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We implement a longstanding proposal by Weisskopf to apply virtual polarization corrections to the
in/out external fields in the study of the Euler–Heisenberg–Schwinger effective action. Our approach re-
quires distinguishing the electromagnetic and polarization fields based on mathematical tools developed
by Białynicki-Birula, originally for the Born–Infeld action. Our solution is expressed as a differential
equation where the one-loop effective action serves as input. As a first result of our approach, we recover
the higher order one-cut reducible loop diagrams discovered by Gies and Karbstein.

topics: Euler–Heisenberg–Schwinger (EHS), quantum electrodynamics (QED), non-perturbative vac-
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1. Introduction

Victor Weisskopf in 1936 [1, 2] suggested
and attempted to improve the derivation of the
Heisenberg–Euler effective action [3]; for further in-
sights, see later work by Schwinger [4] and the re-
view by Dunne [5]. Weisskopf considered that the
polarization of the vacuum should be “fortwährend”
(everlasting), and thus photons should contain
the polarization effects already present in a self-
consistent manner. In present-day language, the
class of diagrams he envisaged requires the sum-
mation of one-cut reducible loop diagrams, i.e.,
photons dressed by one-loop Euler–Heisenberg–
Schwinger (EHS) action. In this work, we present
a path to the solution of this problem and give
examples using constant homogeneous electromag-
netic (EM) fields.

At first, the reducible loop diagram contributions
to quantum electrodynamic (QED) effective action
were assumed to vanish in the infrared, i.e., constant
field limit. Ritus [6] claimed that as the photon mo-
mentum k → 0, the pertinent two-loop diagrams
vanish in view of the current ∝ k2. However, Gies
and Karbstein [7] discovered that the pole of the
virtual photon propagator (∝ 1/k2) perfectly can-
cels the vanishing current in the quasi-constant EM
field limit. This study of the nonvanishing two-loop

reducible diagram corrections to EHS effective ac-
tion was extended via further perturbative summa-
tion to higher order loops [8–10], to scalar [11] and
spinor propagators [12], and to a more general class
of field configurations [13].

In this work, we demonstrate the connection be-
tween the Weisskopf conjecture and these reducible
loop diagrams discovered in the present-day field-
theoretical context. We implement a classical po-
larization approach for summing the virtual photon
excitations in the infrared limit. By dressing the ex-
ternal field with polarization corrections at the start
of the derivation of EHS action, we recover the two-
loop result of Gies and Karbstein [7].

A key input into our nonperturbative solution is
a class of Legendre transforms of nonlinear EM ac-
tions formulated by Białynicki-Birula [14], allowing
to transform the nonlinear EHS action — a function
of EM fields L1(E ,B) — into an expression employ-
ing the superposable fields D,H. In this step, we can
insert polarization corrections to dress the external
fields. Lastly, we inverse the Legendre transform to
return to an effective action formulation in terms of
EM fields.

In Sect. 2, we develop an approach for implement-
ing Weisskopf’s proposal to improve the EHS re-
sult, based on polarization corrections to the exter-
nal fields. We implement the corrections in Sect. 3,
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using the Legendre transformed EHS action, and
apply our theoretical result to the case of pure elec-
tric fields. In Sect. 4, we recover the two-loop ef-
fective action of Gies and Karbstein. Extension to
higher order loop contributions is straightforward,
as we show with the three-loop action as an exam-
ple. We believe that our approach can be applied
to extend any one-loop effective action in the same
everlasting manner, including the case of special in-
terest, the strongly-interacting vacuum structure.

2. Implementing Weisskopf

2.1. Nonlinear EM action overview

We consider a general expression for EM effective
action in the infrared external field limit (photon
momentum k → 0)

LM+1(E ,B) =
E2 − B2

2
+ L1(E ,B), (1)

where subscript M+1 denotes the Maxwell plus one-
loop EHS contributions to the action. The EM fields
E ,B are generated by the 4-potential Aµ governing
the Lorentz force as Fµν = ∂µAν − ∂νAµ and are
related to the superposable fields D,H governing
Maxwell equations with sources as

D(E ,B) = ∂LM+1

∂E
= E + ∂L1

∂E
,

H(E ,B) = −∂LM+1

∂B
= B − ∂L1

∂B
.

(2)
The nonlinear response of the vacuum thus distin-
guishes E ,B from these superposable fields
E ≡ D(E ,B)− P(E ,B),

B ≡ H(E ,B) +M(E ,B),
(3)

where the polarization fields P,M render the EM
fields E ,B non-superposable. This distinction will
be necessary in order to implement Weisskopf’s pro-
posal to dress the externally applied EM fields.

All the relevant expressions for effective action
in terms of EM and superposable fields are shown
in Table I. The auxiliary quantity U is obtained
from L by Legendre transform, as we will describe
below.

2.2. Reconciling EM fields
with the everlasting vacuum

In Fig. 1, we show how Weisskopf’s extension of
QED-EHS action works in the context of in/out
states: in panel (a), a photon scatters off a finite-
sized polarizable material medium. The asymptotic
in/out states, i.e., the EM fields before and after
the interaction (black), are equivalent to the super-
posable fields (E = D,B = H). The screening by
the medium (red) occurs inside the material target,
with nonzero polarization fields P,M.

Fig. 1. EM fields interacting with (a) a finite-sized
material medium, (b) prior treatment of the pertur-
bative QED-EHS vacuum in the image of a scatter-
ing problem, (c) nonperturbative vacuum existing
at all times.

TABLE I

EHS action (first two rows) and the higher order one-
cut reducible loop action (last two rows); M+W refers
to Maxwell+Weisskopf action, with Maxwell being
the (E2 − B2)/2 and (D2 −H2)/2 contributions.

Lagrange form Auxiliary form
EHS L1(E ,B) U1(D,H)

Maxwell+EHS LM+1(E ,B) UM+1(D,H)

Dressed photons LW(E ,B) UW(D,H)

Maxwell+Dressed
photons

LM+W(E ,B) UM+W(D,H)

Following Weisskopf’s insight that the external
fields in EHS effective action see only one elec-
tron loop, we illustrate a perturbative EHS ana-
log to the material target scattering (Fig. 1a). The
EHS analog (Fig. 1b) comprises, in place of a mate-
rial target, the quantum vacuum structure spanning
a bounded spacetime domain sufficiently small that
each photon in the external field sees only a sin-
gle electron loop. Outside of this bounded region,
no virtual electron excitations are considered, thus
the asymptotic in/out external fields are approxi-
mated as E = D,B = H, i.e., without polarization
effects.

This perturbative approach is amended in Fig. 1c.
Since the vacuum structure exists at all times rather
than in a bounded spacetime domain, we cannot
distinguish the asymptotic in/out fields from the
fields interacting with the virtual electron pairs.
The polarization effects contained in fields P,M are
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TABLE II

Legendre transforms and derivative expressions relating electromagnetic and superposable fields, after [14].

Legendre transform Electric field Magnetic field
L(E ,B) = E · D − B · H − U D = ∂L/∂E H = −∂L/∂B

U(D,H) = E · D − B · H − L E = ∂U/∂D B = −∂U/∂H

always present, and thus E = D−P and B = H+M
throughout Fig. 1c. These are the dressed fields to
be implemented in the EHS action.

3. Derivation of effective action loop
summation via everlasting vacuum

properties

3.1. Legendre transform

We now show how to implement polarization field
P,M corrections into the externally applied fields
of EHS action. This cannot be done for the EHS ac-
tion L1(E ,B) directly due to the EM fields (see (3))
being non-superposable. Thus the first step is to
transform the LM+1(E ,B) into an auxiliary form
written in terms of superposable fields U1(D,H),
based on the Legendre transforms seen in Table II.

Carrying out the Legendre transform of the EM
action (1)

UM+1(D,H) = E(D,H) · D − B(D,H) · H

−LM+1(E(D,H),B(D,H)), (4)

where the EM fields

E(D,H) = ∂UM+1

∂D
,

B(D,H) = −∂UM+1

∂H
.

(5)

Separating the nonlinear contribution we define

UM+1(D,H) ≡
D2 −H2

2
+ U1(D,H), (6)

distinguishing the contribution to the action, in
terms of D,H, arising from the virtual electron
interaction. Note that U1(D,H) and L1(E ,B) are
not the same expressions, since the superposable
fields take on a different functional dependence than
non-superposable EM fields. Determining U1 re-
quires solving an implicit differential equation as
defined in (4) and (5). An analytic solution is
available for the special case of the Born–Infeld
action [14–16].

3.2. Polarization corrections

Only in this auxiliary form of EHS effective ac-
tion, using superposable D,H fields, can the asymp-
totic in/out fields be corrected to account for

everlasting polarization fields. Where D,H appear
in the nonlinear part of EM action U1(D,H) in (6),
we take
D → D −P(D,H) = E(D,H), (7)

and similarly for the magnetic field
H → H+M(D,H) = B(D,H), (8)

thereby dressing the asymptotically defined EM
field that any single electron loop is exposed to.
The polarization fields P,M introduce the one-cut
reducible loop sum UW(D,H), defined as

UW(D,H) ≡ U1(D − P,H+M). (9)

Including the Maxwell term and plugging in (6)
and (3), we obtain

UM+W(D,H) ≡ D
2−H2

2
− E

2(D,H)−B2(D,H)
2

+UM+1(E(D,H),B(D,H)), (10)

where UM+1(E ,B) follows from (4), with the re-
placements D → E(D,H) and B → B(D,H).

3.3. Inverse Legendre transform

As a final step, we inverse Legendre trans-
form (10) to return to the effective action formu-
lation as a function of EM fields E ,B. Using the
transform from Table II,
LM+W(E ,B) ≡ E · D(E ,B)− B · H(E ,B)

−UM+W(D(E ,B),H(E ,B)) =

E · D(E ,B)− B · H(E ,B) + E
2−B2

2

−D
2(E ,B)−H2(E ,B)

2
− UM+1(E ,B), (11)

where now the derivative identities

D(E ,B) = ∂LM+W(E ,B)
∂E

,

H(E ,B) = −∂LM+W(E ,B)
∂B

.
(12)

Separating the Maxwell contribution from the
nonlinear vacuum contribution, we define

LW(E ,B) ≡ LM+W(E ,B)− E
2 − B2

2
. (13)

Combining (11)–(13), we now have at our disposal
a differential equation requiring input EHS, which,
when solved, creates the effective action for the
summed reducible loop diagrams.
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3.4. Summary and generalized form

To summarize, we build upon the one-loop effec-
tive action LM+1(E ,B) in (1) by applying:

• Legendre transform

UM+1(D,H) =
D2 −H2

2
+ U1(D,H), (14)

• Polarization corrections

UM+W(D,H) = D
2 −H2

2
+ U1(D − P,H+M),

(15)

• Inverse Legendre transform

LM+W(E ,B) = E
2 − B2

2
+ LW(E ,B). (16)

4. Perturbative series for α = 1/137

As an illustrative example, we consider the pure
electric field case to study the two-loop action of
Gies and Karbstein [7]. Taking B → 0, (11) becomes
then

LM+W(E) = E · D(E) + E
2

2
− D

2(E)
2
− UM+1(E).

(17)

We evaluate (17) by applying a perturbative loop
expansion.

We first write the EHS Lagrangian dependence
in (17) explicitly using the Legendre transform (4)

LM+W(E) = E · D(E)− D
2

2
− ∂UM+1(E)

∂E
· E

+
1

2

(∂UM+1(E)
∂E

)2
+ L1

(∂UM+1(E)
∂E

)
+
E2

2
.

(18)
We take the case of small polarization corrections
to the externally applied EM field
|D − E|
|E|

� 1. (19)

Under condition (19), the leading one-loop EHS
contribution dominates the higher order loop ef-
fects. The perturbative summation of reducible di-
agrams to `-loop order can be written as

lim
|D−E|
|E| �1

LM+W(E) ≡ LM+1(E) +
∞∑
`=2

L`(E),

(20)
where the one-loop EHS contribution is included in
LM+1(E), followed by summation over the two-loop
and higher orders.

To determine the form of loop corrections L`(E)
in (20), we take the small polarization limit of the
auxiliary function UM+1 defined in (4) and differen-
tiate with respect to E to obtain

lim
|D−E|
|E| �1

∂UM+1(E)
∂E

= E − ∂L1(E)
∂E

. (21)

Similarly for the superposable field D,

lim
|D−E|
|E| �1

D(E) = E + ∂L1(E)
∂E

. (22)

Plugging (21) and (22) into (18),

lim
|D−E|
|E| �1

LM+W(E) = E
2

2
+ L1

(
E − ∂L1(E)

∂E

)
.

(23)
Note that (23) shows the iterative structure of the
effective action describing the higher order loop
summation. Expanding in powers of L1

L2(E) = −
(∂L1(E)

∂E

)2
, (24)

the two-loop of Gies and Karbstein (see (32) of [7]).
The original result in [7] contains both E and B
contributions, expressed using derivatives with re-
spect to the EM field tensor L2 = 1

2 (∂L1/∂F
µν)2 =

(∂L1/∂B)2 − (∂L1/∂E)2, which reduces to (24) in
the pure E limit.

To obtain the three-loop contribution, we iterate
the two-loop (24) into (23) as a complement to L1

appearing in the polarization correction ∂L1(E)/∂E .
Expanding again in powers of L1, this time to third
order,

L3(E) =
5

2

∂2L1(E)
∂E2

(∂L1(E)
∂E

)2
. (25)

This perturbative higher order loop summation pro-
cedure can be carried out ad infinitum as in [9],
with the replacement B → − iE to recast Karb-
stein’s original summation for B fields in terms of E
fields.

5. Conclusions

We have implemented Weisskopf’s proposal [1, 2]
to dress the external EM fields in EHS effective ac-
tion with polarization corrections. This shows that
the one-cut reducible QED loop diagram summa-
tion of Gies and Karbstein [7–9] was indeed foretold
in the work of Weisskopf. We developed a gener-
alized approach to summing such diagrams, which
can be applied to any nonlinear EM theory, with
a one-loop effective action as input and in princi-
ple carried to higher order in coupling constant as
we have demonstrated evaluating the next-to-next
order correction.

It is important to note that we include only the
one-cut reducible loop diagram contributions to ef-
fective action. A full summation includes: higher
order cut reducible diagrams and internal photon
line (irreducible) loops producing, e.g., anomalous
magnetic moment and field-dependent mass. Irre-
ducible contributions to the action in constant fields
are well-known to two-loop order [6], and a subset
of such diagrams comprising vertex corrections en-
closing a single external line — to all orders [17].
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Rather than the conventional in/out method
for computing effective action, which treats the
structured vacuum as bounded in spacetime akin
to a finite-sized material target, our approach
takes into account an everlasting vacuum struc-
ture spanning all spacetime. Finally, we remark
that this work complements in the “opposite” di-
rection the insight by Białynicki-Birula, Rudnicki,
and Wienczek [18] that the finite time duration of
external fields regularizes the essential singularity
seen in (the imaginary part of) the one-loop EHS
result in the limit of weak electrical fields.

The analytical properties of the one-loop action
resurface in the higher loops as a striking interplay
between real and imaginary (containing the essen-
tial singularity) parts of the effective action, and
between reducible and irreducible diagram contri-
butions. Strong field asymptotics need further ex-
ploration as they are highly nontrivial, depending
on which EM field invariant dominates the exter-
nal EM fields ((E2 −B2)/2 versus the pseudoscalar
E · B).

To conclude, we have improved the formulation
of effective action in the presence of an everlast-
ing vacuum structure. Our result connects Weis-
skopf’s conjectured extension of EHS effective ac-
tion to Gies and Karbstein’s discovered higher order
reducible loop diagrams.

Acknowledgments

This work is dedicated to Professor Iwo
Białynicki-Birula on the occasion of his 90th birth-
day.

References

[1] V. Weisskopf, Über die Elektrodynamik des
Vakuums auf Grund der Quantentheorie
des Elektrons, Mathematisk-Fysiske Med-
delelser XIV, Danske Videnskabernes Sel-
skab, No. 6, 1936.

[2] A.I. Miller, in: Early quantum electrody-
namics: A Source book, Cambridge Univ.
Press, 1994.

[3] W. Heisenberg, H. Euler, Z. Phys. 98, 714
(1936).

[4] J.S. Schwinger, Phys. Rev. 82, 664 (1951).
[5] G.V. Dunne, in: From Fields to Strings,

Vol. 1, Ed. M. Shifman et al., World Scien-
tific, Singapore 2005 p. 445.

[6] V.I. Ritus, Sov. Phys. JETP 42, 774
(1975).

[7] H. Gies, F. Karbstein, J. High Energy
Phys. 1703, 108 (2017).

[8] F. Karbstein, J. High Energy Phys. 1710,
075 (2017).

[9] F. Karbstein, Phys. Rev. Lett. 122, 211602
(2019).

[10] F. Karbstein, J. High Energy Phys. 01, 057
(2022).

[11] J.P. Edwards, C. Schubert, Nucl. Phys. B
923, 339 (2017).

[12] N. Ahmadiniaz, F. Bastianelli, O. Corra-
dini, J. P. Edwards, C. Schubert, Nucl.
Phys. B 924, 377 (2017).

[13] N. Ahmadiniaz, J.P. Edwards, A. Ilderton,
J. High Energy Phys. 05, 038 (2019).

[14] I. Bialynicki-Birula, in: Quantum Theory
Of Particles and Fields, Eds. B. Jancewicz,
J. Lukierski, World Scientific, Philadelphia
1983, p. 262.

[15] M. Born, L. Infeld, Proc. Roy. Soc. Lond.
A 144, 425 (1934).

[16] W. Price, M. Formanek, J. Rafelski, “Born–
Infeld nonlinear electromagnetism in rel-
ativistic heavy ion collisions”, in prepara-
tion.

[17] W. Dittrich, J. Phys. A 11, 1191 (1978).
[18] I. Bialynicki-Birula, L. Rudnicki,

A. Wienczek, arXiv:1108.2615, 2013.

S17

http://dx.doi.org/10.1007/BF01343663
http://dx.doi.org/10.1007/BF01343663
http://dx.doi.org/10.1103/PhysRev.82.664
http://dx.doi.org/10.1142/9789812775344_0014 
http://dx.doi.org/10.1007/JHEP03(2017)108
http://dx.doi.org/10.1007/JHEP03(2017)108
http://dx.doi.org/10.1007/JHEP10(2017)075
http://dx.doi.org/10.1007/JHEP10(2017)075
http://dx.doi.org/10.1103/PhysRevLett.122.211602
http://dx.doi.org/10.1103/PhysRevLett.122.211602
http://dx.doi.org/10.1007/JHEP01(2022)057
http://dx.doi.org/10.1007/JHEP01(2022)057
http://dx.doi.org/10.1016/j.nuclphysb.2017.08.002
http://dx.doi.org/10.1016/j.nuclphysb.2017.08.002
http://dx.doi.org/10.1016/j.nuclphysb.2017.09.012
http://dx.doi.org/10.1016/j.nuclphysb.2017.09.012
http://dx.doi.org/10.1007/JHEP05(2019)038
http://dx.doi.org/10.1098/rspa.1934.0059
http://dx.doi.org/10.1098/rspa.1934.0059
http://dx.doi.org/10.1088/0305-4470/11/6/019
http://arXiv.org/abs/1108.2615

