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The quantum nature of light enables potentially revolutionary communication technologies. A key to
advancing this area of research is a clear understanding of the concepts of states, modes, fields, and
photons. The concept of field modes carries over from classical optics, while the concept of state has to
be considered carefully when treating light quantum mechanically. The term “photon” is an overloaded
identifier in the sense that it is often used to refer to either a quantum particle or the state of a field.
This overloading, often used without placing it in context, has the potential to obfuscate the physical
processes that describe the reality we measure. We review the uses and relationships between these
concepts using modern quantum optics theory, including the concept of a photon wave function, the
modern history of which was moved forward in a groundbreaking paper in this journal by Iwo Białynicki-
Birula, to whom this article is dedicated.
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1. Introduction

When beginning the study of quantum optics, it
is natural to ask, “What is a photon?” But perhaps
a better question is, “What is a quantum field?”
Given that quantum theory is agnostic to the names
we give to the mathematical elements of the the-
ory, when does it matter how we name and inter-
pret them? Properly conceptualizing and naming
the elements of theory helps when trying to build
intuition about a problem without the benefit of
having a complete mathematical solution at hand.
This contribution to the Special Issue dedicated to
Professor Iwo Białynicki-Birula reviews in a tutorial
manner the role of states, modes, fields, and pho-
tons in quantum optics, recognizing his important
contributions to the subject. We hope to enlighten
researchers who are perhaps new to the field, such
as those working in the classical networks arena and
now starting to consider the potentially useful ap-
plications of quantum networks. We review the con-
cept of a photon wave function, the modern history
of which begins more-or-less with a paper in this
journal by Białynicki-Birula [1] and a contempora-
neous paper by John Sipe [2].

States, modes, and fields are concepts that apply
to both classical and quantum domains. The paper
reviews in a pedagogical style how these concepts
arise and are defined within the two domains, de-
scribes how quantization of electromagnetic (EM)
field excitations introduces new (and measurable)
behaviors, and clarifies the connections between the
two domains.

In the arena of applications, we note that in any
quantum optical computing or communication sys-
tem, it is required to control the states of light that
interact to carry out a quantum information pro-
cessing (QIP) task. If control is imprecise, “errors”
can occur. In fact, such errors are the main bar-
rier to developing scalable QIP [3]. While for single-
particle qubits (e.g. the spin of an electron), the con-
cept of state is clear and routine, for optical qubits,
it is not the case due to the multimode nature of
the electromagnetic field, and it is worthwhile dis-
cussing some of the subtleties that arise in this case.
Much has been written on the general subject, such
as [4–8] and studies cited therein, but we aim here
to cover topics that are not widely emphasized, in
particular, the quantization of the EM field in terms
of temporal (wave-packet) modes.
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2. Classical fields, modes, and states

In the classical physics description, light is
a transverse wave of the EM field. The Maxwell
equations provide a means to calculate the en-
ergy per unit volume stored in the EM field, which
may vary continuously. They also provide a wave
equation that allows us to calculate the tempo-
ral and spatial evolution of the EM field, trans-
porting energy, and momentum. A monochromatic
plane wave in free space is identified by specify-
ing values for four distinct attributes (degrees of
freedom), any of which can be used to encode in-
formation: polarization and three spatial propaga-
tion constants kx, ky, kz. In a beamlike geometry, it
is often useful to restate these degrees of freedom
as polarization, two spatial degrees of freedom de-
scribing the transverse beam profile, and frequency,
ω = c

√
k2x + k2y + k2z , where c is the speed of light.

In either case, the four degrees of freedom define
a “mode” of the EM field. A mode can be thought
of as a “container” into which differing amounts of
energy and momentum can be deposited and carried
along by the wave.

Definition. A classical electromagnetic field is
a physical entity of infinite spatial extent that can
transport energy and momentum in the form of
wave-like excitations.

Definition. A mode uj(r) of a classical field is
a particular form of a field, which satisfies the
Maxwell equations, and a set of which can serve
as a mode basis. A common example is given by
plane-wave modes propagating in vacuum,

uj(r) = ej exp
[
i(kxjx+ kyjy + kzjz)

]
, (1)

where j is the mode index (label) and ej are the
polarization vectors. In a classical description, the
energy content of any mode may assume a continu-
ous spectrum of values, proportional to the square
of the field amplitude.

It is understood that modes of different frequen-
cies can be added or superposed linearly with dif-
fering complex amplitudes aj to form the (real-
valued) electric field, expressed mathematically as
E(r, t) = E+(r, t)+cc, where cc means complex
conjugate and the “positive-frequency part” of the
complex field is represented by

E+(r, t) =

∞∑
j

Eaj e− iωjt uj(r), (2)

with a similar expression for the magnetic field.
Boldface italic font represents vector quantities and
E is a scalar factor. The amount of energy “occu-
pying” a given mode is proportional to |Eaj |2. The
mode’s shape and propagation direction are con-
tained in the forms of uj(r), which form a mutu-
ally orthogonal and complete set of functions. As
seen by the time evolution exp(− iωjt), the field in

each mode undergoes single-frequency oscillations
and can be described as a simple harmonic oscilla-
tor.

Each mode can be viewed as a separate subsys-
tem, the totality of which forms the overall field.
When we discuss states of the overall field, in gen-
eral, we have to specify composite states involving
the states of more than one mode. Such composite
states can imply correlations between measurement
outcomes on different modes.

While (2) is written as a discrete sum of modes,
as appropriate in a closed cavity, in unbounded free
space the expression for the classical field becomes
an integral over a continuum of frequencies. For
a beam or pulse propagating in more-or-less a sin-
gle direction, it is convenient to express it as the
integral

E+(r, t) =
∑
σ=1,2

∞∫
−∞

dω

2π
Ea(σ)(ω)e− iωtu(σ)(ω, r),

(3)
where σ labels one of two polarization helicities in
the case of circular polarization. In the simplest
cases, such as in a waveguide or a well-collimated
beam in free space, the spatial mode can be sepa-
rated into transverse and longitudinal parts,

u(σ)(ω, r) = e(σ) w(σ)(ω, x, y) exp
(

ik(σ)z (ω)z
)
,

(4)
where e(σ) is a polarization vector, w(σ) is the trans-
verse part of the mode function, and the function
k
(σ)
z (ω) describes a dispersion relation (relationship

between propagation constant and frequency).
In these equations, E(r, t) represents the vector-

valued amplitude of the field. Of course, the physical
field itself is distinct from its representation; the
symbol E(r, t) is not the field itself, it is rather
a description of the field, and many physicists take
the field to be an actual element of physical reality.
We follow this way of thinking in this paper.

How do we describe the state of the field? A gen-
eral definition of state can be said to be a descrip-
tion of everything that is known about the condition
of a physical system at a certain time. In the sim-
plest classical picture, we can have complete knowl-
edge of the field, and the mathematical forms of
E(r, t) and the magnetic field B(r, t) give a full
description of its state, that is, a specific configura-
tion of the classical system. Often in optics problems
the electric field dominates interactions with mat-
ter, such as detectors, and for freely propagating
field the electric field is often sufficient for a com-
plete description; so here we focus on describing the
state of the electric field.

In general, however, we may possess only par-
tial knowledge, in which case we describe the field’s
state using statistical means. For example, thermal
light emitted by a blackbody is described as having
field amplitudes that are random variables (or ran-
dom processes) with zero mean value and Gaussian
probability density. In principle, one could know
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Fig. 1. A coherent signal pulse embedded in a noise background is filtered by passing through a sequence of
a spectral filter R̃(ω) and a time gate Q(t), resulting in a nearly coherent (single-temporal-mode) field. The
envelope waveform (i.e., the field with the carrier wave removed) at the output illustrates both the ideal signal
pulse (dashed curve) and the realistic simulated pulse (solid). Reproduced from [11].

the field values (that is, they have definite values at
each instant), but in practice, we do not. We call
such a state a statistical state. Let us summarize.

Definition. A classical state is a description of
the condition of a system, either representing com-
pletely possessed information or a statistical de-
scription representing partially possessed informa-
tion.

In classical physics, a specific state is specified by
a point in phase space and, along with the dynami-
cal equations of motion, determines how the phase-
space point evolves in time. On the other hand,
a statistical state is described by a probability den-
sity function (pdf) giving joint probabilities of all
possible values of system variables at all combina-
tions of space-time points (for review, see Mandel
and Wolf, and Goodman [9, 10]),

PE
(
E(r1, t1),E(r2, t2),E(r3, t3), . . .

)
. (5)

With the classical mode decomposition, we can re-
place this pdf with a pdf for all the complex mode
amplitudes,

Pa(a1, a2, a3, . . . ). (6)
Any expectation values of quantities involving the
field can, in principle, be calculated using either of
these pdfs.

For a thermal-like classical state of a single mode,
the pdf for the complex zero-mean random vari-
able a is

Pa(a) =
1

2πσ2
e−|a|

2/(2σ2), (7)

where 2σ2 = 〈|a|2〉 is the variance of a. The
corresponding pdf for the energy (proportional to
W = |a|2) in the mode is

PW (W ) =
1√

2πσ2
e−W

2/(2σ2). (8)

When one speaks of “mode” in optics, it is of-
ten assumed to be the spatial mode (as in a laser
cavity). As in (3), one can always decompose the
field in terms of products of spatial modes u(σ)(ω, r)
and a multiplicative temporal factor e− iωt. But in
practice, such a monochromatic field would require
an infinite time duration to be fully defined or mea-
sured. How can we realistically prepare and measure

a single mode in the laboratory? A simple example
is shown in Fig. 1: open a small hole in a blackbody
cavity for a time T , then spatially filter the emerg-
ing light with a distant, small pinhole, then pass
it through a spectral filter with small transmitting
bandwidth ∆ν such that ∆νT � 1, as described
theoretically in [11]. The probability for energy con-
tent, in this case, is given by (8).

Such a time-frequency filtering process selects
one “time-frequency mode,” also called a temporal-
spectral mode, or temporal mode (TM) for
short†1 [5, 12]. In the following, we will put an em-
phasis on temporal modes because they provide
a mode basis for efficiently describing optical wave
packets that are localized in space and time. Encod-
ing and receiving information in such wave-packet
form generally requires synchronizing a transmitter
with the receiver.

Another important benefit of temporal modes is
that they form a discrete set rather than a contin-
uous set, as is the case for monochromatic modes.
The discreteness makes it easier to distinguish one
mode from another during a detection process.
Their discreteness arises from the fact that, by def-
inition, they are confined to a particular space-time
region; that is, the boundary condition is that they
go to zero at infinity in space and in time. This
result is mathematically analogous to the quanti-
zation of spatial modes in a cavity or an optical
fiber.

To construct TMs, consider a transformation
from the monochromatic modes of (3) to the non-
monochromatic temporal modes. We can choose
any complete orthonormal set of spectral amplitude
functions {fj(ω)} that go to zero at frequencies far
from a chosen central frequency ω0. By definition,
they satisfy∫

dω

2π
f∗l (ω)fj(ω) = δlj ,∑

j
f∗j (ω′)fj(ω) = 2π δ(ω′ − ω),

(9)

†1Note: Please do not confuse the abbreviation TM used
here with the common terminology TM-mode, meaning
transverse magnetic spatial mode.
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Fig. 2. Examples of sets of temporal modes, plotted as densities in a certain area of time-frequency phase
(phasor) space. For a fixed scaling of the time and frequency axes, the modes may be equally broad in both
variables, as in panel (a), or they may be narrow in time, as in panel (b), or narrow in frequency, as in panel (c).
Such temporal modes may be Gaussian in form and are approximately orthogonal if their separations in time
and frequency are large enough. As in panels (d), (e), and (f), an alternative covering of the phase-space area
can be accomplished using mode functions that cover the whole region and can be made strictly orthogonal in
terms of coherent overlap integration as in (9).

where δlj and δ(ω) are the Kronecker and Dirac
deltas, respectively. We can use these functions to
define a set of “temporal-mode” amplitudes,

Aj =

∫
dω

2π
f∗j (ω) a(ω), (10)

where fj(ω) is the spectral amplitude that defines
such a mode labeled by j. Hereafter we drop the
polarization label σ for notational simplicity. The
inverse relation is

a(ω) =
∑
j

fj(ω)Aj . (11)

We see that the continuous (uncountably infinite)
set of amplitudes a(ω) has been converted into a dis-
crete (countably infinite) set Aj .

In terms of TMs, the field in (3) is expressed as
E(+)(r, t) =

∑
j

Aj

∞∫
−∞

dω

2π
Efj(ω)e− iωt ew(ω, x, y)e ikz(ω)z '

Eew(x, y)
∑
j

Aj uj(z, t), (12)

where, for simplicity, we assumed a common polar-
ization vector e and made the approximation that
the transverse mode function w(ω, x, y) ' w(x, y)
is independent of frequency, which is valid for rea-
sonably narrow-band fields. Then the propagating
temporal modes are defined as

uj(z, t) =

∞∫
−∞

dω

2π
fj(ω)e− iωt e ikz(ω)z. (13)

At position z = 0, the temporal mode equals the
Fourier transform of the spectral amplitude

uj(0, t) =

∞∫
−∞

dω

2π
fj(ω)e− iωt = f̃j(t). (14)

Several example sets of temporal modes are shown
in Fig. 2.

In our time-frequency filtering example in Fig. 1,
the strongly filtered field supports essentially only
one TM,

E(+)(r, t) ' EAj=0 ew(x, y)uj=0(z, t). (15)

Thus, the space and time behavior of the
field is determined by the spatial-temporal mode
w(x, y)uj=0(z, t), while the (classical) state is de-
termined by the value of (or the statistical proper-
ties of) the mode amplitude Aj=0. The description
in terms of temporal modes carries over directly to
the quantum treatment of light.

Note that the “incoherent” time-frequency filter-
ing method described in Fig. 1 is necessarily ineffi-
cient, in the sense that to achieve a nearly single-
temporal-mode field, the filtering needs to be so
strong as to pass almost no light. Superior efficiency,
approaching 100%, can be achieved using “coherent”
filtering with a scheme called a quantum pulse gate,
as reviewed in [12] and utilized for noise filtering
in [11].

3. Quantum fields, modes, states,
and photons

The fact that the classical EM field can be de-
composed into a set of classical oscillators inspires
us to seek a representation of the EM field as a col-
lection of (bosonic) quantum harmonic oscillators.
The creation and annihilation operators are labeled
by the continuous frequency variable ω and are de-
fined to obey the commutation relations [13, 14][

â(ω), â†(ω′)
]

= 2π δ(ω − ω′). (16)
The non-commutativity of operators for a given

frequency embodies the essential difference between
quantum and classical theory (and the nature of
the physical systems being described). The en-
ergy eigenstates of each quantum oscillator are
quantized, i.e., they occur at specific, identically-
spaced values, m~ω above the ground state with m
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a nonnegative integer. In the quantum theory, the
mathematical representation of the field is given by
the (Hilbert-space) operator (operators being indi-
cated by carets),
E(+)(r, t) =∑

σ=1,2

∞∫
−∞

dω

2π
E(ω) â(σ)(ω)e− iωtu(σ)(ω, r).

(17)
The form of the commutator (16), along with en-
ergy quantization, requires the scale factor to be
frequency dependent, E(ω) =

√
~ω/(2ε0 cn), where

ε0 and c are the vacuum electric permittivity and
speed of light, respectively, and n is the medium’s
refractive index at the frequency of interest.

For simplicity, we neglect modal dispersion as
occurs in waveguide geometry, discussed in detail
in [15]. This simplification allows us to drop any
mode labels that refer to which waveguide mode is
being considered.

The mode functions u(σ)(ω, r) are the same as
in the classical theory and thus satisfy Maxwell’s
equations. As in the classical theory, a transforma-
tion from monochromatic modes to temporal (wave-
packet) modes can be made using (13) for reason-
ably narrow-band fields. Then the field operator
is

E(+)(r, t) = Eew(x, y)
∑
j

Âj uj(z, t), (18)

where the scale factor for a center frequency ω0 is
E =

√
~ω0/(2ε0 cn) and Âj are annihilation opera-

tors for the state of light “occupying” the temporal
mode uj(z, t). They are given by

Âj =

∫
dω

2π
f∗j (ω)â(ω), (19)

and by (16) it is easily shown that they satisfy the
discrete, rather than continuous, commutation rela-
tion[

Âi, Â
†
j

]
= δij . (20)

In free space (that is, with no interactions), the time
evolution, expressed in the Heisenberg picture, is
fully contained in the wave-packet propagation of
the modes in (13)†2.

Now we may ask, “What is the quantum field?”
It is not Ê(+)(r, t), which is an operator that repre-
sents mathematically the annihilation of energy ex-
citations in the field. The quantum field itself (from
one meaningful point of view) is a physical entity
that is “out there” and is capable of carrying energy
and momentum from one place to another.

†2By the way, the assumption of narrow-band wave pack-
ets is not an essential step, but when this approximation is
removed, it turns out that the resulting wave packets are not
strictly orthogonal in space. This complication arises only for
wave packets whose duration is less than around 10 fs, which
is not usually the case in optical communications applica-
tions. See [16].

How do we specify states of the quantum field?

Definition. A quantum state is a mathematical
form used to determine the probabilities for par-
ticular outcomes of any possible measurement on
a system, either as a pure state (representing max-
imal possessed information) or a mixed state (rep-
resenting partially possessed information).

The most general case is the mixed state, ex-
pressed mathematically as a density operator,

ρ̂ =
∑
j

Pj |Ψj〉〈Ψj |, (21)

where Pj is the (classical) probability that the sys-
tem is in the pure state |Ψj〉. We say such a state
is a statistical mixture of pure states. In the ideal
limit, if all Pj are known to be zero except a single
one, say P0 = 1, then we can describe the state sim-
ply by specifying the form of |Ψ0〉, which in some
cases is described by a wavefunction of some sys-
tems variable or in other cases as a vector in an ab-
stract linear vector space.

A starting point for the quantum state descrip-
tion of the field is the vacuum state, |vac〉, which
carries no energy or momentum (at least not in
a way that is detectable via absorption by an atom
or a photodetector). The simplest non-vacuum state
of the field is the single-photon state, and its gener-
alization, the n-photon (Fock) state, written in the
temporal-mode formalism for mode uj(z, t) as

|1〉j = Â†j |vac〉 =

∫
dω

2π
fj(ω) â†(ω) |vac〉,

|n〉j =
1√
n!

(Â†j)
n|vac〉,

(22)
where Â†j is the creation operator for a given TM
and n is the photon occupation number of a given
TM of the field.

It is interesting that although an n-photon state
of a particular temporal mode does contain a spe-
cific sharp number of photons, it does not contain
a sharp value of energy, because the mode itself is
constructed as a sum of modes having differing fre-
quencies and each frequency mode has an unspec-
ified number of photons (although they must sum
to n). If the light is well collimated, quantum mea-
surement of its energy content can be carried out
using a spectrometer — disperse it on a diffrac-
tion grating followed by a dense array of photon-
counting detectors. If the number of detectors is
much greater than the number of photons n, and
the detectors are 100% efficient, then exactly n de-
tectors will register a detection event (“click”). Each
detector will correspond to a resolved channel l with
energy ~ωl. For n = 1, the probability for a given
detector to click is given by |fj(ω)|2. In general, the
pattern of detectors that click will indicate the total
energy observed for that measurement trial.

To sum up, in the quantum theory of a collec-
tion of oscillators of different frequencies (in the
temporal-mode formalism), what gets quantized is
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not total energy but total excitation. You can have
zero, one, or two excitations but not half an excita-
tion.

A general pure state of the field in a given tem-
poral mode is expressed as

|Ψ〉j =

∞∑
n=0

cn|n〉j =

∞∑
n=0

cn√
n!
Â†nj |vac〉, (23)

where |cn|2 is the probability of observing n clicks
in a detector array, as just described. The coher-
ent state, with cn = exp(−|α2|/2)αn/

√
n! for some

complex amplitude α, is the state from an ideal
laser emitting a pulse in the temporal mode uj(z, t).
Then the probabilities are given by the Poisson dis-
tribution |cn|2 = exp(−|α2|)|α|2n/n!.

A mixed state of the EM field can be represented
by a density operator for a given temporal mode,

ρ̂ =
∑
j

pj
1√
n!
Â†nj |vac〉〈vac| 1√

n!
Ânj , (24)

where pj is the probability to find n photons in
mode j if the photon number is measured. Inter-
estingly, there is a different kind of mixed state,
which has a definite number of photons (field ex-
citations), but they are spread incoherently across
several modes, for example, a single-photon mixed
state is

ρ̂ =
∑
j

Pj Â
†
j |vac〉〈vac|Âj , (25)

where Pj is the probability that the photon will
be found in mode j if detected in a mode-selective
manner.

4. Particles or fields?

Now we can try to clarify “What is a photon?” It
is preferable not to think of the photon as a thing
or a physical entity, but rather as simply one of the
names we use to specify states of the field.

So, when we say, “The atom emitted a photon,”
what we actually mean is “The atom lost energy,
creating a single-photon state of the field.” It is al-
most always safe (prudent) to replace “photon” with
“single-photon state of the field.” If we wish to have
a more physically suggestive way to define a photon,
we can say it is a single “excitation” of the quantum
field.

Nevertheless we note that a single-photon state
can be thought of in two equivalent ways: as the
state of a photon as a distinct entity, or as the
state of a field. Consider such a state occupying
a particular wave-packet mode u1(r, t) that is con-
centrated in a finite volume and traveling through
space. Horizontal and vertical polarization states
|H〉, |V 〉 define a basis for describing the state of
the photon. Say, the photon’s state is diagonal
|D〉 = (|H〉 + |V 〉)/

√
2. Alternatively, we can write

this photon state in terms of the state of the field,
using modes that specify the field’s spatial and po-
larization aspects denoted

uH(r) = eH u1(r, t), uV (r) = eV u1(r, t),

(26)
where eH , eV are polarization vectors. Then we
can express the single-photon diagonal-polarization
state in terms of the occupation numbers of the
uH(r),uV (r) modes,

|1〉H |0〉V + |0〉H |1〉V√
2

. (27)

Furthermore, we can choose a different mode ba-
sis to represent the same state. If we choose modes
that define the field as diagonal and anti-diagonal
polarized, uD(r) = (uH(r) + uV (r))/

√
2, uA(r) =

(uH(r) − uV (r))/
√

2, then the same state is rep-
resented as |1〉D|0〉A. Thus, a transformation of the
“mode basis” from uH(r),uV (r) to uD(r),uA(r)
corresponds to a change of the “state basis” from
|H〉, |V 〉 to |D〉, |A〉.

The quantum theory of light can be constructed
from either of two distinct starting points, as was
made clear by Dirac in his book [17], where he
wrote, “The dynamical system consisting of an as-
sembly of similar bosons is equivalent to the dy-
namical system consisting of a set of oscillators —
the two systems are just the same system looked at
from two different points of view.”

Given the equivalence of the two points of view,
why do many quantum physicists find it more fruit-
ful to consider the field (that is, the collection of
oscillators) as the fundamental physical entity, as
we have done above? Steven Weinberg, a Nobel-
winning quantum theorist, said, “Thus, the inhabi-
tants of the universe were conceived to be a set of
fields — an electron field, a proton field, an elec-
tromagnetic field — and particles were reduced to
mere epiphenomena.” The reasons for this choice are
many and have been summarized in language suit-
able for the general reader in several accounts, in-
cluding Hobson [18], Wilczek [19], and Raymer [20].
Here we offer a summary of such arguments.

1. Quantum fields respect relativity.
Frank Wilczek, also a Nobel-winning quan-
tum theorist, writes, “The concept of local-
ity, in the crude form that one can predict
the behavior of nearby objects without ref-
erence to distant ones, is basic to scientific
practice.” Quantum field theory successfully
describes all known phenomena (that it has
been applied to) without invoking action at
a distance, which would violate Einstein’s rel-
ativity [19].

2. Quantum fields evince identical particles.
Wilczek also writes, “Undoubtedly the single
most profound fact about Nature that quan-
tum field theory uniquely explains is the exis-
tence of different, yet indistinguishable, copies
of elementary particles.” It is known that the
world is made of a limited number of parti-
cle types, and that any two members of the
same type are identical. For example, any two
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electrons are identical, that is, interchange-
able. “We understand this as a consequence
of the fact that both are excitations of the
same underlying ‘ur-stuff’, the electron field.
The electron field is thus the primary real-
ity,” Wilczek says. And the same holds true
for the electromagnetic field and its photon
excitations [19].

3. Quantum fields naturally account for chang-
ing numbers of particles.

Quantum field theory not only accounts for
the creation and destruction of photons when
atoms emit or absorb light. It also accounts
for processes such as creation and destruction
of electrons and positrons. Wilczek writes, “In
this picture it is only the fields, and not the in-
dividual objects they create and destroy, that
are permanent” [19].

4. Quantum fields give a clearer picture of wave-
particle duality.

The electron–matter field is not an electron.
Rather, an electron is an individual excitation
of the electron–matter field, just as a photon is
an individual excitation of the EM field. The
quantum fields themselves behave in a wave-
like manner and represent possible measure-
ments to determine where the electron (or
photon) is located. Therefore, it is not sur-
prising that if one mistakenly believes that
an electron, for example, is a particle, mean-
ingless questions can arise. For example, the
question “Which path did the electron take on
its way to a detector?” has no meaning. On
the other hand, a quantum field permeates
all of space; therefore, it exists within both
paths. So, the proper statement is not that
an electron sometimes behaves like a wave
and sometimes like a particle. One should
rather say that the quantum field always be-
haves like a quantum field with its wave-like
behaviors, and the electron is a manifesta-
tion of that field. It is best to replace the
mysterious concept of “wave-particle duality”
with the less mysterious concept of “quan-
tum field-quantum particle duality” (adapted
from [20]).

5. Superposition, separability,
and entanglement

How is entanglement different from superposi-
tion? For a single quantum entity, |ψ〉A+|φ〉A is
a superposition state, wherein the “+” symbol rep-
resents the superposition of possibilities and can be
read as “in superposition with.” Here normalization
factors have been dropped. For a pair of entities,
|ψ〉A|φ〉B + |φ〉A|ψ〉B is also a superposition state,
but now involving a larger state space.

A nonseparable state of two entities, A and B,
is one that cannot be written as a product state,
|φ〉A|ψ〉B . (For simplicity, we consider only pure
states).

It is worth unpacking what is meant by “quan-
tum entity.” In quantum photonics, the entities are
the field modes, and if they are correlated or entan-
gled, we need to specify a composite (joint) state in
a higher-dimension state (Hilbert) space. Whether
or not we call a nonseparable state entangled de-
pends on the situation and, to some extent, the se-
mantic preference of the user. According to some
users, it is fair to call all nonseparable quantum
states entangled. That would include the state of
the two electrons in a helium atom. Other users will
insist on reserving the use of the word “entangled”
for cases in which the two entities are not interact-
ing (unlike two electrons in a helium atom) and can
be measured independently in separated regions of
space. The justification for this stricter definition
is that in quantum information science, entangle-
ment is regarded as a resource for accomplishing
tasks such as the teleportation of a state across some
distance. In this context, a powerful known fact is
that the amount of such entanglement cannot be
increased by any quantum operations in which each
entity is transformed only locally, even in the pres-
ence of classical (non-quantum) communication be-
tween parties at the two locations. If one wishes to
have distinct names to classify entanglement, one
could say that nonseparability with spatial separa-
tion is called “useful entanglement.”

For a two-mode nonseparable photonic state, can
we transform to a new mode basis for which the
state is separable? From the above discussion, we
see the answer is “No” if the entities are spatially
separated, and we restrict the basis changes to in-
volve only the local states of each entity. But if
we carry out arbitrary global mode-basis change
involving all relevant modes of the combined sys-
tem, the answer is “Yes, for all typically realizable
states.” For example, note that we can write the
above-mentioned single-photon state (now with nor-
malization) as

1√
2

(
|1〉A|0〉B+|0〉A|1〉B

)
= 1√

2

(
Â†+B̂†

)
|vac〉,

(28)
where Â†, B̂† are creation operators for two spa-
tially orthogonal modes, as represented by (19).
Consider the two-mode transformation of the spec-
tral amplitudes,(
fA(ω)

fB(ω)

)
→

(
fC(ω)

fD(ω)

)
=

1√
2

(
1 −1

1 1

)(
fA(ω)

fB(ω)

)
,

(29)
which is equivalent to the transformation of the
mode functions on a 50/50 beam splitter,(
uA(z, t)

uB(z, t)

)
→

(
uC(z, t)

uD(z, t)

)
=

1√
2

(
1 −1

1 1

)(
uA(z, t)

uB(z, t)

)
,

(30)
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such that the operators transform as(
Â†

B̂†

)
→

(
Ĉ†

D̂†

)
=

1√
2

(
1 1

−1 1

)(
Â†

B̂†

)
. (31)

The state in (28) can then be written as

1√
2

(
Â† + B̂†

)
|vac〉 = Ĉ†|vac〉 = |1〉C |0〉D. (32)

This is just a formal way to say that sending
a single-photon state into a 50/50 beam splitter
yields a mode-entangled state of the two emerg-
ing fields. The beam-splitter transformation is re-
versible, so we can send the mode-entangled state
into the ports of a beam splitter and end up with
a single-photon state in mode C (or in mode D if
we adjust the phase). Thus, the state is nonsepa-
rable (entangled) in one mode basis but not in the
other mode basis. Physically, undoing the entangle-
ment (nonseparability) requires bringing the modes
together to perform a “global” transformation on
them. As said above, the disentanglement cannot
be accomplished by any “local” transformations in-
volving modes A and B separately.

Sperling et al. [7] pointed out that there exist
entangled (nonseparable) states that cannot be dis-
entangled (made separable) by any unitary mode
transformation, global or not. At present, such
states are not readily created using common tech-
niques and have not played a role in quantum in-
formation science.

A very interesting point is that entanglement can
exist with only one “particle” present. If we con-
sider two EM field modes, A and B, that occupy
separate regions of space (e.g., two well-separated
wave-packet modes, uA(r, t) and uB(r, t)), we could
prepare each mode so it contains either zero or
one photon’s worth of quantum-field excitation, but
there is only one photon in total. Label the state of
the EM field in each mode by either (1) if it has one
photon’s worth of excitation, or (0) if it has none.
The state |1〉A|0〉B+ |0〉A|1〉B refers to an entangled
state of the fields in two modes. It may be helpful
to recognize that modes represent different degrees
of freedom of the EM field.

The state is not an entanglement of particle
states. If you “believe” in photons as particles, the
state would be a mere superposition, |A〉+ |B〉, not
entangled in that context. The fact that two dis-
tinct EM modes can have entanglement even when
there is only one photon shared between them sug-
gests again that EM fields, not particles, are truly
the physical entities [6].

Note that there is an important difference be-
tween the joint state of the A, B modes being
considered here and the state of the H, V modes
in (27). The latter represents an excitation that is
necessarily confined to a single spatial region, de-
fined by the common spatial mode. Therefore, such
a state is not considered to be the same kind of
quantum resource as the entangled state of two

spatially separated modes. To make the point more
mathematical, note that if we were to specify the
latter state fully, we should indicate the state of all
the relevant degrees of freedom of the field, includ-
ing spatial location and polarization. Therefore, the
state being considered in the present example is ac-
tually, assuming a common (H) polarization,
|1〉

A,H
|0〉

A,V
|0〉

B,H
|0〉

B,V
+|0〉

A,H
|0〉

A,V
|1〉

B,H
|0〉

B,V
.

(33)

6. Mode errors and state errors

We turn to the question of what types of errors
can occur when quantum information is being en-
coded in the states of light, such as in a quantum
communication system.

We saw in the examples just given that a mode
transformation can be thought of as a change of
state, which is a Schrödinger-picture way of think-
ing. Or we can think, in a Heisenberg-picture way,
that the global state has not changed, but only the
state basis has been altered. Both ways of thinking
are valid if we keep our pictures clear. Nevertheless,
the distinction between modes and states can have
practical consequences, or at least can allow one to
categorize “errors” that might occur in a quantum
information science (QIS) scheme such as a quan-
tum network.

Let us say we created a single-photon state as a
superposition of two time-bin states with complex
amplitudes α and β,

|ψ〉 =
(
αÂ†1 + βÂ†2

)
|vac〉 =

α |1〉u1|0〉u2 + β |0〉u1|1〉u2, (34)

where u1 and u2 refer to temporal modes u1(z, t)
and u2(z, t) defined by (13) and taken here to be
separated time-bin modes that are orthogonal to a
good approximation. We could encode a qubit using
the two states

|ψ〉1 = |1〉u1|0〉u2, |ψ〉2 = |0〉u1|1〉u2,
(35)

or we could choose a transformed (“rotated”) basis
in which to encode the qubit,

|ψ〉+ =
|1〉u1|0〉u2 + |0〉u1|1〉u2√

2
,

|ψ〉− =
|1〉u1|0〉u2 − |0〉u1|1〉u2√

2
.

(36)
These four states are illustrated in Fig. 3.

These two choices of bases are called mutually
unbiased bases (MUBs) [21]. If a qubit is created in
any of the two states in one MUB, the probabili-
ties for detecting the qubit in either of the states of
the other MUB are equal and thus unbiased. Such
pairs of MUBs play important roles in quantum key
distribution (QKD). For a fun simulation of QKD,
see [22].
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Fig. 3. A qubit can be encoded in two possible bases. On the left are two time-bin states that are nearly
orthogonal, and on the right are two superposition states, which are nearly orthogonal by virtue of a relative
phase shift of the components and can equally well be used as a basis.

Given that we launch one of these four states into
a QIP system such as a quantum network, two kinds
of errors can occur — state errors and mode errors.
Recall that we are thinking about states of fields,
not of particles.

A state error occurs if coefficients of the state ex-
pansion (e.g., in (36)) are modified while the forms
of the modes (in this example, time-bin or tempo-
ral modes) remain unchanged. For example, pho-
tons (field excitations) could be lost from the modes
of interest by scattering or absorption, never to be
recovered. Or photons could be added by leakage
of light from other modes into the modes of inter-
est. Another kind of state error is non-deterministic
(random) dephasing between components of the
state, for example,

|ψ〉+ →
|1〉u1|0〉u2 + e iφ(t)|0〉u1|1〉u2√

2
, (37)

where φ(t) is an unknown, uncontrollable phase.
Such a change would drive the pure state into
a mixed state, from which the original pure state
cannot be recovered.

In contrast, a mode error occurs if the forms
of modes become altered by some physical process
while the state remains unchanged. Linear disper-
sion in a fiber, which is deterministic, can often be
reversed or otherwise compensated by a physical
process such as a prism pair. Alternatively, one can
simply redefine the modes of interest to be those
that exist following the predictable effects of dis-
persion. Notice that dispersion is already accounted
for in the definition of the temporal modes uj(z, t)
in (13) through the dispersion relation kz(ω). An-
other kind of deterministic mode change occurs sim-
ply by time delay, either of the two-pulse wave
packet as a whole, or a change of the time delay be-
tween the time bins being used to encode the qubit.
As with dispersion, such changes can be compen-
sated or accounted for theoretically. These examples

point out the importance of knowing any changes
of the modes during propagation, as well as the
need for synchronization in most designs for a quan-
tum network (although important progress has been
made toward using single-atom quantum memories
to remove the need for synchronization [23]).

Other kinds of deterministic (unitary) mode
changes can also occur, such as linear mixing of
the modes of interest with other modes in processes
analogous to linear beam splitting. Such a process
might be reversible if all the involved modes can be
controlled.

Interestingly, the state change illustrated in (37)
can be interpreted instead as a mode change, in
particular,

u1(z, t)→ u1(z, t), u2(z, t)→ e− iφ(t)u2(z, t),

(38)

i.e., a random dephasing between temporal-mode
components of the state. That is, in this case, the
error may be viewed as either a mode or state error
since the phase change can be absorbed into either
the state coefficients or the mode functions.

7. Photon wave functions

Finally, we discuss the question — if we, for ped-
agogical reasons, want to depart from the approach
taken until now in this paper, which treats fields,
not particles, as the fundamental quantities, how far
can we go? Let us first remark that one often hears
talk about “which path” a photon might take in, for
example, a double-slit experiment. Such a question
presupposes that a photon is a particle-like entity
that has a trajectory, or at least a set of possible
trajectories. In contrast, in the field-theoretic ap-
proach, such a question never needs to be asked be-
cause the field fills all of space, so it makes no sense
to ask which path it takes.
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Possible answers to the question depend on how
strict one wants to be in defining what a particle
is. If one simply conceives of particles as discrete
but otherwise abstract entities that carry energy
and momentum, then there seems to be no problem
defining a wave function that describes its prop-
erties and dynamics. However, if one insists that
a particle be an entity that can be localized to
a point in space, then complications arise.

The question, therefore, leads us to the intriguing
possibility of defining a wave function for a pho-
ton — a topic that was explored in the early
days of quantum theory and more recently and
fruitfully by Iwo Białynicki-Birula, whom this pa-
per is meant to honor [1]. For a wave function
for a photon in coordinate space, there should be
a corresponding Schrödinger equation that it sat-
isfies. But what is this wave function, and what
is its Schrödinger equation? The simple answer is
that the photon wave function is a wave packet
that satisfies Maxwell’s equations. Therefore, the
single-photon wave function could be given by
a monochromatic mode such as u(σ)(ω, r) in (3)
or superpositions forming a temporal mode such as
uj(z, t) in (13), and its Schrödinger equation has
the form of Maxwell’s equations. Let us explore this
statement further.

As developed in [1, 2] and reviewed in [16], a com-
pact way to write classical Maxwell’s equations is
to combine the (real) electric and magnetic fields,
E(r, t),B(r, t), into a single complex field, called
the Riemann–Silberstein (RS) vector field,

Ψσ(r, t) =

√
ε0
2

(
E(r, t) + iσ cB(r, t)

)
, (39)

where σ = ±1 describes the field’s helicity (circu-
lar polarization). In (39), Ψσ(r, t) represents two
fields, one for each value of σ, and, if one wishes,
it can be combined into a single two-entry entity
{Ψ+1,Ψ−1} (analogous to a Dirac spinor). For
a single helicity, the free-space Maxwell’s equations
with no charges or currents present can be written
as a vector cross product,

i
∂

∂t
Ψσ(r, t) = c σ∇×Ψσ(r, t) (σ = ±1).

(40)
We can think of this form as a Schrödinger equa-

tion,

i~
∂

∂t
Ψσ(r, t) = HΨσ(r, t), (41)

where the Planck constant ~ has been inserted on
both sides and the (Maxwell) Hamiltonian operator
is defined as H = ~cσ×.

It is interesting that (41) is a wave equation for
the electromagnetic field that is first-order in the
time derivative, whereas in classical optics we usu-
ally think of a wave equation that is second order.
The first-order wave equation here is simply an al-
ternate way to write the two Maxwell’s equations
together, and it embodies more information than
the familiar second-order wave equation†3.

One can fruitfully consider that (41) is the
Schrödinger equation for a single photon (whether
one regards the photon as a particle or as an excita-
tion of the quantized EM field). This statement can
be “tested” by performing a so-called second quan-
tization of the photon wave function to construct a
quantum field theory that permits more than a sin-
gle excitation. That is, replace the classical function
with an operator, Ψσ(r, t)→ Ψ̂σ(r, t),

Ψ̂σ(r, t) =
∑
j

b̂
(σ)
j Ψ

(σ)
j (r, t) +

∑
j

b̂
(σ)†
j Ψ

(σ)∗
j (r, t),

(42)
where Ψ

(σ)
j (r, t) are (vector) mode functions, and

the creation and annihilation operators satisfy
[b̂

(σ)
j , b̂

(σ′)†
k ] = δjkδσσ′ . Hereafter for concreteness,

we consider a single helicity, σ = +1.
We identify this field operator as the complex

sum of electric and magnetic field operators (indi-
cated by carets),

Ψ̂+1(r, t) =

√
ε0
2

(
Ê(r, t) + icB̂(r, t)

)
. (43)

Then we find the electric field part, using
1√
2ε0

(
Ψ̂+1(r, t) + Ψ̂

†
+1(r, t)

)
= Ê(r, t), (44)

and defining positive and negative-frequency parts,
Ê(r, t) = E(+)(r, t) + E(−)(r, t), where

E(+)(r, t) =
1√
2ε0

∑
j
b̂jΨ j(r, t),

E(−)(r, t) =
1√
2ε0

∑
j
b̂†jΨ

∗
j (r, t),

(45)
and we dropped the σ label for simplicity.
Comparing with (18) and identifying the oper-
ators by b̂j=Âj and photon wave functions by
(2ε0)−

1
2Ψ(r, t) = Ew(x, y)ejuj(z, t), we see that

the second quantization procedure leads directly to
the spatial-temporal-mode formalism of quantum
optics.

As long as we restrict our considerations to rea-
sonably narrow-band fields in each mode, where
the frequencies are near a central carrier frequency
ω ' ω0, and the bandwidth is much smaller than ω0,
we have E(ω) h E =

√
~ω0/(2ε0 cn). Then the

single-photon wave functions corresponding to dif-
ferent annihilation operators are orthogonal to a
good approximation, in the sense that integrating
over all space yields∫

d3r Ψ∗j (r, t) ·Ψk(r, t) = δjk. (46)

A subtlety arises when considering exotic ultra-
broadband photons with bandwidth comparable to
(say, 50% or greater than) the carrier frequency.

†3Historically, the desire for a first-order-in-time wave
equation is what drove Dirac to formulate his famous rel-
ativistic Schrödinger wave equation for the electron.
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Then a more careful analysis starting from (17) with
the frequency dependence retained in E(ω) shows
that the photon wave functions corresponding to
different annihilation operators cannot be strictly
orthogonal in space [16]. This non-orthogonality
means that, strictly speaking, a single-photon state
cannot be localized to a point in space; that is, there
is no local spatial probability of finding the photon
(thinking of a particle) at any particular point. In
general, it is more accurate to say that the modulus-
squared of a photon wave function Ψ j(r, t) de-
scribes the spatial distribution of probabilities to
detect the photon’s energy concentrated around dif-
ferent locations r, rather than to find the photon
(as if it were a particle) at a specified point loca-
tion. The photon, viewed as a particle or as a state
of the field, always remains “spread out” within a re-
gion with a minimum volume equal to a cubic wave-
length.

It should be mentioned that the same complica-
tion arises in the temporal-modes formalism when
considering ultra-broadband temporal modes, be-
cause it is mathematically equivalent to the second-
quantized photon-wave-function formalism. In prac-
tice, such details have not (yet) been found to
have significant consequences in quantum informa-
tion science, where ultra-broadband photons are not
typically employed.

If there are two field excitations (photons)
present, the concept of a two-photon wave func-
tion becomes relevant. Its modulus-squared gives
the probability for finding the energies of the two
photons concentrated around locations r1 and r2.
By analogy with a two-electron wave function, such
a function has been defined as (suppressing the po-
larization label for simplicity) [16]

Ψ(r1, r2, t) =
∑
j,k

Cj,kΨ j(r1, t)⊗Φk(r2, t),

(47)

where Ψ j(r1, t) and Φk(r2, t) are single-photon
wave functions, and the product is a vector direct
product. In fact, Cj,k can be chosen arbitrarily as
long as it ensures the symmetry properties of a two-
boson state, namely Ψ(r2, r1, t) = Ψ(r1, r2, t).
Two-photon wave functions expressed in spatial co-
ordinates are not often used in quantum optics the-
ory because the quantized field method is nearly
always more direct and convenient, especially in
scenarios where the number of photons changes in
time. A caveat is that the two-photon wave function
is equivalent to the so-called two-photon detection
amplitude, which arises naturally in standard quan-
tum optics theory when considering joint detection
of two-photon states [9, 24]. Such a formalism arises
naturally from the standard quantum optics theory
when analyzing optical detection.

Thus, we see that a photon-as-particle viewpoint
can be formulated and used if one carefully under-
stands its limitations and its relation to standard
quantum optics theory, which is based on quantizing
the EM field. Further developments have included

treating the case when light interacts with mat-
ter; then, the one- or two-photon wave-function ap-
proach has to be modified, as done, for example, by
Saldanha and Monken and by Keller [25, 26].

When considering fields with more than two exci-
tations (photons), the wave-function picture quickly
becomes inconvenient and overly cumbersome (it
becomes a many-body quantum theory), again giv-
ing credence to the preference among theorists to
stick with the quantized-field approach [16].

8. Mode interference and state
interference

Electromagnetic modes satisfy Maxwell’s equa-
tions, and therefore optical interference is built into
the quantum theory from the start. The mode trans-
formation in (30) is an example of interference.
What is perhaps confusing is that modes interfere
(classically) and quantum-state amplitudes can also
interfere (quantumly). For a single-photon state,
you can think of “classical” mode interference (e.g.,
on a beam splitter) as a quantum change of state
or a change of mode basis, as in (30). For multi-
photon states, or states with an indefinite number
of photons, the situation is more subtle.

As mentioned earlier, a coherent state of a single
monochromatic mode is expressed as

|α〉 = e−|α|
2/2

∞∑
n=0

αn

n!
(â†)n|vac〉 =

e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 (48)

and is found (upon measurement) to contain n pho-
tons with probability exp(−|α|2)|α|2n/n!, a Pois-
son distribution. If the coherent-state field passes
through a phase-shifting element such as a piece of
transparent glass, it picks up a phase shift θ, which
manifests in the coherent state as [27]

|α〉 = e−|α|
2/2

∞∑
n=0

(αe− iθ)n√
n!

|n〉 =

e−|α|
2/2

∞∑
n=0

αn e− inθ

√
n!

|n〉, (49)

that is, the n-photon component is phase shifted n
times more than the one-photon component, keep-
ing the state still a coherent state. (This phase
shift is simply the Schrödinger time-evolution fac-
tor exp(− in~ω t/~), where n~ω is the energy of
the state component). In this case, the “quantum
phases” of each state component are related simply
to the “classical phase” shift θ. This way, we can say
there is “One phase to rule them all,” with apologies
to J.R.R. Tolkien. Such is not the case for more gen-
eral (non-coherent) states of the field, where in gen-
eral the state components exp(− iθn)|n〉 can have
arbitrary values of their quantum phases θn, de-
pending on the means of their generation. This fact,
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along with the facts that quantum interference of
coherent states mimics perfectly classical interfer-
ence of fields and that photoelectron statistics (Pois-
son) are the same as in a semiclassical model of de-
tection [9, 28], are some of the reasons why coher-
ent states are considered to be the “most classical”
states possible.

A single-photon state also behaves classically in
propagation in the sense that its wavefunction fol-
lows classical Maxwell’s equations, as pointed out
in the previous section. The quantum nature of this
state becomes apparent only when detection occurs;
the photon is “found” to be localized (within a cu-
bic wavelength) at only one detector, not simultane-
ously at two or more. Yet the average rate of detec-
tion events upon repeated trials yields results iden-
tical to those expected from a classical theory treat-
ment augmented by detection statistics. For this
reason, single-photon optics experiments are some-
times thought to be not “classical enough” to bring
out uniquely quantum aspects of nature. Correla-
tions of detection events are more revealing, and
such experiments require the detection of at least
two photons.

Paul Dirac famously tried to sum up the situa-
tion by saying, “Each photon then interferes only
with itself.” [8]. Later it became clear that na-
ture is not that simple. A state of the field in
which two excitations are present, possibly in differ-
ent modes, is called a “biphoton.” The well-known
Hong–Ou–Mandel (HOM) two-photon interference
is illustrated in Fig. 4 and is understood by con-
sidering two single-photon states impinging on two
separate input sides of a 50/50 beam splitter, using
Ĉ†|n〉 =

√
n+ 1 |n+ 1〉,

|Ψ〉 = |1〉A|1〉B = B̂†Â†|vac〉 =

(Ĉ†+D̂†)√
2

(Ĉ†−D̂†)√
2
|vac〉 =

(Ĉ†)2−(D̂†)2

2
|vac〉=

|2〉C |0〉D − |0〉C |2〉√
2

. (50)

That is, both photons are detected in either the
C mode or in the D mode, with a 50% probability;
we never see coincidence events of a detector placed
in the outgoing C mode with a detector in the D
mode [29]. This phenomenon is a strictly quantum
one and does not occur in classical electromagnetic
theory. (Although there are classical mimics of this
effect, the coincidence probability cannot go to zero
in such examples). Therefore, for two-photon inter-
ference, we can say, “Each biphoton interferes only
with itself.” [30, 31].

The general statement might be phrased best
as “Upon detection, each quantum state compo-
nent interferes only with itself, and only if they
occupy the same mode.” One might then wonder,
how to understand the common situation that oc-
curs when two fields of different carrier frequencies

Fig. 4. A separable, nonentangled biphoton state
enters the input paths of a 50/50 beam splitter.
The result is an entangled biphoton state in which
both photons appear in one or the other output
path. Note that because single-photon states do not
carry phase information per se, the introduction of
a phase shift in either path before the beam splitter
will not affect the two-photon interference outcome.

come together and create intensity “beats” at the
difference frequency. It might seem to contradict
the idea that modes interfere only with themselves.
But it has to be noted that when time-resolved de-
tection is performed in order to observe the beats,
a mode projection takes place: the monochromatic
modes of distinct frequencies are both projected
onto a set of common temporal modes (fields con-
fined within a certain short interval). These tem-
poral modes then interfere with themselves. Such
issues were understood as long ago as 1969 [32].

9. Conclusions

In summary: A classical field can be viewed as
a physical entity that fills all of space and can trans-
port energy and momentum in the form of con-
tinuous wave-like excitations. Similarly, a quantum
field can be viewed as a physical entity that fills
all of space and can transport energy and momen-
tum only in the form of discrete excitations; these
excitations exhibit both wave-like and particle-like
behaviors. A “photon” is a label we give to a state
representing a single excitation of the EM field. In
most cases, it is safer to say “a single-photon state
of the field” rather than simply “a photon.”

A convenient way to represent the state of the
field is to decompose the field into a weighted sum
of mode functions. In classical theory, the weight-
ing coefficients can take on continuous values, rep-
resenting a continuum of possible energies. In quan-
tum theory, the weighting coefficients are operators
representing the quantization (discreteness) of pos-
sible energies.

If we are careful, we can describe states in the
field picture or in the particle picture, a viewpoint
discussed in detail by Iwo Białynicki-Birula. We like
to imagine that a given mode is like a container
into which we can put any field state. For the spe-
cial case of the single-photon state, “mode” in the
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field picture means the same as “state” in the parti-
cle picture. In that case, a single photon distributed
coherently between distinct modes represents an en-
tangled state, although such entanglement cannot
be verified experimentally by simply detecting the
photon in one mode or the other. The modes must
interact with other physical entities, such as sepa-
rate atoms.

When more than one photon is present, we recog-
nize that different modes can be put into many pos-
sible combined field states — separable, correlated,
or entangled. Biphoton is the name given to a state
representing a double excitation of the EM field,
whether the excitations are in the same or different
modes. Modes of the field are essentially classical
constructs and satisfy Maxwell’s equations. As such,
they can interfere “classically.” Quantum states can
interfere “quantumly,” as in the HOM effect. These
two kinds of interference create a rich structure for
quantum photonics.

In the context of optics and photonics, the dis-
tinction or boundary between quantum and classi-
cal is somewhat murky, although useful operational
definitions have been developed. Often, we de-
fine “classical” to mean that detection statistics
can be predicted correctly by a theory in which
light is treated as a classical EM wave (although
it may be random, stochastic), and the detectors
(photo-emissive detectors, photodiode, photomul-
tiplier) are treated by quantum theory. By this
“semiclassical” definition, coherent states and any
mixture of them, such as thermal (e.g., blackbody)
states, are considered classical [9]. Single-photon
and biphoton states are then considered quantum.
Still, there are cases where coherent states can be
used to implement an intrinsically quantum task,
such as QKD. There, a highly attenuated laser
pulse can be engineered to be in one of several
possible weak coherent states, and the quantum
behavior occurs upon detection. Any intermediate
measurement of the state (such as by an eavesdrop-
per) will necessarily cause a disturbance of the state
and thus be detectable. The fundamentally lowest
disturbance is dictated by quantum principles re-
lated to the Heisenberg uncertainty principle, and
thus, even though the state of light is considered
“classical,” the security of communication can be as-
sured by the quantum physics of measurement [33].
Harnessing the various degrees of freedom of the op-
tical field, including the temporal-spectral one, can
provide novel means to encoding and manipulating
quantum information, and therefore is an ongoing
topic of research [12].
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