that a conditioning procedure on the
process of HHG can lead to coherent state super-
position states (CSS) in the driving laser mode (in
the infrared (IR) regime) in close analogy to op-
tical cat states [13, 14]. The experimental config-
uration is schematically shown in Fig. 1, in which
the conditioning on HHG is carried out, and a ho-
modyne detection measurement of the fundamen-
tal driving field is performed [13, 19]. To formally
describe the generation of these optical CSS via
a conditioning operation on the HHG state |Φ〉 =
|α+ χ1〉⊗q≥2 |χq〉 from (10), M. Lewenstein has rec-
ognized that it can be obtained through the projec-
tion onto P = 1− |α〉 〈α|. This projector was phe-
nomenologically introduced in [13] and led to the
CSS state
|ψ〉 = |α+ χ1〉 −

〈
α
∣∣α+ χ1

〉
|α〉 . (11)

Then P. Stammer showed in [17, 18] how this projec-
tor follows from a projective conditioning measure-
ment on the harmonic field modes when further tak-
ing into account the correlations between the field
modes, and also derived the actual measurement

Fig. 2. Wigner function of the coherent state su-
perposition in (11) for different displacement of (a)
χ1 = 0.1, (b) χ1 = 1.0, which shows features of
an optical “kitten” state and a “cat” state, respec-
tively.

operation Mχ
α = 1− exp

(
−
∑
q≥2 |χq|2

)
|α〉 〈α|,

which converges to the projector Mχ
α ' P =

1− |α〉 〈α| since
∑
q≥2 |χq|2 is on the order O(1/N),

where N is the harmonic cutoff. The completeness
relation of the associated positive operator-valued
measure for the measurement operator was shown
in [18] within the framework of the quantum theory
of measurement. To reconstruct the quantum state
of the coherent state superposition in (11), a ho-
modyne detection measurement is performed (see
Fig. 1), and the Wigner function of the state is re-
constructed. The Wigner function corresponding to
the CSS in (11) is shown in Fig. 2 for two differ-
ent values of the displacement χ1. The possibility
of experimentally varying the displacement χ1, for
instance by changing the gas density in the HHG
interaction region, allows for a change of the CSS
from an optical “kitten” state for small displacement
(displaced first Fock state) to an optical “cat” state
for larger displacement, as shown in Fig. 2a and 2b,
respectively. This allows us to have control over
the non-classical properties of the generated CSS in
order to generate high-photon number optical cat
states from the infrared to the extreme ultraviolet
regime [13, 17]. We note that the displacement χ1
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can not be arbitrarily large, since it would destroy
the superposition in (11) due to the pre-factor in
the second term, which is given by the overlap of
the two states in the superposition. However, since
α is the initial amplitude of the coherent state, this
value has a very high photon number, and thus the
optical cat and kitten states can live far away in
phase space while the two states in the superposi-
tion are not too distinguishable.

2. Open questions about quantum optics
of high harmonic generation

In the previous section, we have outlined the cur-
rent state of the art of our efforts to have a quan-
tum optical description of the process of high har-
monic generation. However, there we made assump-
tions about the experimental boundary conditions
and performed approximations by neglecting par-
ticular contributions. These need to be tested. Fur-
thermore, the quantum optical description of the
light–matter interaction has not yet revealed any
genuine quantum mechanical feature in the HHG
emission process itself. It turned out that the states
of the harmonic field modes {q} are described by
product coherent states |χq〉 — which are purely
classical. Non-classical signatures, by means of the
optical cat state, emerged through the conditioning
process. However, we believe that the emitted radi-
ation in the process of HHG contains non-classical
signatures once the incoherent contributions from
the dipole moment correlations are taken into ac-
count, and furthermore, that the field state will be
entangled.

In the following, we will outline some open ques-
tions in the description of the process of high-order
harmonic generation from a quantum optical point
of view and provide a motivation why this should
be a matter of interest for future investigations.

2.1. On the role of the optical phase
in high harmonic generation

To describe the experimental conditions of the
HHG experiment, we have assumed that the ra-
diation field which drives the process can be de-
scribed by a single-mode coherent state |α〉. This
would imply that the source emits continuous coher-
ent laser light in a single-mode with a well-defined
phase (coherent in the sense of having non-vanishing
off-diagonal density matrix elements in the pho-
ton number basis). However, standard HHG exper-
iments are performed using a pulsed source of ra-
diation. On the one hand, this would automatically
require a multi-mode description in the frequency
domain due to the finite duration of the pulses (they
are not just finite but rather super short in the
regime of femtoseconds). And thus, we extended
the theory to a continuum of modes given in [19].
Furthermore, assuming a pure coherent state de-
scription implies that the field has a well-defined

phase and would thus require a phase-stabilized
laser system, such that the carrier wave and the en-
velope of the pulse have a fixed phase relation from
shot to shot (carrier-envelope phase (CEP) stabi-
lization [28]). Otherwise, for non-phase-stabilized
driving lasers, where the phase varies from shot to
shot, one has to average over all possible phases and
take into account a proper mixed initial state

ρ|α| =
1

2π

2π∫
0

dϕ |αe iϕ〉 〈αe iϕ| =

e−|α|
2 ∑

n

∣∣α∣∣2n
n!
|n〉 〈n| . (12)

In particular, the experiments in [13, 14], which use
the process of HHG to generate optical cat states,
do not use CEP-stable driving fields. When one an-
alyzses the process of HHG and the conditioning ex-
periment introduced in [13], without the assumption
of having a pure coherent initial state within the
current quantum optical description, there arise for-
mal difficulties and interpretational inconsistencies
with the well-accepted picture of the HHG process.

The difficulty arising in the formal analysis is that
the semi-classical frame from the interaction pic-
ture of the Hamiltonian HI(t) (see Sect. 1.3) is not
well defined for mixed initial states. Within a fixed
semi-classical frame, which is defined via the uni-
tary transformation D(α), we have seen that HHG
effectively leads to a shift in the field modes, i.e.,
ρ0 → KHHG ρ0 K†HHG (see (10)). However, for
the mixed state ρ|α|, there is no well-defined semi-
classical frame defined through a unique displace-
ment operation D(α). This can also be seen from
the fact that the classical part of the driving field
vanishes

Ecl(t) = 〈EQ(t)〉 = Tr
[
EQ(t) ρ|α|

]
= 0, (13)

which implies that there is a vanishing mean electric
field amplitude. Hence, this conflicts with the tra-
ditionally used powerful picture of HHG in terms of
the 3-step model introduced in Sect. 1.2. In this pic-
ture, the presence of a non-vanishing electric field
amplitude is crucial for describing the tunnel ioniza-
tion process and the electron dynamics in the con-
tinuum driven by the field. The underlying physical
property, for the fact that the semi-classical frame
is only uniquely defined for a pure coherent ini-
tial state |α〉, is the phase of the field. A coherent
state has a well-defined phase, which implies that
the semi-classical frame exists via

Ecl(t) = 〈EQ(t)〉 = Tr
[
EQ(t) |α〉 〈α|

]
=

〈α|EQ(t) |α〉 ∝ sin(ωt) (14)
and the classical picture of an electric field driv-
ing the electron process holds. However, it is now
natural to ask if the process of high harmonic gen-
eration requires non-vanishing field amplitudes, as
suggested by the 3-step model, and if harmonics
can be generated from driving fields without optical
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coherence, such as the phase randomized state in
(12), which is diagonal in the photon number ba-
sis. Such a state with vanishing off-diagonal density
matrix elements in the photon number basis does
not exhibit optical coherence, and we thus ask if
optical coherence in the driving field is a necessary
requirement to generate high-order harmonics. For
instance, the electric field expectation value of the
mixed state (12) vanishes 〈EQ〉 = Tr[EQ ρ|α|] =
Ecl = 0, due to the totally arbitrary phase, and
thus there is no well-defined semi-classical frame.
This ultimately leads to the question whether pro-
cesses driven by sufficiently large photon number
states |n〉, which have a completely random phase
due to the well-defined photon number, allow for
the generation of high-order harmonics. Or, even
more general, if incoherent radiation can be used to
drive the parametric process of HHG as recently ob-
served for spontaneous parametric down-conversion
in [29].

In many optical experiments, the presence of opti-
cal coherence is not required to explain the measure-
ment results, and the question of the requirement of
optical coherence was first posed in [30]. It is thus
natural to ask if the process of HHG requires opti-
cal coherence (in the sense of a non-diagonal density
matrix in the photon number basis) or if an optical
field with a vanishing mean electric field amplitude
is sufficient to drive the HHG process. If this is not
the case, and we can generate high-order harmonics
with incoherent light, how do the harmonic radi-
ation properties differ? And furthermore, how can
the powerful picture of the 3-step model be under-
stood for driving fields with vanishing mean-field
amplitude? Those questions suggest that there is
a need for further theoretical investigation about
the role of the optical phase in the HHG process,
and furthermore whether the conditioning experi-
ment in [13] is sensitive to the phase of the field or
not. From an experimental perspective, we are eager
to observe the reconstruction of the Wigner func-
tion for CEP-stabilized driving laser fields. From
the theoretical point of view, the first question nec-
essary to answer in order to describe the experimen-
tal boundary conditions is: What is the quantum
state of an ultrashort few-cycle (CEP-stable) laser
pulse? One way to approach this question could be
by following the arguments similar to [31, 32] or [33],
just for pulses of radiation with and without CEP-
stabilization.

2.2. Theory of quantum optical coherence
of high harmonic generation

In the derivation of the field state after the pro-
cess of HHG, we have thus far always neglected the
correlations in the dipole moment of the electron,
i.e., approximating (7) with (8). Consequently, we
only considered a classical charge (by virtue of the
dipole moment expectation value) coupled to the
field operator. Therefore, we have only considered

the coherent contribution to the harmonic radiation
field. This has the advantage of being exactly solv-
able. However, as commonly known [34], the inco-
herent contribution of the emitted radiation can ex-
hibit non-classical signatures and can lead to in-
teresting observations, such as photon antibunch-
ing [35]. This incoherent contribution originates
from the correlations in the dipole moment. In order
to access the full properties of the harmonic radi-
ation, we should not perform the approximation of
neglecting the dipole moment correlations. Includ-
ing those correlations, one can obtain the complete
properties of the light field in the process of HHG,
which further allows one to obtain a detailed the-
ory of quantum optical coherence for the process of
high harmonic generation. Furthermore, including
those correlations allows asking for the actual quan-
tum state of the field after HHG, going beyond the
product coherent states in (10). Taking into account
terms beyond linear order in EQ(t) would lead to
a coupling of different field modes, and thus to en-
tanglement and squeezing.

However, all the previous analysis was performed
in the Schrödinger picture (or more precisely, in the
interaction picture). However, computing the ob-
servables of the field, such as the spectra or two-time
correlation functions, and eventually finding non-
classical signatures, does not necessarily require the
knowledge of the field state after the interaction.
That’s why we will switch to the Heisenberg picture,
making the field operators time-dependent, which
allows us to obtain two-time averages including the
dipole moment correlations.

We will start with the Hamiltonian of the intense-
laser–matter interaction (here in 1D for linear po-
larization)

H =
∑
q

ωqb
†
qbq +HA − dEQ, (15)

where HA is the atomic Hamiltonian, and
the electric field operator is given by EQ =
− ig

∑
q

√
q(b†q−bq). First, we have to transform the

field operator into the Heisenberg picture

bq(t) = bq e
− iωqt +

√
q g

t∫
0

dt′ d(t′) e− iωq(t−t′).

(16)
We will then compute the first-order correlation
function [34]
G(t, t+τ) =

〈
b†q(t)bq(t+τ)

〉
= q g2 e iωqτ

×
t∫

0

dt1 e− iωqt1

t+τ∫
0

dt2 e iωqt2
〈
g
∣∣d(t1)d(t2)∣∣g〉,

(17)
such that we can use the Wiener–Khinchin theo-
rem [36], stating that the auto-correlation function
of a stationary random process and the spectral
density of this process are a Fourier-transform pair
in the ensemble average, to obtain the power spec-
trum given by
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S(ω) =
1

π
Re

[∫ ∞
0

dτ lim
t→∞

〈
b†q(t)bq(t+τ)

〉
e iωτ

]
.

(18)
It turns out that the power spectral density S(ω)
consists of two terms, the coherent part and an in-
coherent contribution coming from the dipole mo-
ment correlations

G(1)(t, t+τ) = G
(1)
coh(t, t+τ) + q g2 e iωqτ

×
t∫

0

dt1 e− iωqt1

t+τ∫
0

dt2 e iωqt2

×
∫
dp 〈g| d(t1) |p〉 〈p| d(t2) |g〉 , (19)

where the coherent contribution (first term) comes
from the dipole moment expectation value. In the
stationary limit, this term reads

lim
t→∞

G
(1)
coh(t, t+τ) = g2 q

∣∣〈d(ωq)〉∣∣2 e− iωqτ ,

(20)
such that the coherent contribution to the power
spectrum is given by

Scoh(ω) = g2 q
∣∣〈d(ωq)〉∣∣2 δ(ω − ωq). (21)

It shows that the HHG spectrum consists of peaks
at frequency ωq = q ω (when properly taking into
account the finite duration of the driving pulse, the
harmonic peaks will have a finite width), with the
weight of each harmonic given by the Fourier trans-
form of the time-dependent dipole moment expec-
tation value, and it remains to compute the incoher-
ent contribution. However, it also needs to be care-
fully analyzed whether the Wiener–Khinchin the-
orem (WKT) can be used, since it only holds for
a stationary random process in the ensemble av-
erage (see discussion about time-dependent spec-
tra in [37, 38]). One should also analyze if HHG is
an ergodic process, which would then allow one to
use the WKT since the ensemble and time average
agree for a stationary process, and the autocorrela-
tion function in (18) only depends on the temporal
difference (stationarity in the ensemble or temporal
average are not sufficient for ergodicity). Further-
more, we then want to compute the second-order
correlation function

g(2)(τ) = lim
t→∞

〈
b†q(t)b

†
q(t+τ)bq(t+τ)bq(t)

〉〈
b†q(t)bq(t)

〉 〈
b†q(t+τ)bq(t+τ)

〉 ,
(22)

since this would provide insights into possible anti-
bunching signatures, i.e., g(2)(0) < g(2)(τ). How-
ever, we imagine that the coherent contribution
dominates the incoherent contribution, and one
needs to conceive clever experiments to either sep-
arate the two processes for individual harmonics
or to find the conditions in which the two contri-
butions are on the same order of magnitude. This
could eventually be realized with a two-color driving
field (ω and its second harmonic 2ω), which leads to
the appearance of even harmonics in the spectrum.
By varying the phase between the two driving fields,
the amplitude of the even harmonics can be altered,
such that there might be a regime in which the co-
herent and incoherent contributions can compete.

2.3. Entanglement and squeezing
in high harmonic generation

Thus far, we found that the field state of the
harmonic modes is given by product coherent states
of all filed modes (10). This is a consequence of
the approximation performed in (8) (neglecting the
dipole moment correlations), which effectively leads
to a linear expression in the field operators b(†)q .
While the commutator of the exact interaction
Hamiltonian HI(t) = −d(t)EQ(t) at different times
is an operator in the total Hilbert space of atom
plus field,[

HI(t1), HI(t2)
]
∈ HA ⊗HF. (23)

The approximate interaction Hamiltonian
Happ

I (t) = −〈d(t)〉EQ(t) is just a complex number,
i.e., [ Happ

I (t1), H
app
I (t2) ] ∈ C, and thus when

solving (8), the modes do not mix. Going beyond
the linear term of the field operator EQ(t) would
lead, for instance, to squeezing in the field modes.
Furthermore, all field modes will become entangled
due to the mixing of the field operators b(†)q of the
different modes. We can thus start to evaluate the
commutator of the exact interaction Hamiltonian
at different times, yielding

[
HI(t1), HI(t2)

]
=

−g2
∑
qp

√
q p
∑
ijk

|i〉 〈j|
(
dik(t1)dkj(t2)− dik(t2)dkj(t1)

)(
b†qb
†
p e

iωqt1 e iωpt2 − b†qbp e− iωpt2 e iωqt1 + h. c.
)

+g2
∑
q

q
∑
ijk

(
dik(t1)dkj(t2)e

− iωq(t1−t2) − dik(t2)dkj(t1)e iωq(t1−t2)
)
|i〉 〈j| , (24)

where we have used a discrete basis for the atomic
degree of freedom 1 =

∑
i |i〉 〈i|, and introduced

the transition dipole matrix elements dij(t) =

〈i| d(t) |j〉. Note that for the approximation of ne-
glecting the dipole moment correlations and taking
the expectation value in the electronic ground
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state leads to
∑
ijk dik(t1)dkj(t2)〈g|i〉〈j|g〉 '

〈d(t1)〉〈d(t2)〉, and thus the first line in (24) van-
ishes (where the squeezing and mixing of modes
would came from), and the second line reduces
to what one would get from [Happ

I (t1), H
app
I (t2) ].

However, for the exact interaction Hamiltonian
HI(t) = −d(t)EQ(t), we observe that the differ-
ent field modes mix, which would lead to squeez-
ing and entanglement. One could, for instance,
already observe the first signatures of such non-
classical states due to the higher-order terms of
EQ(t) when taking into account up to the quadratic
order in the coupling g ∝

√
ω/Veff with the

quantization volume Veff . Thus, when solving (7)
by using Baker–Campbell–Hausdorff for infinitesi-
mal time steps, one obtains an approximate solu-
tion up to quadratic order in g when only taking
into account [HI(t1), HI(t2) ] ∝ g2, and the time-
dependent transition dipole matrix elements dij(t)
can be computed within the strong field approxima-
tion [11].

3. Conclusions

Motivated by recent studies on the quantum op-
tical description of the process of high harmonic
generation from intense-laser-field-driven atoms, we
identified current challenges and how this can lead
to future investigations. With the proposed studies,
we anticipate that more complete insights into the
process of HHG will be obtained, and that the full
characteristics of the radiation field will be found.
The current quantum optical framework treats the
source of the scattered field as a classical charge
current, similar to a dipole antenna, and thus only
the coherent contribution is obtained through the
dipole moment expectation value. Thus, the radi-
ation properties, as well as the final field state,
do not indicate genuine quantum signatures in the
HHG process. Only via conditioning experiments,
through a post-selection procedure, we obtained
non-classical signatures in the reconstructedWigner
function. It would thus be of great interest to see
if, already at the level of the HHG process itself,
without conditioning, non-classical observations can
be obtained in the radiation properties of the scat-
tered field. In addition to the proposed approaches
present in this manuscript, there exist further ef-
forts in this direction. For instance, there are the
following options to achieve such situations:

• So far, we have considered high-order har-
monics generated in atomic systems. Alter-
natively, one can consider HHG from solid-
state targets. Even in the case of “trivial”
solid-state systems, such as electrons in the
Wannier–Bloch picture [39], one can obtain
electron-field entanglement [40] since the elec-
tron can transition on one site in the lattice,
but might recombine in another side. A sim-
ilar mechanism, of semiconductors driven by

strong coherent radiation, is studied in a re-
cent paper [41], where the potential for gen-
erating non-classical light fields is discussed.

• Another option, besides driving HHG in sim-
ple uncorrelated solid-state targets, is to look
for HHG in laser-driven strongly correlated
materials, such as high-temperature supercon-
ductors [42]. For a simple, yet pedagogical,
model of such a mechanism, see [43, 44].

• Finally, one can use non-classical, for in-
stance, squeezed light to drive the HHG pro-
cess in atoms, which leads to its fingerprints
in the field observable, such as the HHG spec-
tra [45]. Which, however, also do not depict
non-classical signatures in the harmonic radi-
ation based on this observable.

.
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