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Vortex pattern formation in the electron–positron pair creation from a vacuum by a time-dependent
electric field of linear polarization is analyzed. It is demonstrated that in such a scenario the momentum
distributions of the created particles exhibit vortex–antivortex pairs. Their sensitivity to the laser field
parameters, such as field frequency and intensity, is also studied. Specifically, it is shown that with
increasing field frequency across a threshold, additional vortex–antivortex pairs appear. Their location
in the momentum space is consistent with the general threshold behavior of the probability distributions
of the created electrons (positrons). Namely, while for small field frequencies the particles tend to be
created along the field polarization direction, for large enough frequencies, they are predominantly
generated in the perpendicular direction. Such a change in the longitudinal and transverse momentum
sharing of the created particles occurs across a threshold.
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1. Introduction

The nonlinear response of the quantum vacuum
to macroscopic electromagnetic fields, leading to the
creation of electron–positron (e−e+) pairs, has been
predicted by Sauter [1], Heisenberg and Euler [2],
and Schwinger [3]. Since then, various authors have
made significant contributions to our current under-
standing of this process, which we will refer to as the
Sauter–Schwinger process. Specifically, Białynicki-
Birula, Górnicki and Rafelski have established
a new framework for treating the quantum vacuum
in electromagnetic fields [4] (see also [5, 6] and the
Ph.D. thesis of Ł. Rudnicki [7]). This is by means
of what they called the Dirac–Heisenberg–Wigner
(DHW) function, which describes the e−e+ densi-
ties in phase space. Later on, the method was largely
explored for the case of spatially homogeneous elec-
tric fields (see, e.g., [8–16]). For instance, the quan-
tum kinetic approach was recovered in that case [8]
and various analytical results for exactly solvable
fields were derived [8–10]. Recently, the spontaneous
formation of time-crystal structures in the e−e+

pair creation was discovered by Białynicki-Birula
and Białynicka-Birula in [16]. Other applications of
the DHW formalism in the context of pair creation
concern the case of parallel spatially homogeneous
electric and magnetic fields [17], the standing elec-
tric wave [18–21], and inhomogeneous electric and
magnetic fields in one spatial direction [22–24]. The
latter limitation follows entirely from the perform-
ing capabilities of current computers, as the DHW
method is very general and can be used in arbitrary
dimensions. It is also important to emphasize that
the DHW method is not limited to describing pair
creation from a vacuum. For instance, it was ar-
gued that DHW is very useful for practical plasma
applications such as studies of Langmuir waves in
high-density plasma [25].

Another area of research to which Professor
I. Białynicki-Birula contributed largely is related to
quantum vortices. It follows from the hydrodynam-
ical formulation of quantum mechanics that a prob-
ability fluid can inherently possess vortices [26].
They are defined as phase singularities of the wave
function and their strength is measured in terms
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of the topological charge [26–28]. As was discussed
in [27, 28], vortices form isolated lines that either
emerge from a single point forming a closed loop,
or can be created as a pair of lines with opposite
topological charges. These mechanisms of creation
and subsequent annihilation of vortex–antivortex
pairs were confirmed recently in a series of papers
focused on vortex structures in strong-field ioniza-
tion [29–33]. Specifically, it was demonstrated that
vortex structures are very sensitive to the laser field
parameters, so they can be easily steered by the
field. While the aforementioned papers deal with
quantum vortices in nonrelativistic quantum me-
chanics, their notion can also be extended to rela-
tivistic quantum theory, as proposed by Białynicki-
Birula and Białynicka-Birula in [34]. See also, the
construction of knotted vortex states, or hopfion-
like states in relativistic quantum mechanics [35] by
the same authors.

Note that the creation and ionization of
an electron–positron pair are formally similar since
they are both threshold-related phenomena that
can be driven by external dynamically changing
fields. For this reason, one might expect similar
effects to be exhibited in both processes. Keeping
this in mind, in the current paper we investigate
whether vortex structures similar to [29–33] can
be observed in the probability amplitude of e−e+
pair creation in the presence of a linearly polarized
time-dependent electric field. Our emphasis will be
on the threshold behavior of those patterns, which
can be studied, for instance, by changing the fre-
quency of the driving field. As we will show, this is
in agreement with the longitudinal and transverse

momentum sharing of the created particles across
the threshold, which has been studied in [36]. At
this point, we would like to mention that other
structures, known as spiral vortex patterns, were
found in strong-field ionization [37, 38] and later in
pair production [14, 15] for certain combinations of
circularly polarized electric field pulses. However, as
demonstrated in [31], in the case of ionization such
spirals in the momentum distributions of photoelec-
trons do not necessarily carry a nonzero topological
charge, which distinguishes them from vortices an-
alyzed in [29–33]. The same is expected to hold for
pair creation.

Our paper is organized as follows. Based on the
original derivation presented in [4], we introduce the
DHW formalism in Sect. 2. The bispinorial decom-
position of the DHW-function for a spatially homo-
geneous electric field is presented in Sect. 3, and the
final equations for a linear polarization are given in
Sect. 4. Section 5 is devoted to the vortex patterns
in the creation of e−e+ pairs and their sensitivity
to external field parameters, especially when pass-
ing across a threshold. Another threshold-related ef-
fect is discussed in Sect. 6, where we demonstrate
how particle momentum is redistributed across the
threshold of pair creation. Our final remarks are
given in Sect. 7.

2. The DHW-function for fermion field

The DHW-function for the fermion field is defined
as [4]

Wαβ(x,p, t) = −
1

2

∫
d3s e− ip·s

〈
0
∣∣∣ U(s,x, t) [Ψα(x+ s/2, t),Ψ †β(x− s/2, t)

]∣∣∣0〉, (1)

where the factor U(s,x, t) contains line integral of
the vector potential in temporal gauge A0 = 0,

U(s,x, t) = exp

− ie

1/2∫
−1/2

dξ s ·A
(
x+ ξs, t

) ,
(2)

and assures gauge invariance of the DHW-function,
whereas Ψα, Ψβ are the fermion field operators in
the Heisenberg picture. We use here the version of
the DHW-function with the vacuum expectation
value [8]; in general, however, any pure or mixed
state can be used [4]. The DHW-function is a 4× 4
Hermitian matrix and as such can be decomposed
in terms of 16 Hermitian matrices Γa with real co-
efficients depending generally on x, p and time t.
Matrices Γa (a = 0, 1, 2, . . . , 15) can be constructed
as Kronecker products of two sets of Pauli ma-
trices (including the identity matrix), (I2, ρj) and
(I2, σj) [4]. The correspondence is as follows

Γ0 = I4, Γj = ρj ⊗ I2,
Γj+3 = I2 ⊗ σj , Γj+6 = ρ1 ⊗ σj ,
Γj+9 = ρ2 ⊗ σj , Γj+12 = ρ3 ⊗ σj ,

(3)

where index j = 1, 2, 3. In terms of standard
γ-matrices,

Γ0 = I4, Γ1 = γ5, Γ2 = − iγ0γ5,

Γ3 = γ0, Γj+3 = Σ j , Γj+6 = αj ,

Γj+9 = − iγj , Γj+12 = γ0Σ j ,
(4)

where γ5 = iγ0γ1γ2γ3, and Σ j = γ5αj are the 4×4
spin matrices. With the use of (4) expansion of the
DHW-function can be written in the form [4]

W (x,p, t) =
1

4

(
f0 + γ5f1 − iγ0γ5f2 + γ0f3

+Σ · g0 +α · g1 − iγ · g2 + γ0Σ · g3
)
. (5)

The dimensionless expansion coefficients are the
same as f0, f1, f2, f3 and g0, g1, g2, g3 used in [4].
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The equations fulfilled by the expansion coeffi-
cients can be found by calculating their time deriva-
tives using the Dirac equation for the fermion field
operators. In deriving these equations one usu-
ally adopts the Hartree-, or mean electromagnetic
field-approximation, neglecting its quantum fluc-
tuations [4, 8]. This is equivalent to the replace-
ments 〈0| F̂µν(x, t)U(s,x, t)[Ψ(x1, t),Ψ

†(x2, t)] |0〉
→ Fµν(x, t)

〈
0
∣∣U(s,x, t)[Ψ(x1, t),Ψ

†(x2, t)
] ∣∣0〉,

i.e., the operator of the quantum electromagnetic
field is replaced by classical C-number field. The
application of the Dirac equation for the fermion
field operators in the general case of the space-
and time-dependent electromagnetic field results in
a complicated system of 16 integro-differential equa-
tions for the expansion coefficients of the DHW-
function. These equations significantly simplify in
the case of a spatially homogeneous electric field,
which is the subject of main interest in the present
paper. The initial conditions are determined by
the free vacuum value of the DHW-function. It
follows then from (1) with zero electromagnetic
field and free Dirac field operators that only the
coefficients f3 and g1 survive, and their vacuum
values are

fvac3 = −2mc2

Ep
, gvac1 = −2cp

Ep
, (6)

where Ep =
√
c2p2 +m2c4 is the free particle en-

ergy. In the case of a spatially homogeneous electric
field, only the coefficients g0 and g2 couple to the
vacuum values (6), so that it is sufficient to con-
sider the 10 equations for f3, g0, g1, g2. They have
the form [9, 10](

∂t + eE(t) · ∇p

)
W (p, t) =

c

~
M(p)W (p, t),

(7)
where W denotes the 10-dimensional vector

W = [f3, g0, g1, g2], (8)
and the 10 × 10 matrix M has the following block
structure

M(p) =


0 0T 0T 2pT

0 O3 2p× O3

0 2p× O3 −2mc I3
−2p O3 2mc I3 O3

 , (9)

where 0 and p are the 3-dimensional null and mo-
mentum column vectors, O3 — 3 × 3 null matrix,
and I3 is the 3-dimensional identity matrix. The
notation p× means that when acting on the 3-
dimensional vector to the right, it gives its vector
product with p. Explicitly,

p× =

 0 −p3 p2
p3 0 −p1
−p2 p1 0

 . (10)

In closing this section, we note that the physical
interpretation of the DHW-functions can be found
in [4]. In particular, the phase space energy density
is given by [4, 11],
ε(t, r,p) = cp · g1(t, r,p) +mc2f3(t, r,p). (11)

The one particle distribution function, which will be
used in Sect. 5 for numerical analysis of momentum
distributions, is defined as [11]

f(t, r,p) =
ε(t, r,p)− εvac

2Ep
=
ε(t, r,p)

2Ep
+ 1,

(12)
where εvac was expressed by vacuum DHW-
functions (6). It is also worth noting that the DHW
formalism is very general, as it allows one to account
for an arbitrary electromagnetic field. However, for
a spatially homogeneous electric field, other ap-
proaches can be conveniently applied; one of which
is developed next.

3. Bispinorial representation
of the DHW-functions for spatially

homogeneous electric field

We consider the Dirac equation in the spatially
homogeneous electric field E(t) = −∂tA(t), with
the vector potential vanishing both for t → −∞
and t → ∞. Due to the translational invariance of
the problem, the spatial dependence of the wave
function is of the plane wave type,

Ψ(t,x) = exp

(
i

~
p · x

)
Φp r(t), (13)

where the time-dependent bispinor Φp r(t) is labeled
by the asymptotic momentum p and the spin in-
dex r. It fulfills the equation

i~ ∂tΦpr(t) = HD(t)Φp r(t), (14)
where the time-dependent Hamiltonian reads

HD(t) = cα ·
(
p− eA(t)

)
+ γ0mc2. (15)

To make contact with the DHW-functions,
we construct 16 expressions bilinear in the
bispinor Φpr(t)

Sa(p, t) =
∑
r

Φ†pr(t)ΓaΦpr(t). (16)

Using the Dirac equation (14) and its Hermitian
conjugate, one finds equations fulfilled by the func-
tions Sa,

∂tSa =
i

~
∑
r

Φ†pr
[
HD(t), Γa

]
Φpr. (17)

The Dirac Hamiltonian HD(t) can be written in
terms of the Γ -matrices as

HD(t) = cΓj+6

(
pj − eAj(t)

)
+mc2Γ3, (18)

where the summation convention for the Cartesian
index j is used. The Γ matrices fulfill commutation
relations

[Γa, Γb] = i

15∑
c=0

f cab Γc, (19)

where f cab are the real structure constants of the al-
gebra of Γ matrices. Substituting (18) into (17) and
using (19) gives

∂tSa = − c
~
(pj−eAj)

15∑
b=0

f bj+6,aSb−
mc2

~

15∑
b=0

f b3a Sb.

(20)
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The nonvanishing structure constants are (indices
i, j, k take the values 1, 2, 3)
fkij = 2εijk,

f i+12
1,i+9 = 2, f i+9

1,i+12 = −2, f i+12
2,i+6 = −2,

f i+6
2,i+12 = 2, f i+9

3,i+6 = 2, f i+6
3,i+9 = −2,

fk+3
i+3,j+3=f

k+3
i+6,j+6 = fk+3

i+9,j+9 = fk+3
i+12,j+12=2εijk,

fk+6
i+3,j+6=f

k+9
i+3,j+9 = fk+12

i+3,j+12 = 2εijk,

f1i+9,j+12=2δij , f
2
i+6,j+12 = −2δij , f3i+6,j+9=2δij ,

(21)
plus the structure constants obtained from the anti-
symmetry relation fac,b = −fab,c. It is now straight-
forward, though a little tedious, to derive 16 equa-
tions fulfilled by the functions Sa, i.e.,

∂tS0 = 0,

∂tS1 = −2mc
2

~ S2,

∂tS2 = −2 c~ (p
j − eAj)Sj+12 + 2mc

2

~ S1,

∂tS3 = 2 c~ (p
j − eAj)Sj+9,

∂tSk+3 = 2 c~εkjl(p
j − eAj)Sl+6,

∂tSk+6 = 2 c~εkjl(p
j − eAj)Sl+3 − 2mc

2

~ Sk+9,

∂tSk+9 = −2 c~ (p
k − eAk)S3 + 2mc

2

~ Sk+6,

∂tSk+12 = 2 c~ (p
k − eAk)S2.

(22)
Note that the equations containing the 6 functions
S0, S1, S2, S13, S14, S15 do not couple to remaining
ten equations for S3, S4, S5, S6, S7, S8, S9, S10,
S11, S12. Denoting

S3 = h3, (S4, S5, S6) = h0,

(S7, S8, S9) = h1, (S10, S11, S12) = h2,
(23)

we see that (22) for ten-dimensional vector
V = [h3, h0, h1, h2] can be written in the matrix
form as

∂tV =
c

~
M
(
p(t)

)
V, (24)

where
p(t) = p− eA(t), (25)

and the matrix M is given by (9). The same sys-
tem of ordinary differential equations follows from
(7) after applying the method of characteristics to
first-order partial differential equations [4, 8, 10, 11].
Therefore the two vectors W and V obey the same
system of ordinary differential equations. In order
to identify fully V and W one needs to show that
they fulfill also the same initial conditions, which
for W are given by (6) and gvac0 = 0 = gvac2 .

The Dirac wave function pertaining to the pair
creation process should fulfill the Feynman bound-
ary conditions: (i) for t → −∞ it contains only so-
lutions of the free Dirac equation with negative en-
ergy, (ii) for t → ∞ it is a combination of positive
and negative energy parts with a negative energy
contribution equal to the wave function of the cre-
ated positron. An extensive discussion of the bound-
ary conditions fulfilled by solutions of the Dirac
equation in a classical electromagnetic field can be
found in [39]. It can also be shown that the Feynman
boundary conditions are “forced” by LSZ-reduction
formulae for the S-matrix element of pair creation.
For t→ −∞, we have therefore

Φps(t) = exp

(
i

~
Ept

)
w

(−)
−ps. (26)

Substituting (26) into (16) with the bispinors nor-
malized to unity, one can show that the coeffi-
cients (23) fulfill the following initial conditions for
t→ −∞

h0
0 = 0 = h0

2, h03 = −2mc2

Ep
, h0

1 = −2cp

Ep
, (27)

corresponding exactly to vacuum initial conditions
for the vector W .

The bispinorial approach to the dynamic Sauter–
Schwinger pair production by a spatially homoge-
neous electric field has been developed in this sec-
tion. Importantly, the approach has been proven to
be equivalent to the DHW formalism described in
Sect. 2. And, like the DHW method, it has an ad-
vantage over other approaches. Specifically, it al-
lows the treatment of an arbitrarily polarized time-
dependent electric field. Having said that, we turn
to the case of linear polarization, for which other
well-established theories exist and can be tested
against (see, for instance, [40, 41] and references
therein).

4. Linearly polarized field and analogy
with two level atom

In general, the vector W (or, equivalently V ) can
be expressed as a combination of ten orthonormal
basis vectors Ea

W = −2
10∑
a=1

uaEa. (28)

With the choice of − 1
2W

vac as one of the basis el-
ements, one can show that for a linearly polarized
field A(t) = A(t)n, three vectors

E1 =
c

Epε⊥


−mc2(n · p)

0
E2

pn

c
− c(n · p)p
0

 , E2 =
c

ε⊥


0

p× n
0

mcn

 , E3 =
1

Ep


mc2

0

cp

0

 , (29)
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form a set closed under the action of n · ∇p and
M in (7), where ε⊥=

√
c2p2⊥ +m2c4. Note that

E3 = − 1
2W

vac. Choosing n in the z-direction
(n = e3) we have
∂

∂p3
E1=−

c ε⊥
E2

p

E3,
∂

∂p3
E2=0,

∂

∂p3
E3=

c ε⊥
E2

p

E1,

ME1=
2Ep

c
E3, ME2=−

2Ep

c
E1, ME3=0.

(30)
Solution of (7) can be expressed as

W (p, t) = −2
3∑
a=1

ua(p, t)Ea
(
p(t)

)
. (31)

Substituting (31) to (24) and denoting
[ u1, u2, u3 ] = u, we obtain the precession-
type equation for u

∂tu = a× u, (32)
with the vector a given by
a = [0, −2Ωp(t), 2ωp(t)], (33)

where

ωp(t) =
Ep(t)

~
=

1

~

√
c2p2⊥+c

2
[
p3−eA(t)

]2
+m2c4,

Ωp(t) =
c e ε⊥E(t)
2E2

p(t)

,

(34)

and where the temporal dependence of the electric
field is given by E(t) = −Ȧ(t). Note that the initial
condition for u has the form uvac = [0, 0, 1].

Three equations resulting from (32) can be re-
duced to a system of two equations by expressing u
in the form of a spinorial decomposition, analogous
to that used in [9, 10], i.e.,
u = χ†σχ, (35)

where χ is the two-component spinor and σ are the
Pauli matrices. Substitution of (35) to (32) leads to
the equation for χ which has the same structure as
the Schrödinger equation describing the time evo-
lution of a two-level atom. This equation has been
derived in the context of pair-creation by a differ-
ent method earlier (see, e.g., [9, 40] and references
therein),

i∂t

[
c
(1)
p (t)

c
(2)
p (t)

]
=

[
ωp(t) iΩp(t)

− iΩp(t) −ωp(t)

][
c
(1)
p (t)

c
(2)
p (t)

]
,

(36)
where c(1)p (t) and c(2)p (t) are, respectively, upper and
lower components of χ. Initial conditions read

c(1)p |t→−∞ = 1, c(2)p |t→−∞ = 0. (37)

The third component of u is equal to |c(1)p |2−|c(2)p |2
and for a two-level atom corresponds to “popu-
lation inversion” (with opposite sign). Before the
action of the electric field u3 = 1, which corre-
sponds to the vacuum state with no pairs. Dur-
ing the action of the electric field, e+e− pairs are
created so that |c(1)p |2 < 1 and |c(2)p |2 > 0 with
|c(1)p (t)|2 + |c(2)p (t)|2 = 1. Hence, |c(2)p |2 for t → ∞

can be interpreted as the momentum distribution
of the created fermionic pairs, f(p) (see (12)). Ex-
plicitly,

f(p) = 1− u3 = 2
∣∣c(2)p

∣∣2. (38)

Let us note in closing this section that the system of
equations similar to (38) can be derived for bosons
by applying other, than those based on the Wigner
formalism, methods of QED (see, e.g., [41] and ref-
erences therein). However, in this case, the time-
evolution is pseudounitary.

From now on, we use units where ~ = 1. More-
over, m and e will refer to the electron rest mass
and charge, respectively.

5. Threshold effects and vortices

In our further investigations we choose an electric
field E(t) such that

E(t) =

 E0 sin
4
(

1
2N φ

)
cos(φ), φ ∈ [0, 2πN ],

0, φ /∈ [0, 2πN ],

(39)
where φ = ωt and N = 3. The integer N determines
the number of cycles within the electric field pulse,
and for N > 3 the condition

∞∫
−∞

dt E(t) = 0 (40)

is satisfied. Due to this property, the vector poten-
tial function,

A(t) = −
t∫

−∞

dτ E(τ), (41)

can be chosen such that it vanishes both in the re-
mote past and in the far future

lim
t→±∞

A(t) = 0. (42)

The shapes of both functions for E0 = 0.1ES
and ω = mc2 are presented in Fig. 1, where
ES = m2c3/|e| is the Sauter–Schwinger electric field
strength [1, 3, 42]. For the electron momentum
vector, we will separate its parallel and perpendic-
ular components as measured with respect to the
direction of the electric field oscillations e3 such
that p = p⊥e⊥ + p‖e3, where e⊥ is the unit vector
perpendicular to e3.

As was mentioned in Sect. 1, the process of creat-
ing electron–positron pairs in QED has many analo-
gies with the ionization of atoms, in which the role
of the time-dependent electric field is played by
a strong laser pulse in the dipole approximation.
In this case, the concept of photons is commonly
used as quanta of energy absorbed or emitted by
the system. One can then talk about multiphoton
ionization and the energy threshold for that process.
Moreover, such a threshold is dynamically increased
as the electric field becomes stronger, which leads
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Fig. 1. (a) Time-dependent electric field strength
E(t) for E0 = 0.1ES and N = 3, as defined by (39),
and (b) the corresponding vector potential function
A(t). Contrary to the electric field, the amplitude
of the vector potential depends on the frequency ω.

to the so-called threshold effects and channel clos-
ing in ionization [43]. It turns out that in the case of
the dynamic Sauter–Schwinger process this heuris-
tic picture can also be applied in order to describe
qualitative changes in the momentum distributions
of the created particles (for instance, as in the co-
herent energy combs studied in [40, 44]). This can
be done even for the very short pulses considered
here.

Another interesting effect, which appears as a re-
sult of the interaction of the time-dependent elec-
tric field with the QED vacuum, is the creation or
annihilation of vortex lines in the electron momen-
tum distributions. The properties of vortex lines
and their entanglement were thoroughly analyzed
in [27, 28]. In both photoionization and photode-
tachment, the creation and annihilation of vor-
tex lines were studied for linearly [30] and circu-
larly [29, 31–33] polarized fields. It was shown how
the time-reversal symmetry of the laser pulse leads
to the annihilation of vortex–antivortex pairs and
the creation of spirals in the momentum distribu-
tions [33]. Note that such spirals have been pre-
dicted theoretically in [37] and confirmed experi-
mentally in [38]. Moreover, the application of the
DHW-function formalism allowed one to show that
similar spiral structures also appear in the pair cre-
ation by a train of two circularly polarized elec-
tric field pulses of an opposite helicity [14, 15].

Therefore, the question arises: Can vortices be ex-
pected in the momentum distributions of the cre-
ated pairs for linearly polarized electric field pulses?

To address this question, in Fig. 2 we present
the momentum distributions of electrons created
by a linearly polarized electric field pulse of dif-
ferent frequencies, which were selected close to the
“two-photon” threshold of pair creation. For ω =
0.99mc2 (i.e., just before opening the “two-photon”
channel), we observe two singular points for which
the amplitude c(2)p vanishes, and the phase arg[c

(2)
p ]

cannot be uniquely defined. Because of the axial
symmetry of the problem, it can be concluded that
these two points belong to the same vortex line. In
the current case, the latter is represented by a circle
in three-dimensional momentum space. In fact, one
can even define the orientation of this closed line
by exploiting analogies with a circuit along which
an electric current flows and generates, according
to Amperé’s law, the vortex-type magnetic field. To
this end, let us define the “magnetic field” B(p) such
that
B(p) = ∇p

(
arg
[
c(2)p

])
. (43)

Its circulation around the singular point is ±2π,
hence the “electric current” becomes I = ±2π if we
put the magnetic permeability µ0 = 1. In particu-
lar, for ω = 0.99mc2 (Fig. 2a), we have ‘−’ for (p‖ =
0, p⊥ > 0) and the current flows behind the plane,
whereas for (p‖ = 0, p⊥ < 0) we have ‘+’ and the
current flows towards the reader. Thus the orienta-
tion of the vortex line can be uniquely attributed
to the direction of the “electric current”. As the fre-
quency ω increases, we observe the appearance of
a new vortex line. The case of ω = mc2 (which
is the threshold frequency for the two-photon pair
creation) corresponds to a transition in which, for
p = 0, the radius of the new vortex circle is close
to zero (Fig. 2b and e). After exceeding this value
(the case of ω = 1.01mc2 in Fig. 2c and f), the
second circular vortex line appears, with an orien-
tation opposite to the previous one (panels (d–f)).
While increasing the frequency ω, the radii of both
circular vortex lines also grow. This, in turn, results
in the merging of the two well-defined lobes of high
probability into a single structure, the maximum of
which is found at zero momentum. This situation is
discussed in Sect. 6.

In Fig. 3 we demonstrate the same phenomenon,
but for a larger amplitude of the electric field. The
only significant difference is that now the thresh-
old frequency for the two-photon pair creation is
shifted upwards and its value is between 1.1mc2

(one vortex line) and 1.2mc2 (two vortex lines).
A plausible interpretation of this fact can be based
on analogies with multiphoton ionization, in which,
for a larger intensity of the electromagnetic field,
the so-called ponderomotive shift of the threshold
energy is observed [43]. Similar effects, but in the
context of photodetachment by circularly polarized
laser pulses, were discussed in [32].
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Fig. 2. Momentum distributions of electrons created from the QED vacuum by the electric field illustrated
in Fig. 1. In panels (a–c), the distributions |c(2)p |1/2 (the power 1/2 is chosen for visual purposes) are presented
for three chosen frequencies ω (equivalent to photon energies). In panels (d–f), the corresponding phases of
c
(2)
p are demonstrated.

Fig. 3. The same description as in Fig. 2, but for larger electric field amplitude E0 = 0.5ES and larger
frequencies.

6. Longitudinal and transverse
momentum sharing

The Schwinger formula for the probability rate
of pair production per unit volume in the case
of a constant (or slowly-changing-in-time) electric
field can be derived using the tunneling formal-
ism [45]. According to this formula, an increment
of the perpendicular momentum of the particles,

|p⊥|, is accompanied by a rapidly vanishing creation
rate. However, for rapidly changing fields, tunneling
theory is no longer applicable. This is supported by
the analysis presented above because the momen-
tum distributions for pair production are not elon-
gated in the direction of the electric field. As it has
been shown in [36], for sufficiently high frequencies
ω, particles prefer to be created in the direction per-
pendicular to the electric field. This counterintuitive
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Fig. 4. Momentum distributions of electrons created by an oscillating electric field for different frequencies
and for electric field amplitude E0 = 0.5ES . Starting from the one-photon threshold frequency, at roughly
ω = 2mc2, a qualitative change in the shapes of high-probability structures is observed.

phenomenon is illustrated in Fig. 4. For low frequen-
cies ω ≤ 0.8mc2, the distributions are concentrated
around the axis of vanishing transverse momen-
tum. However, as the frequency increases, the distri-
butions begin to concentrate around zero momen-
tum. This happens until the one-photon threshold is
reached. A further increase of frequency causes the
position of the high-probability regions in the distri-
bution to migrate towards the direction perpendic-
ular to the electric field (i.e., towards larger p⊥).
Furthermore, at ω = 4mc2, the high-probability
zone in the three-dimensional space takes the shape
of a torus centered around p⊥ = 0. This means
that under such conditions the particles prefer to
be ejected in the direction perpendicular to the
electric field vector. As shown in [36], the distribu-
tion for pair creation, when integrated over parti-
cles momenta, starts to saturate (or even decreases)
with increasing frequency, leading to the seemingly
unexpected stabilization phenomenon. In fact, the
stabilization effects appear to be quite common
in the strong-field QED, as discussed for instance
in [46–50].

In summary, although we have concentrated
our discussion on the fermionic distribution func-
tion f(p) and the phase of the momentum am-
plitude c

(2)
p , the other components of the DHW-

functions (8) can be also determined by applying
(35), (31) and (29). This topic is, however, beyond
the scope of the present work and is going to be
considered in due course.

7. Conclusions

In this paper, we formulated the bispinorial ap-
proach to the production of e−e+ pair in spatially
homogeneous electric fields. The method turned out
to be equivalent to the DHW formalism, which was
introduced in [4]. We have shown that the pro-
duction of Sauter–Schwinger pair with linearly po-
larized time-dependent electric field is formally re-
duced to solving a two-level model, in compliance
with [40] (see also references therein). The advan-
tage of this approach is that one gains access to
the probability amplitudes and, therefore, to their
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phases. The latter allows to uniquely identify vor-
tices and antivortices in the momentum distribu-
tions of created pairs. As it has been demonstrated
in our paper, for a linearly polarized pulsed electric
field, they appear in pairs. We also analyzed the
vortex patterns while increasing the field frequency
across a two-photon threshold. While we have ob-
served a new vortex–antivortex pair, the general
features of the momentum distributions also change
across the threshold. Specifically, we have seen that
below the one-photon threshold, particles are cre-
ated most efficiently along the polarization direc-
tion of the electric field, whereas above the thresh-
old — in the perpendicular direction. This shows
the different characteristics of the Sauter–Schwinger
process while passing from low- to high-frequency
regimes of electric-field–vacuum interactions.
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