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Preface

In 1952, an unknown student from the Mechanical Technical High School in
Rzeszów, a provincial city, took first place (along with two other participants) in
the First Physics Olympiad — a prestigious contest organized by the Polish Physical
Society. Apart from the great splendor that befell this young student, the victory
allowed him to avoid mandatory (due to the regulations of that time) employment in
one of the local factories and opened the route for him to study at the University of
Warsaw. There, he quickly came under the guidance of outstanding theoreticians led
by Professor Leopold Infeld. This is how the successful scientific career of Professor
Iwo Białynicki-Birula began, as well as that of all his students and collaborators,
who for decades have been continuously drawing on his incredible intuition, bril-
liance, and kindness. Just as physics and the world have been changing over the past
70 years, the memories of his students who came under his mentorship are surely
diverse. However, what definitely unites them all is the belief in the incredibly pro-
found physical intuition of Our Professor, which he constantly expresses in one of
his most beloved sayings: Przyroda jest łaskawa (eng. Nature is kind). Indeed, strik-
ing is his readiness to undertake risky and sometimes slightly controversial research
directions. Who else, if not the Professor, would have dared to question the validity
of the widely used Feynman’s proof [1] or to construct a consistent formulation of
a nonlinear correction to, by definition linear, quantum mechanics [2, 3]? Only the
Professor and his wife, Professor Zofia Białynicka-Birula, could envision and later
prove that photons can undergo splitting in an external magnetic field [4] or that the
uncertainty principle, similar to that of massive particles, can also be formulated for
quanta of light [5, 6]. Once, for purely bureaucratic reasons, I asked the Professor
what I should put in the “scientific interests of the supervisor” section of a certain
form. Without hesitation and with full conviction he answered: Theoretical Physics.
Although quantum electrodynamics is his greatest passion, his horizons extend to
all corners of contemporary physics, where he always finds interesting questions that
are still awaiting answers.
On the occasion of Professor Iwo Białynicki-Birula’s 90th birthday, I invite ev-

eryone to read this special issue of Acta Physica Polonica A, in which his students,
collaborators, and friends publish scientific papers from their respective fields of ex-
pertise. The richness of the topics covered and references to the Professor’s scientific
activities once again demonstrate how versatile and respected a scientist he is.

Happy Birthday, Master!

Tomasz Sowiński

Guest Editor
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Here we develop an informal speculation, which is focused on the existence of fundamental scales for
measures of physical interest. In the present case, the scale of interest is the one for energy density,
or pressure, for which a fundamental scale is not commonly known. Currently, however, the results
being achieved in connection with high, and particularly extremely high, values of energy density are
of interest. These speculative remarks are submitted as a contribution to the celebration of a birthday
anniversary of Iwo Bialynicki-Birula and address the possibility that a search for the missing energy
density scale can conceal and/or reveal something of fundamental interest. This may be particularly
true, thinking of a search for such a scale, because a parallel example, a search of historical significance
for a new physical scale, can be cited. The present author has enjoyed knowing Professor Iwo Białynicki-
Birula, and thanks him for the continuing pleasure of communication and consultation, as well as for
a period of random occasions of table tennis warfare, and a close cooperation shared thirty years after
that, which is recalled here.

topics: fundamental physical scales, unit of largeness, unit of smallness, serendipity

1. Introduction

The cooperation mentioned in the Abstract was
enlivened by shared co-workers, notably including
a senior theorist working behind the gates of Liv-
ermore National Laboratory in California, mostly
closed to Polish scientists at the time, and an enthu-
siastic Ph.D. student who moved between Warsaw
and Rochester. One memorable challenge was to
fully understand the role that we guessed would be
played by our discovery [1, 2] of Lagrange points for
atomic electrons that are irradiated by microwave
fields. These fields were originally considered cir-
cularly polarized and later linearly polarized, able
to trap an atomic electron in very large quantum-
atomic orbits with stability previously unsuspected,
and conceptually a match for planetary orbits con-
trolled by Lagrange-point force balance.

Later experimental work [3] not only confirmed
the theoretical field-created orbits [4, 5], but was
able to produce quantum wave packets for electrons

in long-time stably transported and non-spreading
orbits, engaging principal quantum numbers larger
than n = 600, thus greatly exceeding previous
large-size records for stable non-spreading atomic
orbits [6].

With such a dramatically new situation under ex-
perimental control, one is attracted to begin Think-
ing Big in a fundamental but natural way. Tak-
ing the very large quasi-Rydberg orbits recorded in
Houston [3] as a starting example, one could think
to ask, how large is LARGE? This question would
have a ready answer if a fundamental scale of large-
ness were known. This introduces our central ques-
tion, namely what is the fundamental scale for large
size? Does such a fundamental limit exist to be con-
sulted? What do large physical size scales imply?
Do they indirectly suggest, or even define, an entire
domain of ultimate “largeness” in physics?

We will consider the possibility of ultimate large-
ness. We believe that search for an answer could
begin with commonly understood facts such as
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the following. Within the most recent half cen-
tury, cosmology has provided an unsuspected fron-
tier for physics, and cosmological largeness may
be a prominent characteristic. One knows that
blackbody radiation is a phenomenon that is truly
cosmic in scope, and relatively new. Since its dis-
covery it has been carefully observed and analyzed.
Much more recently than the discovery of cosmic
blackbody radiation, both dark matter and dark
energy have been accepted as newly-emerging phe-
nomena with cosmological scope. They are still
without universally agreed details of origin or ul-
timate consequence. Approaches to understanding
them have been proposed and are being explored
in a variety of ways. There is no fundamental scale
yet associated with them. Here we speculate that
a scale associated with their poorly defined large
extent is attractive to consider. This could even be
paired with direct attention to largeness in a domain
where largeness itself can be recognized as under the
current study. This is widely understood as the so-
named high energy density and pressure (HEDP)
domain of exceptionally high energy density and/or
pressure. There is already wide international coop-
eration engaged in aggressive attack on examples of
HEDP physics [7].

On elementary dimensional grounds, pressure is
the same as energy density and is well-suited as
an experimental measure. Large values of pres-
sure have been obtained in several ways. One way
has become sufficiently developed to be recognized
with the award of the Physics Nobel Prize. Gerard
Mourou and Donna Strickland won the Nobel Prize
for physics in 2018 with the invention of CPA lasing
(chirped-pulse amplification of lasing) in the Labo-
ratory for Laser Energetics (LLE) at the Univer-
sity of Rochester. This now allows laboratory deliv-
ery of high values of tightly focused electromagnetic
energy and has created a growing awareness of the
HEDP regime. It is now accepted as a regime for ex-
perimental entry, by terrestrial laboratories [7], into
studies of the highest energy densities and pressures
on Earth.

Coincidence should not be overlooked. It is an ob-
vious fact that large is the generic opposite to small
and is understood as a conventional marker term,
both scientifically and conversationally, for relative
size among any array of physical objects. More in-
triguing is this question, namely is it possible that
wide-ranging HEDP studies, perhaps reaching to-
ward extreme cosmic-scaled largeness, can lead to
disruptions of established physics at truly funda-
mental levels? Consequences of a scale for large-
ness, for great physical size, suggest attention to
the consequences that followed attention to its op-
posite earlier counterpart, as follows. One knows
that there was a centuries-long focus on smallness
just in the casual sense, i.e., the term “atom” was
widely familiar and used conversationally to mean
an object so small that its smallness was incompara-
ble. The modern epoch for the first meaningful use

of the word atom was the 1800’s, when the atom
acquired a specific scientific meaning that accom-
panied the striking scientific advances occurring in
chemistry. This happened by identifying as well as
naming different types or kinds of atoms as actual
objects. These were thought and taught as unbreak-
able and so were able to combine in fixed propor-
tions to make different composite compounds (i.e.,
molecules). For example, salt is a common com-
pound made of sodium and calcium atoms, but the
atoms were still objects unquantifiably small. This
use of “atom” for smallness did not yet mean that a
reliable scale for smallness existed.

A backward look can remind us how a scale
emerges. Measurement comes first. Fundamental
scales recognize measurable quantities having lim-
its. These scales serve to compare the values that
are obtained as a result of measurement. The speed
of light c is the fundamental value against which
all other speeds can be judged by comparison, and
the Compton wavelength provides the fundamental
quantum value for particles by which its observed
quantum momentum can be judged. No scale of fun-
damental origin is commonly accepted now as as-
sociated with energy density or pressure, especially
high pressure. In regard to this, there might be some
relevance in the way science did obtain a smallness
measure. By inventing the “history” of quantitative
smallness one can examine the question of whether
we are presently entering a zone of experimentation
that could unexpectedly, serendipitously quantify
“fundamental largeness” for the first time. It is fair
to say that HEDP work is now within an experimen-
tal regime that is “scalelessly high”. This recognizes
a goal to be approached, and concedes that no nat-
urally “fundamental” scale presently exists against
which to compare high HEDP pressures.

Discoveries of natural scales usually occur acci-
dentally, i.e., without deliberate intent. As men-
tioned, questions that in retrospect engaged the na-
ture of “fundamental smallness” were being asked
over many years (centuries) up to about 1890. In
those times, not every alchemist or chemist or physi-
cist was completely convinced that an “atom” was
an actual thing that existed even to be detected.
Thus “atom” served as a natural but not precisely
defined limit for the obvious concept of “smallness”.
There was no fundamental size that could be iden-
tified as the characteristic size or “typical’ size for
an atom, although different chemical elements were
gradually and widely conceded to be made of differ-
ent atoms and to have different small sizes. An inter-
esting early example of an approach to the measure-
ment of atomic (or molecular) size was a reported
observation of the size of molecules at Clapham
Pond in London in the 1750’s by the perennially
curious and carefully observant Benjamin Franklin
— the first American scientist. This is a topic, which
Franklin is known to have speculated on, because he
noted and reported the amazingly large area over
which a small quantity of oil could spread freely
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and very thinly on the surface of the pond water
and still remain an intact film. Later, Lord Rayleigh
improved Franklin’s observation. Quantitative esti-
mates based on knowledge of oil volume and pond
area then led Rayleigh to a value consistent with
an oil-molecule size of about 1 nanometer — 100
thousand times smaller than a human hair is wide.
This set an amazing new record-low value for direct
measurement of any small physical size. But this
gave rise to no fundamental scale for comparison,
but the story was continuing in England.

Soon afterward an astonishingly smaller value of
particle size was not directly measured but was con-
vincingly implied by the use of an entirely different
kind of observation. This was reported in 1913 by
the doctoral students Johannes Geiger and Ernest
Marsden working for Ernest Rutherford in Manch-
ester. Their laboratory experiments revealed the ex-
istence of a relatively and enormously very massive
and tiny nucleus (so-named by Rutherford) in an
empty space within gold atoms. It was about 5 ad-
ditional orders of magnitude smaller than Franklin’s
and Rayleigh’s work could provide, but still not ac-
companied by a fundamental scale unit.

What happened next? Actually not next, but
what had happened a bit earlier? In the half-
century before Rayleigh’s simple pond-side exper-
iment and 100 years after Franklin’s observations,
systematic measurements of another type with an
entirely different motivation in mind, having noth-
ing to do with particle sizes, were being carefully
made by large numbers of scientists working world-
wide. They were rapidly developing the new field of
atomic spectroscopy, making innovations and then
reporting results that we associate with such names
as Fraunhofer, Bunsen, Kirchhoff, Ritz, Rydberg,
Angstrom, Balmer and others. Values for different
frequencies of light emitted by atoms were steadily
accumulated, with mostly unsuccessful attempts to
correlate them. A combination of squares of small
integers extracted from the frequencies and pub-
lished by Balmer in 1885 was just one of many inex-
plicable correlations of frequency data. It paid for
all that experimental effort about 3 decades later
in 1913. As every physicist knows, Balmer’s nu-
merical formula from 1885 provided the amazingly
accurate numerical confirmation of Niels Bohr’s
new theory of hydrogen in 1913, which was based
on Rutherford’s “planetary” view of atomic elec-
trons but included angular momentum quantiza-
tion. From Bohr’s theory, a fundamental measure
of atomic smallness finally emerged as the “Bohr ra-
dius” a0 = ~2/(e2m). It serendipitously found both
the explanation for the vast array of previously un-
correlated wavelengths collected by spectroscopists,
as well as a new use for Max Plank’s constant h.
Thus, Bohr identified in fundamental terms what
“atomic size” really means for smallness. This was a
clear breakthrough. After that, atoms could be seen
as just well-coordinated assemblies of electrons, all
attracted by Coulomb’s law to Rutherford’s central

nucleus. However, the real mystery of atoms took 15
more years for it to be fully resolved. Entirely un-
expectedly, the final resolution for atoms was not
about atoms, but it used atoms to explore the first
consequences of a completely new and very unex-
pected wave, which turned out to be in complete
control of the electrons. That new wave is currently
taught to physics students and called quantum me-
chanics.

Now we can reflect again on the HEDP physics.
A natural question is whether its scale can be ex-
tracted and comprehended in a similar way. Maybe
so, with the right orientation. It also has a key miss-
ing factor needed for describing poorly understood
and emerging physical phenomena. The factor that
is missing is the unrecognized fact that cosmologic
distance is practically and fundamentally scale-less
today. Currently, it has an out-of-scale largeness
that is (inversely) similar to the out-of-scale small-
ness of atoms in 1900.

It is intriguing to push even further than the ex-
isting facts justify. One can imagine, without yet
having the necessary ideas in their proper order,
that LLE in Rochester and its cooperating part-
ner laboratories in the world [7] are already tak-
ing data that will be serendipitously relevant to
a Balmer-type first correlation of data, possibly to
be made in 2030–2060 (recall the 3 decades from
1885 to 1913) and predict a new phenomenon of
fundamental importance. Pushing harder, can one
imagine that the central 2060 phenomenon under-
lying the newly scaled largeness will be “dark en-
ergy”, playing a role similar to “atom” as the key
phenomenon that led toward the a0 smallness scale
in 1915? Some similarities suggest a positive an-
swer. Many physicists (weren’t then — aren’t now),
finally and fully convinced that existence of atoms
(then) and dark energy (now) is being treated ap-
propriately and fully accepted. Can HEDP experi-
ments turn out to be an opening wedge of innovative
studies of dark matter, and use the results to reveal
the existence of a fundamentally based “largeness”
scale for dark matter? While wildly speculative, this
would be an analog of previous worldwide cooper-
ative atomic spectroscopy and the Rutherford in-
vention of an atomic nucleus. The experiment in
Rutherford’s laboratory gave his visiting scientist
Bohr something to go home to Denmark with and
think about. Then Bohr theory [8] permanently uni-
fied our picture of atoms, showing where the scale of
atomic smallness comes from. Who will supply the
work, take the data, that sets a fundamental scale
for cosmo-galactic largeness?
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We implement a longstanding proposal by Weisskopf to apply virtual polarization corrections to the
in/out external fields in the study of the Euler–Heisenberg–Schwinger effective action. Our approach re-
quires distinguishing the electromagnetic and polarization fields based on mathematical tools developed
by Białynicki-Birula, originally for the Born–Infeld action. Our solution is expressed as a differential
equation where the one-loop effective action serves as input. As a first result of our approach, we recover
the higher order one-cut reducible loop diagrams discovered by Gies and Karbstein.

topics: Euler–Heisenberg–Schwinger (EHS), quantum electrodynamics (QED), non-perturbative vac-
uum structure, resummation methods

1. Introduction

Victor Weisskopf in 1936 [1, 2] suggested
and attempted to improve the derivation of the
Heisenberg–Euler effective action [3]; for further in-
sights, see later work by Schwinger [4] and the re-
view by Dunne [5]. Weisskopf considered that the
polarization of the vacuum should be “fortwährend”
(everlasting), and thus photons should contain
the polarization effects already present in a self-
consistent manner. In present-day language, the
class of diagrams he envisaged requires the sum-
mation of one-cut reducible loop diagrams, i.e.,
photons dressed by one-loop Euler–Heisenberg–
Schwinger (EHS) action. In this work, we present
a path to the solution of this problem and give
examples using constant homogeneous electromag-
netic (EM) fields.

At first, the reducible loop diagram contributions
to quantum electrodynamic (QED) effective action
were assumed to vanish in the infrared, i.e., constant
field limit. Ritus [6] claimed that as the photon mo-
mentum k → 0, the pertinent two-loop diagrams
vanish in view of the current ∝ k2. However, Gies
and Karbstein [7] discovered that the pole of the
virtual photon propagator (∝ 1/k2) perfectly can-
cels the vanishing current in the quasi-constant EM
field limit. This study of the nonvanishing two-loop

reducible diagram corrections to EHS effective ac-
tion was extended via further perturbative summa-
tion to higher order loops [8–10], to scalar [11] and
spinor propagators [12], and to a more general class
of field configurations [13].

In this work, we demonstrate the connection be-
tween the Weisskopf conjecture and these reducible
loop diagrams discovered in the present-day field-
theoretical context. We implement a classical po-
larization approach for summing the virtual photon
excitations in the infrared limit. By dressing the ex-
ternal field with polarization corrections at the start
of the derivation of EHS action, we recover the two-
loop result of Gies and Karbstein [7].

A key input into our nonperturbative solution is
a class of Legendre transforms of nonlinear EM ac-
tions formulated by Białynicki-Birula [14], allowing
to transform the nonlinear EHS action — a function
of EM fields L1(E ,B) — into an expression employ-
ing the superposable fields D,H. In this step, we can
insert polarization corrections to dress the external
fields. Lastly, we inverse the Legendre transform to
return to an effective action formulation in terms of
EM fields.

In Sect. 2, we develop an approach for implement-
ing Weisskopf’s proposal to improve the EHS re-
sult, based on polarization corrections to the exter-
nal fields. We implement the corrections in Sect. 3,
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using the Legendre transformed EHS action, and
apply our theoretical result to the case of pure elec-
tric fields. In Sect. 4, we recover the two-loop ef-
fective action of Gies and Karbstein. Extension to
higher order loop contributions is straightforward,
as we show with the three-loop action as an exam-
ple. We believe that our approach can be applied
to extend any one-loop effective action in the same
everlasting manner, including the case of special in-
terest, the strongly-interacting vacuum structure.

2. Implementing Weisskopf

2.1. Nonlinear EM action overview

We consider a general expression for EM effective
action in the infrared external field limit (photon
momentum k → 0)

LM+1(E ,B) =
E2 − B2

2
+ L1(E ,B), (1)

where subscript M+1 denotes the Maxwell plus one-
loop EHS contributions to the action. The EM fields
E ,B are generated by the 4-potential Aµ governing
the Lorentz force as Fµν = ∂µAν − ∂νAµ and are
related to the superposable fields D,H governing
Maxwell equations with sources as

D(E ,B) = ∂LM+1

∂E
= E + ∂L1

∂E
,

H(E ,B) = −∂LM+1

∂B
= B − ∂L1

∂B
.

(2)
The nonlinear response of the vacuum thus distin-
guishes E ,B from these superposable fields
E ≡ D(E ,B)− P(E ,B),

B ≡ H(E ,B) +M(E ,B),
(3)

where the polarization fields P,M render the EM
fields E ,B non-superposable. This distinction will
be necessary in order to implement Weisskopf’s pro-
posal to dress the externally applied EM fields.

All the relevant expressions for effective action
in terms of EM and superposable fields are shown
in Table I. The auxiliary quantity U is obtained
from L by Legendre transform, as we will describe
below.

2.2. Reconciling EM fields
with the everlasting vacuum

In Fig. 1, we show how Weisskopf’s extension of
QED-EHS action works in the context of in/out
states: in panel (a), a photon scatters off a finite-
sized polarizable material medium. The asymptotic
in/out states, i.e., the EM fields before and after
the interaction (black), are equivalent to the super-
posable fields (E = D,B = H). The screening by
the medium (red) occurs inside the material target,
with nonzero polarization fields P,M.

Fig. 1. EM fields interacting with (a) a finite-sized
material medium, (b) prior treatment of the pertur-
bative QED-EHS vacuum in the image of a scatter-
ing problem, (c) nonperturbative vacuum existing
at all times.

TABLE I

EHS action (first two rows) and the higher order one-
cut reducible loop action (last two rows); M+W refers
to Maxwell+Weisskopf action, with Maxwell being
the (E2 − B2)/2 and (D2 −H2)/2 contributions.

Lagrange form Auxiliary form
EHS L1(E ,B) U1(D,H)

Maxwell+EHS LM+1(E ,B) UM+1(D,H)

Dressed photons LW(E ,B) UW(D,H)

Maxwell+Dressed
photons

LM+W(E ,B) UM+W(D,H)

Following Weisskopf’s insight that the external
fields in EHS effective action see only one elec-
tron loop, we illustrate a perturbative EHS ana-
log to the material target scattering (Fig. 1a). The
EHS analog (Fig. 1b) comprises, in place of a mate-
rial target, the quantum vacuum structure spanning
a bounded spacetime domain sufficiently small that
each photon in the external field sees only a sin-
gle electron loop. Outside of this bounded region,
no virtual electron excitations are considered, thus
the asymptotic in/out external fields are approxi-
mated as E = D,B = H, i.e., without polarization
effects.

This perturbative approach is amended in Fig. 1c.
Since the vacuum structure exists at all times rather
than in a bounded spacetime domain, we cannot
distinguish the asymptotic in/out fields from the
fields interacting with the virtual electron pairs.
The polarization effects contained in fields P,M are
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TABLE II

Legendre transforms and derivative expressions relating electromagnetic and superposable fields, after [14].

Legendre transform Electric field Magnetic field
L(E ,B) = E · D − B · H − U D = ∂L/∂E H = −∂L/∂B

U(D,H) = E · D − B · H − L E = ∂U/∂D B = −∂U/∂H

always present, and thus E = D−P and B = H+M
throughout Fig. 1c. These are the dressed fields to
be implemented in the EHS action.

3. Derivation of effective action loop
summation via everlasting vacuum

properties

3.1. Legendre transform

We now show how to implement polarization field
P,M corrections into the externally applied fields
of EHS action. This cannot be done for the EHS ac-
tion L1(E ,B) directly due to the EM fields (see (3))
being non-superposable. Thus the first step is to
transform the LM+1(E ,B) into an auxiliary form
written in terms of superposable fields U1(D,H),
based on the Legendre transforms seen in Table II.

Carrying out the Legendre transform of the EM
action (1)

UM+1(D,H) = E(D,H) · D − B(D,H) · H

−LM+1(E(D,H),B(D,H)), (4)

where the EM fields

E(D,H) = ∂UM+1

∂D
,

B(D,H) = −∂UM+1

∂H
.

(5)

Separating the nonlinear contribution we define

UM+1(D,H) ≡
D2 −H2

2
+ U1(D,H), (6)

distinguishing the contribution to the action, in
terms of D,H, arising from the virtual electron
interaction. Note that U1(D,H) and L1(E ,B) are
not the same expressions, since the superposable
fields take on a different functional dependence than
non-superposable EM fields. Determining U1 re-
quires solving an implicit differential equation as
defined in (4) and (5). An analytic solution is
available for the special case of the Born–Infeld
action [14–16].

3.2. Polarization corrections

Only in this auxiliary form of EHS effective ac-
tion, using superposable D,H fields, can the asymp-
totic in/out fields be corrected to account for

everlasting polarization fields. Where D,H appear
in the nonlinear part of EM action U1(D,H) in (6),
we take
D → D −P(D,H) = E(D,H), (7)

and similarly for the magnetic field
H → H+M(D,H) = B(D,H), (8)

thereby dressing the asymptotically defined EM
field that any single electron loop is exposed to.
The polarization fields P,M introduce the one-cut
reducible loop sum UW(D,H), defined as

UW(D,H) ≡ U1(D − P,H+M). (9)

Including the Maxwell term and plugging in (6)
and (3), we obtain

UM+W(D,H) ≡ D
2−H2

2
− E

2(D,H)−B2(D,H)
2

+UM+1(E(D,H),B(D,H)), (10)

where UM+1(E ,B) follows from (4), with the re-
placements D → E(D,H) and B → B(D,H).

3.3. Inverse Legendre transform

As a final step, we inverse Legendre trans-
form (10) to return to the effective action formu-
lation as a function of EM fields E ,B. Using the
transform from Table II,
LM+W(E ,B) ≡ E · D(E ,B)− B · H(E ,B)

−UM+W(D(E ,B),H(E ,B)) =

E · D(E ,B)− B · H(E ,B) + E
2−B2

2

−D
2(E ,B)−H2(E ,B)

2
− UM+1(E ,B), (11)

where now the derivative identities

D(E ,B) = ∂LM+W(E ,B)
∂E

,

H(E ,B) = −∂LM+W(E ,B)
∂B

.
(12)

Separating the Maxwell contribution from the
nonlinear vacuum contribution, we define

LW(E ,B) ≡ LM+W(E ,B)− E
2 − B2

2
. (13)

Combining (11)–(13), we now have at our disposal
a differential equation requiring input EHS, which,
when solved, creates the effective action for the
summed reducible loop diagrams.
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3.4. Summary and generalized form

To summarize, we build upon the one-loop effec-
tive action LM+1(E ,B) in (1) by applying:

• Legendre transform

UM+1(D,H) =
D2 −H2

2
+ U1(D,H), (14)

• Polarization corrections

UM+W(D,H) = D
2 −H2

2
+ U1(D − P,H+M),

(15)

• Inverse Legendre transform

LM+W(E ,B) = E
2 − B2

2
+ LW(E ,B). (16)

4. Perturbative series for α = 1/137

As an illustrative example, we consider the pure
electric field case to study the two-loop action of
Gies and Karbstein [7]. Taking B → 0, (11) becomes
then

LM+W(E) = E · D(E) + E
2

2
− D

2(E)
2
− UM+1(E).

(17)

We evaluate (17) by applying a perturbative loop
expansion.

We first write the EHS Lagrangian dependence
in (17) explicitly using the Legendre transform (4)

LM+W(E) = E · D(E)− D
2

2
− ∂UM+1(E)

∂E
· E

+
1

2

(∂UM+1(E)
∂E

)2
+ L1

(∂UM+1(E)
∂E

)
+
E2

2
.

(18)
We take the case of small polarization corrections
to the externally applied EM field
|D − E|
|E|

� 1. (19)

Under condition (19), the leading one-loop EHS
contribution dominates the higher order loop ef-
fects. The perturbative summation of reducible di-
agrams to `-loop order can be written as

lim
|D−E|
|E| �1

LM+W(E) ≡ LM+1(E) +
∞∑
`=2

L`(E),

(20)
where the one-loop EHS contribution is included in
LM+1(E), followed by summation over the two-loop
and higher orders.

To determine the form of loop corrections L`(E)
in (20), we take the small polarization limit of the
auxiliary function UM+1 defined in (4) and differen-
tiate with respect to E to obtain

lim
|D−E|
|E| �1

∂UM+1(E)
∂E

= E − ∂L1(E)
∂E

. (21)

Similarly for the superposable field D,

lim
|D−E|
|E| �1

D(E) = E + ∂L1(E)
∂E

. (22)

Plugging (21) and (22) into (18),

lim
|D−E|
|E| �1

LM+W(E) = E
2

2
+ L1

(
E − ∂L1(E)

∂E

)
.

(23)
Note that (23) shows the iterative structure of the
effective action describing the higher order loop
summation. Expanding in powers of L1

L2(E) = −
(∂L1(E)

∂E

)2
, (24)

the two-loop of Gies and Karbstein (see (32) of [7]).
The original result in [7] contains both E and B
contributions, expressed using derivatives with re-
spect to the EM field tensor L2 = 1

2 (∂L1/∂F
µν)2 =

(∂L1/∂B)2 − (∂L1/∂E)2, which reduces to (24) in
the pure E limit.

To obtain the three-loop contribution, we iterate
the two-loop (24) into (23) as a complement to L1

appearing in the polarization correction ∂L1(E)/∂E .
Expanding again in powers of L1, this time to third
order,

L3(E) =
5

2

∂2L1(E)
∂E2

(∂L1(E)
∂E

)2
. (25)

This perturbative higher order loop summation pro-
cedure can be carried out ad infinitum as in [9],
with the replacement B → − iE to recast Karb-
stein’s original summation for B fields in terms of E
fields.

5. Conclusions

We have implemented Weisskopf’s proposal [1, 2]
to dress the external EM fields in EHS effective ac-
tion with polarization corrections. This shows that
the one-cut reducible QED loop diagram summa-
tion of Gies and Karbstein [7–9] was indeed foretold
in the work of Weisskopf. We developed a gener-
alized approach to summing such diagrams, which
can be applied to any nonlinear EM theory, with
a one-loop effective action as input and in princi-
ple carried to higher order in coupling constant as
we have demonstrated evaluating the next-to-next
order correction.

It is important to note that we include only the
one-cut reducible loop diagram contributions to ef-
fective action. A full summation includes: higher
order cut reducible diagrams and internal photon
line (irreducible) loops producing, e.g., anomalous
magnetic moment and field-dependent mass. Irre-
ducible contributions to the action in constant fields
are well-known to two-loop order [6], and a subset
of such diagrams comprising vertex corrections en-
closing a single external line — to all orders [17].
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Rather than the conventional in/out method
for computing effective action, which treats the
structured vacuum as bounded in spacetime akin
to a finite-sized material target, our approach
takes into account an everlasting vacuum struc-
ture spanning all spacetime. Finally, we remark
that this work complements in the “opposite” di-
rection the insight by Białynicki-Birula, Rudnicki,
and Wienczek [18] that the finite time duration of
external fields regularizes the essential singularity
seen in (the imaginary part of) the one-loop EHS
result in the limit of weak electrical fields.

The analytical properties of the one-loop action
resurface in the higher loops as a striking interplay
between real and imaginary (containing the essen-
tial singularity) parts of the effective action, and
between reducible and irreducible diagram contri-
butions. Strong field asymptotics need further ex-
ploration as they are highly nontrivial, depending
on which EM field invariant dominates the exter-
nal EM fields ((E2 −B2)/2 versus the pseudoscalar
E · B).

To conclude, we have improved the formulation
of effective action in the presence of an everlast-
ing vacuum structure. Our result connects Weis-
skopf’s conjectured extension of EHS effective ac-
tion to Gies and Karbstein’s discovered higher order
reducible loop diagrams.
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Vortex pattern formation in the electron–positron pair creation from a vacuum by a time-dependent
electric field of linear polarization is analyzed. It is demonstrated that in such a scenario the momentum
distributions of the created particles exhibit vortex–antivortex pairs. Their sensitivity to the laser field
parameters, such as field frequency and intensity, is also studied. Specifically, it is shown that with
increasing field frequency across a threshold, additional vortex–antivortex pairs appear. Their location
in the momentum space is consistent with the general threshold behavior of the probability distributions
of the created electrons (positrons). Namely, while for small field frequencies the particles tend to be
created along the field polarization direction, for large enough frequencies, they are predominantly
generated in the perpendicular direction. Such a change in the longitudinal and transverse momentum
sharing of the created particles occurs across a threshold.

topics: electron–positron pair creation, vortices, threshold effects, Dirac–Heisenberg–Wigner formalism

1. Introduction

The nonlinear response of the quantum vacuum
to macroscopic electromagnetic fields, leading to the
creation of electron–positron (e−e+) pairs, has been
predicted by Sauter [1], Heisenberg and Euler [2],
and Schwinger [3]. Since then, various authors have
made significant contributions to our current under-
standing of this process, which we will refer to as the
Sauter–Schwinger process. Specifically, Białynicki-
Birula, Górnicki and Rafelski have established
a new framework for treating the quantum vacuum
in electromagnetic fields [4] (see also [5, 6] and the
Ph.D. thesis of Ł. Rudnicki [7]). This is by means
of what they called the Dirac–Heisenberg–Wigner
(DHW) function, which describes the e−e+ densi-
ties in phase space. Later on, the method was largely
explored for the case of spatially homogeneous elec-
tric fields (see, e.g., [8–16]). For instance, the quan-
tum kinetic approach was recovered in that case [8]
and various analytical results for exactly solvable
fields were derived [8–10]. Recently, the spontaneous
formation of time-crystal structures in the e−e+

pair creation was discovered by Białynicki-Birula
and Białynicka-Birula in [16]. Other applications of
the DHW formalism in the context of pair creation
concern the case of parallel spatially homogeneous
electric and magnetic fields [17], the standing elec-
tric wave [18–21], and inhomogeneous electric and
magnetic fields in one spatial direction [22–24]. The
latter limitation follows entirely from the perform-
ing capabilities of current computers, as the DHW
method is very general and can be used in arbitrary
dimensions. It is also important to emphasize that
the DHW method is not limited to describing pair
creation from a vacuum. For instance, it was ar-
gued that DHW is very useful for practical plasma
applications such as studies of Langmuir waves in
high-density plasma [25].

Another area of research to which Professor
I. Białynicki-Birula contributed largely is related to
quantum vortices. It follows from the hydrodynam-
ical formulation of quantum mechanics that a prob-
ability fluid can inherently possess vortices [26].
They are defined as phase singularities of the wave
function and their strength is measured in terms
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of the topological charge [26–28]. As was discussed
in [27, 28], vortices form isolated lines that either
emerge from a single point forming a closed loop,
or can be created as a pair of lines with opposite
topological charges. These mechanisms of creation
and subsequent annihilation of vortex–antivortex
pairs were confirmed recently in a series of papers
focused on vortex structures in strong-field ioniza-
tion [29–33]. Specifically, it was demonstrated that
vortex structures are very sensitive to the laser field
parameters, so they can be easily steered by the
field. While the aforementioned papers deal with
quantum vortices in nonrelativistic quantum me-
chanics, their notion can also be extended to rela-
tivistic quantum theory, as proposed by Białynicki-
Birula and Białynicka-Birula in [34]. See also, the
construction of knotted vortex states, or hopfion-
like states in relativistic quantum mechanics [35] by
the same authors.

Note that the creation and ionization of
an electron–positron pair are formally similar since
they are both threshold-related phenomena that
can be driven by external dynamically changing
fields. For this reason, one might expect similar
effects to be exhibited in both processes. Keeping
this in mind, in the current paper we investigate
whether vortex structures similar to [29–33] can
be observed in the probability amplitude of e−e+
pair creation in the presence of a linearly polarized
time-dependent electric field. Our emphasis will be
on the threshold behavior of those patterns, which
can be studied, for instance, by changing the fre-
quency of the driving field. As we will show, this is
in agreement with the longitudinal and transverse

momentum sharing of the created particles across
the threshold, which has been studied in [36]. At
this point, we would like to mention that other
structures, known as spiral vortex patterns, were
found in strong-field ionization [37, 38] and later in
pair production [14, 15] for certain combinations of
circularly polarized electric field pulses. However, as
demonstrated in [31], in the case of ionization such
spirals in the momentum distributions of photoelec-
trons do not necessarily carry a nonzero topological
charge, which distinguishes them from vortices an-
alyzed in [29–33]. The same is expected to hold for
pair creation.

Our paper is organized as follows. Based on the
original derivation presented in [4], we introduce the
DHW formalism in Sect. 2. The bispinorial decom-
position of the DHW-function for a spatially homo-
geneous electric field is presented in Sect. 3, and the
final equations for a linear polarization are given in
Sect. 4. Section 5 is devoted to the vortex patterns
in the creation of e−e+ pairs and their sensitivity
to external field parameters, especially when pass-
ing across a threshold. Another threshold-related ef-
fect is discussed in Sect. 6, where we demonstrate
how particle momentum is redistributed across the
threshold of pair creation. Our final remarks are
given in Sect. 7.

2. The DHW-function for fermion field

The DHW-function for the fermion field is defined
as [4]

Wαβ(x,p, t) = −
1

2

∫
d3s e− ip·s

〈
0
∣∣∣ U(s,x, t) [Ψα(x+ s/2, t),Ψ †β(x− s/2, t)

]∣∣∣0〉, (1)

where the factor U(s,x, t) contains line integral of
the vector potential in temporal gauge A0 = 0,

U(s,x, t) = exp

− ie

1/2∫
−1/2

dξ s ·A
(
x+ ξs, t

) ,
(2)

and assures gauge invariance of the DHW-function,
whereas Ψα, Ψβ are the fermion field operators in
the Heisenberg picture. We use here the version of
the DHW-function with the vacuum expectation
value [8]; in general, however, any pure or mixed
state can be used [4]. The DHW-function is a 4× 4
Hermitian matrix and as such can be decomposed
in terms of 16 Hermitian matrices Γa with real co-
efficients depending generally on x, p and time t.
Matrices Γa (a = 0, 1, 2, . . . , 15) can be constructed
as Kronecker products of two sets of Pauli ma-
trices (including the identity matrix), (I2, ρj) and
(I2, σj) [4]. The correspondence is as follows

Γ0 = I4, Γj = ρj ⊗ I2,
Γj+3 = I2 ⊗ σj , Γj+6 = ρ1 ⊗ σj ,
Γj+9 = ρ2 ⊗ σj , Γj+12 = ρ3 ⊗ σj ,

(3)

where index j = 1, 2, 3. In terms of standard
γ-matrices,

Γ0 = I4, Γ1 = γ5, Γ2 = − iγ0γ5,

Γ3 = γ0, Γj+3 = Σ j , Γj+6 = αj ,

Γj+9 = − iγj , Γj+12 = γ0Σ j ,
(4)

where γ5 = iγ0γ1γ2γ3, and Σ j = γ5αj are the 4×4
spin matrices. With the use of (4) expansion of the
DHW-function can be written in the form [4]

W (x,p, t) =
1

4

(
f0 + γ5f1 − iγ0γ5f2 + γ0f3

+Σ · g0 +α · g1 − iγ · g2 + γ0Σ · g3
)
. (5)

The dimensionless expansion coefficients are the
same as f0, f1, f2, f3 and g0, g1, g2, g3 used in [4].
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The equations fulfilled by the expansion coeffi-
cients can be found by calculating their time deriva-
tives using the Dirac equation for the fermion field
operators. In deriving these equations one usu-
ally adopts the Hartree-, or mean electromagnetic
field-approximation, neglecting its quantum fluc-
tuations [4, 8]. This is equivalent to the replace-
ments 〈0| F̂µν(x, t)U(s,x, t)[Ψ(x1, t),Ψ

†(x2, t)] |0〉
→ Fµν(x, t)

〈
0
∣∣U(s,x, t)[Ψ(x1, t),Ψ

†(x2, t)
] ∣∣0〉,

i.e., the operator of the quantum electromagnetic
field is replaced by classical C-number field. The
application of the Dirac equation for the fermion
field operators in the general case of the space-
and time-dependent electromagnetic field results in
a complicated system of 16 integro-differential equa-
tions for the expansion coefficients of the DHW-
function. These equations significantly simplify in
the case of a spatially homogeneous electric field,
which is the subject of main interest in the present
paper. The initial conditions are determined by
the free vacuum value of the DHW-function. It
follows then from (1) with zero electromagnetic
field and free Dirac field operators that only the
coefficients f3 and g1 survive, and their vacuum
values are

fvac3 = −2mc2

Ep
, gvac1 = −2cp

Ep
, (6)

where Ep =
√
c2p2 +m2c4 is the free particle en-

ergy. In the case of a spatially homogeneous electric
field, only the coefficients g0 and g2 couple to the
vacuum values (6), so that it is sufficient to con-
sider the 10 equations for f3, g0, g1, g2. They have
the form [9, 10](

∂t + eE(t) · ∇p

)
W (p, t) =

c

~
M(p)W (p, t),

(7)
where W denotes the 10-dimensional vector

W = [f3, g0, g1, g2], (8)
and the 10 × 10 matrix M has the following block
structure

M(p) =


0 0T 0T 2pT

0 O3 2p× O3

0 2p× O3 −2mc I3
−2p O3 2mc I3 O3

 , (9)

where 0 and p are the 3-dimensional null and mo-
mentum column vectors, O3 — 3 × 3 null matrix,
and I3 is the 3-dimensional identity matrix. The
notation p× means that when acting on the 3-
dimensional vector to the right, it gives its vector
product with p. Explicitly,

p× =

 0 −p3 p2
p3 0 −p1
−p2 p1 0

 . (10)

In closing this section, we note that the physical
interpretation of the DHW-functions can be found
in [4]. In particular, the phase space energy density
is given by [4, 11],
ε(t, r,p) = cp · g1(t, r,p) +mc2f3(t, r,p). (11)

The one particle distribution function, which will be
used in Sect. 5 for numerical analysis of momentum
distributions, is defined as [11]

f(t, r,p) =
ε(t, r,p)− εvac

2Ep
=
ε(t, r,p)

2Ep
+ 1,

(12)
where εvac was expressed by vacuum DHW-
functions (6). It is also worth noting that the DHW
formalism is very general, as it allows one to account
for an arbitrary electromagnetic field. However, for
a spatially homogeneous electric field, other ap-
proaches can be conveniently applied; one of which
is developed next.

3. Bispinorial representation
of the DHW-functions for spatially

homogeneous electric field

We consider the Dirac equation in the spatially
homogeneous electric field E(t) = −∂tA(t), with
the vector potential vanishing both for t → −∞
and t → ∞. Due to the translational invariance of
the problem, the spatial dependence of the wave
function is of the plane wave type,

Ψ(t,x) = exp

(
i

~
p · x

)
Φp r(t), (13)

where the time-dependent bispinor Φp r(t) is labeled
by the asymptotic momentum p and the spin in-
dex r. It fulfills the equation

i~ ∂tΦpr(t) = HD(t)Φp r(t), (14)
where the time-dependent Hamiltonian reads

HD(t) = cα ·
(
p− eA(t)

)
+ γ0mc2. (15)

To make contact with the DHW-functions,
we construct 16 expressions bilinear in the
bispinor Φpr(t)

Sa(p, t) =
∑
r

Φ†pr(t)ΓaΦpr(t). (16)

Using the Dirac equation (14) and its Hermitian
conjugate, one finds equations fulfilled by the func-
tions Sa,

∂tSa =
i

~
∑
r

Φ†pr
[
HD(t), Γa

]
Φpr. (17)

The Dirac Hamiltonian HD(t) can be written in
terms of the Γ -matrices as

HD(t) = cΓj+6

(
pj − eAj(t)

)
+mc2Γ3, (18)

where the summation convention for the Cartesian
index j is used. The Γ matrices fulfill commutation
relations

[Γa, Γb] = i

15∑
c=0

f cab Γc, (19)

where f cab are the real structure constants of the al-
gebra of Γ matrices. Substituting (18) into (17) and
using (19) gives

∂tSa = − c
~
(pj−eAj)

15∑
b=0

f bj+6,aSb−
mc2

~

15∑
b=0

f b3a Sb.

(20)
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The nonvanishing structure constants are (indices
i, j, k take the values 1, 2, 3)
fkij = 2εijk,

f i+12
1,i+9 = 2, f i+9

1,i+12 = −2, f i+12
2,i+6 = −2,

f i+6
2,i+12 = 2, f i+9

3,i+6 = 2, f i+6
3,i+9 = −2,

fk+3
i+3,j+3=f

k+3
i+6,j+6 = fk+3

i+9,j+9 = fk+3
i+12,j+12=2εijk,

fk+6
i+3,j+6=f

k+9
i+3,j+9 = fk+12

i+3,j+12 = 2εijk,

f1i+9,j+12=2δij , f
2
i+6,j+12 = −2δij , f3i+6,j+9=2δij ,

(21)
plus the structure constants obtained from the anti-
symmetry relation fac,b = −fab,c. It is now straight-
forward, though a little tedious, to derive 16 equa-
tions fulfilled by the functions Sa, i.e.,

∂tS0 = 0,

∂tS1 = −2mc
2

~ S2,

∂tS2 = −2 c~ (p
j − eAj)Sj+12 + 2mc

2

~ S1,

∂tS3 = 2 c~ (p
j − eAj)Sj+9,

∂tSk+3 = 2 c~εkjl(p
j − eAj)Sl+6,

∂tSk+6 = 2 c~εkjl(p
j − eAj)Sl+3 − 2mc

2

~ Sk+9,

∂tSk+9 = −2 c~ (p
k − eAk)S3 + 2mc

2

~ Sk+6,

∂tSk+12 = 2 c~ (p
k − eAk)S2.

(22)
Note that the equations containing the 6 functions
S0, S1, S2, S13, S14, S15 do not couple to remaining
ten equations for S3, S4, S5, S6, S7, S8, S9, S10,
S11, S12. Denoting

S3 = h3, (S4, S5, S6) = h0,

(S7, S8, S9) = h1, (S10, S11, S12) = h2,
(23)

we see that (22) for ten-dimensional vector
V = [h3, h0, h1, h2] can be written in the matrix
form as

∂tV =
c

~
M
(
p(t)

)
V, (24)

where
p(t) = p− eA(t), (25)

and the matrix M is given by (9). The same sys-
tem of ordinary differential equations follows from
(7) after applying the method of characteristics to
first-order partial differential equations [4, 8, 10, 11].
Therefore the two vectors W and V obey the same
system of ordinary differential equations. In order
to identify fully V and W one needs to show that
they fulfill also the same initial conditions, which
for W are given by (6) and gvac0 = 0 = gvac2 .

The Dirac wave function pertaining to the pair
creation process should fulfill the Feynman bound-
ary conditions: (i) for t → −∞ it contains only so-
lutions of the free Dirac equation with negative en-
ergy, (ii) for t → ∞ it is a combination of positive
and negative energy parts with a negative energy
contribution equal to the wave function of the cre-
ated positron. An extensive discussion of the bound-
ary conditions fulfilled by solutions of the Dirac
equation in a classical electromagnetic field can be
found in [39]. It can also be shown that the Feynman
boundary conditions are “forced” by LSZ-reduction
formulae for the S-matrix element of pair creation.
For t→ −∞, we have therefore

Φps(t) = exp

(
i

~
Ept

)
w

(−)
−ps. (26)

Substituting (26) into (16) with the bispinors nor-
malized to unity, one can show that the coeffi-
cients (23) fulfill the following initial conditions for
t→ −∞

h0
0 = 0 = h0

2, h03 = −2mc2

Ep
, h0

1 = −2cp

Ep
, (27)

corresponding exactly to vacuum initial conditions
for the vector W .

The bispinorial approach to the dynamic Sauter–
Schwinger pair production by a spatially homoge-
neous electric field has been developed in this sec-
tion. Importantly, the approach has been proven to
be equivalent to the DHW formalism described in
Sect. 2. And, like the DHW method, it has an ad-
vantage over other approaches. Specifically, it al-
lows the treatment of an arbitrarily polarized time-
dependent electric field. Having said that, we turn
to the case of linear polarization, for which other
well-established theories exist and can be tested
against (see, for instance, [40, 41] and references
therein).

4. Linearly polarized field and analogy
with two level atom

In general, the vector W (or, equivalently V ) can
be expressed as a combination of ten orthonormal
basis vectors Ea

W = −2
10∑
a=1

uaEa. (28)

With the choice of − 1
2W

vac as one of the basis el-
ements, one can show that for a linearly polarized
field A(t) = A(t)n, three vectors

E1 =
c

Epε⊥


−mc2(n · p)

0
E2

pn

c
− c(n · p)p
0

 , E2 =
c

ε⊥


0

p× n
0

mcn

 , E3 =
1

Ep


mc2

0

cp

0

 , (29)
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form a set closed under the action of n · ∇p and
M in (7), where ε⊥=

√
c2p2⊥ +m2c4. Note that

E3 = − 1
2W

vac. Choosing n in the z-direction
(n = e3) we have
∂

∂p3
E1=−

c ε⊥
E2

p

E3,
∂

∂p3
E2=0,

∂

∂p3
E3=

c ε⊥
E2

p

E1,

ME1=
2Ep

c
E3, ME2=−

2Ep

c
E1, ME3=0.

(30)
Solution of (7) can be expressed as

W (p, t) = −2
3∑
a=1

ua(p, t)Ea
(
p(t)

)
. (31)

Substituting (31) to (24) and denoting
[ u1, u2, u3 ] = u, we obtain the precession-
type equation for u

∂tu = a× u, (32)
with the vector a given by
a = [0, −2Ωp(t), 2ωp(t)], (33)

where

ωp(t) =
Ep(t)

~
=

1

~

√
c2p2⊥+c

2
[
p3−eA(t)

]2
+m2c4,

Ωp(t) =
c e ε⊥E(t)
2E2

p(t)

,

(34)

and where the temporal dependence of the electric
field is given by E(t) = −Ȧ(t). Note that the initial
condition for u has the form uvac = [0, 0, 1].

Three equations resulting from (32) can be re-
duced to a system of two equations by expressing u
in the form of a spinorial decomposition, analogous
to that used in [9, 10], i.e.,
u = χ†σχ, (35)

where χ is the two-component spinor and σ are the
Pauli matrices. Substitution of (35) to (32) leads to
the equation for χ which has the same structure as
the Schrödinger equation describing the time evo-
lution of a two-level atom. This equation has been
derived in the context of pair-creation by a differ-
ent method earlier (see, e.g., [9, 40] and references
therein),

i∂t

[
c
(1)
p (t)

c
(2)
p (t)

]
=

[
ωp(t) iΩp(t)

− iΩp(t) −ωp(t)

][
c
(1)
p (t)

c
(2)
p (t)

]
,

(36)
where c(1)p (t) and c(2)p (t) are, respectively, upper and
lower components of χ. Initial conditions read

c(1)p |t→−∞ = 1, c(2)p |t→−∞ = 0. (37)

The third component of u is equal to |c(1)p |2−|c(2)p |2
and for a two-level atom corresponds to “popu-
lation inversion” (with opposite sign). Before the
action of the electric field u3 = 1, which corre-
sponds to the vacuum state with no pairs. Dur-
ing the action of the electric field, e+e− pairs are
created so that |c(1)p |2 < 1 and |c(2)p |2 > 0 with
|c(1)p (t)|2 + |c(2)p (t)|2 = 1. Hence, |c(2)p |2 for t → ∞

can be interpreted as the momentum distribution
of the created fermionic pairs, f(p) (see (12)). Ex-
plicitly,

f(p) = 1− u3 = 2
∣∣c(2)p

∣∣2. (38)

Let us note in closing this section that the system of
equations similar to (38) can be derived for bosons
by applying other, than those based on the Wigner
formalism, methods of QED (see, e.g., [41] and ref-
erences therein). However, in this case, the time-
evolution is pseudounitary.

From now on, we use units where ~ = 1. More-
over, m and e will refer to the electron rest mass
and charge, respectively.

5. Threshold effects and vortices

In our further investigations we choose an electric
field E(t) such that

E(t) =

 E0 sin
4
(

1
2N φ

)
cos(φ), φ ∈ [0, 2πN ],

0, φ /∈ [0, 2πN ],

(39)
where φ = ωt and N = 3. The integer N determines
the number of cycles within the electric field pulse,
and for N > 3 the condition

∞∫
−∞

dt E(t) = 0 (40)

is satisfied. Due to this property, the vector poten-
tial function,

A(t) = −
t∫

−∞

dτ E(τ), (41)

can be chosen such that it vanishes both in the re-
mote past and in the far future

lim
t→±∞

A(t) = 0. (42)

The shapes of both functions for E0 = 0.1ES
and ω = mc2 are presented in Fig. 1, where
ES = m2c3/|e| is the Sauter–Schwinger electric field
strength [1, 3, 42]. For the electron momentum
vector, we will separate its parallel and perpendic-
ular components as measured with respect to the
direction of the electric field oscillations e3 such
that p = p⊥e⊥ + p‖e3, where e⊥ is the unit vector
perpendicular to e3.

As was mentioned in Sect. 1, the process of creat-
ing electron–positron pairs in QED has many analo-
gies with the ionization of atoms, in which the role
of the time-dependent electric field is played by
a strong laser pulse in the dipole approximation.
In this case, the concept of photons is commonly
used as quanta of energy absorbed or emitted by
the system. One can then talk about multiphoton
ionization and the energy threshold for that process.
Moreover, such a threshold is dynamically increased
as the electric field becomes stronger, which leads
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Fig. 1. (a) Time-dependent electric field strength
E(t) for E0 = 0.1ES and N = 3, as defined by (39),
and (b) the corresponding vector potential function
A(t). Contrary to the electric field, the amplitude
of the vector potential depends on the frequency ω.

to the so-called threshold effects and channel clos-
ing in ionization [43]. It turns out that in the case of
the dynamic Sauter–Schwinger process this heuris-
tic picture can also be applied in order to describe
qualitative changes in the momentum distributions
of the created particles (for instance, as in the co-
herent energy combs studied in [40, 44]). This can
be done even for the very short pulses considered
here.

Another interesting effect, which appears as a re-
sult of the interaction of the time-dependent elec-
tric field with the QED vacuum, is the creation or
annihilation of vortex lines in the electron momen-
tum distributions. The properties of vortex lines
and their entanglement were thoroughly analyzed
in [27, 28]. In both photoionization and photode-
tachment, the creation and annihilation of vor-
tex lines were studied for linearly [30] and circu-
larly [29, 31–33] polarized fields. It was shown how
the time-reversal symmetry of the laser pulse leads
to the annihilation of vortex–antivortex pairs and
the creation of spirals in the momentum distribu-
tions [33]. Note that such spirals have been pre-
dicted theoretically in [37] and confirmed experi-
mentally in [38]. Moreover, the application of the
DHW-function formalism allowed one to show that
similar spiral structures also appear in the pair cre-
ation by a train of two circularly polarized elec-
tric field pulses of an opposite helicity [14, 15].

Therefore, the question arises: Can vortices be ex-
pected in the momentum distributions of the cre-
ated pairs for linearly polarized electric field pulses?

To address this question, in Fig. 2 we present
the momentum distributions of electrons created
by a linearly polarized electric field pulse of dif-
ferent frequencies, which were selected close to the
“two-photon” threshold of pair creation. For ω =
0.99mc2 (i.e., just before opening the “two-photon”
channel), we observe two singular points for which
the amplitude c(2)p vanishes, and the phase arg[c

(2)
p ]

cannot be uniquely defined. Because of the axial
symmetry of the problem, it can be concluded that
these two points belong to the same vortex line. In
the current case, the latter is represented by a circle
in three-dimensional momentum space. In fact, one
can even define the orientation of this closed line
by exploiting analogies with a circuit along which
an electric current flows and generates, according
to Amperé’s law, the vortex-type magnetic field. To
this end, let us define the “magnetic field” B(p) such
that
B(p) = ∇p

(
arg
[
c(2)p

])
. (43)

Its circulation around the singular point is ±2π,
hence the “electric current” becomes I = ±2π if we
put the magnetic permeability µ0 = 1. In particu-
lar, for ω = 0.99mc2 (Fig. 2a), we have ‘−’ for (p‖ =
0, p⊥ > 0) and the current flows behind the plane,
whereas for (p‖ = 0, p⊥ < 0) we have ‘+’ and the
current flows towards the reader. Thus the orienta-
tion of the vortex line can be uniquely attributed
to the direction of the “electric current”. As the fre-
quency ω increases, we observe the appearance of
a new vortex line. The case of ω = mc2 (which
is the threshold frequency for the two-photon pair
creation) corresponds to a transition in which, for
p = 0, the radius of the new vortex circle is close
to zero (Fig. 2b and e). After exceeding this value
(the case of ω = 1.01mc2 in Fig. 2c and f), the
second circular vortex line appears, with an orien-
tation opposite to the previous one (panels (d–f)).
While increasing the frequency ω, the radii of both
circular vortex lines also grow. This, in turn, results
in the merging of the two well-defined lobes of high
probability into a single structure, the maximum of
which is found at zero momentum. This situation is
discussed in Sect. 6.

In Fig. 3 we demonstrate the same phenomenon,
but for a larger amplitude of the electric field. The
only significant difference is that now the thresh-
old frequency for the two-photon pair creation is
shifted upwards and its value is between 1.1mc2

(one vortex line) and 1.2mc2 (two vortex lines).
A plausible interpretation of this fact can be based
on analogies with multiphoton ionization, in which,
for a larger intensity of the electromagnetic field,
the so-called ponderomotive shift of the threshold
energy is observed [43]. Similar effects, but in the
context of photodetachment by circularly polarized
laser pulses, were discussed in [32].
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Fig. 2. Momentum distributions of electrons created from the QED vacuum by the electric field illustrated
in Fig. 1. In panels (a–c), the distributions |c(2)p |1/2 (the power 1/2 is chosen for visual purposes) are presented
for three chosen frequencies ω (equivalent to photon energies). In panels (d–f), the corresponding phases of
c
(2)
p are demonstrated.

Fig. 3. The same description as in Fig. 2, but for larger electric field amplitude E0 = 0.5ES and larger
frequencies.

6. Longitudinal and transverse
momentum sharing

The Schwinger formula for the probability rate
of pair production per unit volume in the case
of a constant (or slowly-changing-in-time) electric
field can be derived using the tunneling formal-
ism [45]. According to this formula, an increment
of the perpendicular momentum of the particles,

|p⊥|, is accompanied by a rapidly vanishing creation
rate. However, for rapidly changing fields, tunneling
theory is no longer applicable. This is supported by
the analysis presented above because the momen-
tum distributions for pair production are not elon-
gated in the direction of the electric field. As it has
been shown in [36], for sufficiently high frequencies
ω, particles prefer to be created in the direction per-
pendicular to the electric field. This counterintuitive
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Fig. 4. Momentum distributions of electrons created by an oscillating electric field for different frequencies
and for electric field amplitude E0 = 0.5ES . Starting from the one-photon threshold frequency, at roughly
ω = 2mc2, a qualitative change in the shapes of high-probability structures is observed.

phenomenon is illustrated in Fig. 4. For low frequen-
cies ω ≤ 0.8mc2, the distributions are concentrated
around the axis of vanishing transverse momen-
tum. However, as the frequency increases, the distri-
butions begin to concentrate around zero momen-
tum. This happens until the one-photon threshold is
reached. A further increase of frequency causes the
position of the high-probability regions in the distri-
bution to migrate towards the direction perpendic-
ular to the electric field (i.e., towards larger p⊥).
Furthermore, at ω = 4mc2, the high-probability
zone in the three-dimensional space takes the shape
of a torus centered around p⊥ = 0. This means
that under such conditions the particles prefer to
be ejected in the direction perpendicular to the
electric field vector. As shown in [36], the distribu-
tion for pair creation, when integrated over parti-
cles momenta, starts to saturate (or even decreases)
with increasing frequency, leading to the seemingly
unexpected stabilization phenomenon. In fact, the
stabilization effects appear to be quite common
in the strong-field QED, as discussed for instance
in [46–50].

In summary, although we have concentrated
our discussion on the fermionic distribution func-
tion f(p) and the phase of the momentum am-
plitude c

(2)
p , the other components of the DHW-

functions (8) can be also determined by applying
(35), (31) and (29). This topic is, however, beyond
the scope of the present work and is going to be
considered in due course.

7. Conclusions

In this paper, we formulated the bispinorial ap-
proach to the production of e−e+ pair in spatially
homogeneous electric fields. The method turned out
to be equivalent to the DHW formalism, which was
introduced in [4]. We have shown that the pro-
duction of Sauter–Schwinger pair with linearly po-
larized time-dependent electric field is formally re-
duced to solving a two-level model, in compliance
with [40] (see also references therein). The advan-
tage of this approach is that one gains access to
the probability amplitudes and, therefore, to their
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phases. The latter allows to uniquely identify vor-
tices and antivortices in the momentum distribu-
tions of created pairs. As it has been demonstrated
in our paper, for a linearly polarized pulsed electric
field, they appear in pairs. We also analyzed the
vortex patterns while increasing the field frequency
across a two-photon threshold. While we have ob-
served a new vortex–antivortex pair, the general
features of the momentum distributions also change
across the threshold. Specifically, we have seen that
below the one-photon threshold, particles are cre-
ated most efficiently along the polarization direc-
tion of the electric field, whereas above the thresh-
old — in the perpendicular direction. This shows
the different characteristics of the Sauter–Schwinger
process while passing from low- to high-frequency
regimes of electric-field–vacuum interactions.
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The quantum nature of light enables potentially revolutionary communication technologies. A key to
advancing this area of research is a clear understanding of the concepts of states, modes, fields, and
photons. The concept of field modes carries over from classical optics, while the concept of state has to
be considered carefully when treating light quantum mechanically. The term “photon” is an overloaded
identifier in the sense that it is often used to refer to either a quantum particle or the state of a field.
This overloading, often used without placing it in context, has the potential to obfuscate the physical
processes that describe the reality we measure. We review the uses and relationships between these
concepts using modern quantum optics theory, including the concept of a photon wave function, the
modern history of which was moved forward in a groundbreaking paper in this journal by Iwo Białynicki-
Birula, to whom this article is dedicated.
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1. Introduction

When beginning the study of quantum optics, it
is natural to ask, “What is a photon?” But perhaps
a better question is, “What is a quantum field?”
Given that quantum theory is agnostic to the names
we give to the mathematical elements of the the-
ory, when does it matter how we name and inter-
pret them? Properly conceptualizing and naming
the elements of theory helps when trying to build
intuition about a problem without the benefit of
having a complete mathematical solution at hand.
This contribution to the Special Issue dedicated to
Professor Iwo Białynicki-Birula reviews in a tutorial
manner the role of states, modes, fields, and pho-
tons in quantum optics, recognizing his important
contributions to the subject. We hope to enlighten
researchers who are perhaps new to the field, such
as those working in the classical networks arena and
now starting to consider the potentially useful ap-
plications of quantum networks. We review the con-
cept of a photon wave function, the modern history
of which begins more-or-less with a paper in this
journal by Białynicki-Birula [1] and a contempora-
neous paper by John Sipe [2].

States, modes, and fields are concepts that apply
to both classical and quantum domains. The paper
reviews in a pedagogical style how these concepts
arise and are defined within the two domains, de-
scribes how quantization of electromagnetic (EM)
field excitations introduces new (and measurable)
behaviors, and clarifies the connections between the
two domains.

In the arena of applications, we note that in any
quantum optical computing or communication sys-
tem, it is required to control the states of light that
interact to carry out a quantum information pro-
cessing (QIP) task. If control is imprecise, “errors”
can occur. In fact, such errors are the main bar-
rier to developing scalable QIP [3]. While for single-
particle qubits (e.g. the spin of an electron), the con-
cept of state is clear and routine, for optical qubits,
it is not the case due to the multimode nature of
the electromagnetic field, and it is worthwhile dis-
cussing some of the subtleties that arise in this case.
Much has been written on the general subject, such
as [4–8] and studies cited therein, but we aim here
to cover topics that are not widely emphasized, in
particular, the quantization of the EM field in terms
of temporal (wave-packet) modes.
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2. Classical fields, modes, and states

In the classical physics description, light is
a transverse wave of the EM field. The Maxwell
equations provide a means to calculate the en-
ergy per unit volume stored in the EM field, which
may vary continuously. They also provide a wave
equation that allows us to calculate the tempo-
ral and spatial evolution of the EM field, trans-
porting energy, and momentum. A monochromatic
plane wave in free space is identified by specify-
ing values for four distinct attributes (degrees of
freedom), any of which can be used to encode in-
formation: polarization and three spatial propaga-
tion constants kx, ky, kz. In a beamlike geometry, it
is often useful to restate these degrees of freedom
as polarization, two spatial degrees of freedom de-
scribing the transverse beam profile, and frequency,
ω = c

√
k2x + k2y + k2z , where c is the speed of light.

In either case, the four degrees of freedom define
a “mode” of the EM field. A mode can be thought
of as a “container” into which differing amounts of
energy and momentum can be deposited and carried
along by the wave.

Definition. A classical electromagnetic field is
a physical entity of infinite spatial extent that can
transport energy and momentum in the form of
wave-like excitations.

Definition. A mode uj(r) of a classical field is
a particular form of a field, which satisfies the
Maxwell equations, and a set of which can serve
as a mode basis. A common example is given by
plane-wave modes propagating in vacuum,

uj(r) = ej exp
[
i(kxjx+ kyjy + kzjz)

]
, (1)

where j is the mode index (label) and ej are the
polarization vectors. In a classical description, the
energy content of any mode may assume a continu-
ous spectrum of values, proportional to the square
of the field amplitude.

It is understood that modes of different frequen-
cies can be added or superposed linearly with dif-
fering complex amplitudes aj to form the (real-
valued) electric field, expressed mathematically as
E(r, t) = E+(r, t)+cc, where cc means complex
conjugate and the “positive-frequency part” of the
complex field is represented by

E+(r, t) =

∞∑
j

Eaj e− iωjt uj(r), (2)

with a similar expression for the magnetic field.
Boldface italic font represents vector quantities and
E is a scalar factor. The amount of energy “occu-
pying” a given mode is proportional to |Eaj |2. The
mode’s shape and propagation direction are con-
tained in the forms of uj(r), which form a mutu-
ally orthogonal and complete set of functions. As
seen by the time evolution exp(− iωjt), the field in

each mode undergoes single-frequency oscillations
and can be described as a simple harmonic oscilla-
tor.

Each mode can be viewed as a separate subsys-
tem, the totality of which forms the overall field.
When we discuss states of the overall field, in gen-
eral, we have to specify composite states involving
the states of more than one mode. Such composite
states can imply correlations between measurement
outcomes on different modes.

While (2) is written as a discrete sum of modes,
as appropriate in a closed cavity, in unbounded free
space the expression for the classical field becomes
an integral over a continuum of frequencies. For
a beam or pulse propagating in more-or-less a sin-
gle direction, it is convenient to express it as the
integral

E+(r, t) =
∑
σ=1,2

∞∫
−∞

dω

2π
Ea(σ)(ω)e− iωtu(σ)(ω, r),

(3)
where σ labels one of two polarization helicities in
the case of circular polarization. In the simplest
cases, such as in a waveguide or a well-collimated
beam in free space, the spatial mode can be sepa-
rated into transverse and longitudinal parts,

u(σ)(ω, r) = e(σ) w(σ)(ω, x, y) exp
(

ik(σ)z (ω)z
)
,

(4)
where e(σ) is a polarization vector, w(σ) is the trans-
verse part of the mode function, and the function
k
(σ)
z (ω) describes a dispersion relation (relationship

between propagation constant and frequency).
In these equations, E(r, t) represents the vector-

valued amplitude of the field. Of course, the physical
field itself is distinct from its representation; the
symbol E(r, t) is not the field itself, it is rather
a description of the field, and many physicists take
the field to be an actual element of physical reality.
We follow this way of thinking in this paper.

How do we describe the state of the field? A gen-
eral definition of state can be said to be a descrip-
tion of everything that is known about the condition
of a physical system at a certain time. In the sim-
plest classical picture, we can have complete knowl-
edge of the field, and the mathematical forms of
E(r, t) and the magnetic field B(r, t) give a full
description of its state, that is, a specific configura-
tion of the classical system. Often in optics problems
the electric field dominates interactions with mat-
ter, such as detectors, and for freely propagating
field the electric field is often sufficient for a com-
plete description; so here we focus on describing the
state of the electric field.

In general, however, we may possess only par-
tial knowledge, in which case we describe the field’s
state using statistical means. For example, thermal
light emitted by a blackbody is described as having
field amplitudes that are random variables (or ran-
dom processes) with zero mean value and Gaussian
probability density. In principle, one could know
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Fig. 1. A coherent signal pulse embedded in a noise background is filtered by passing through a sequence of
a spectral filter R̃(ω) and a time gate Q(t), resulting in a nearly coherent (single-temporal-mode) field. The
envelope waveform (i.e., the field with the carrier wave removed) at the output illustrates both the ideal signal
pulse (dashed curve) and the realistic simulated pulse (solid). Reproduced from [11].

the field values (that is, they have definite values at
each instant), but in practice, we do not. We call
such a state a statistical state. Let us summarize.

Definition. A classical state is a description of
the condition of a system, either representing com-
pletely possessed information or a statistical de-
scription representing partially possessed informa-
tion.

In classical physics, a specific state is specified by
a point in phase space and, along with the dynami-
cal equations of motion, determines how the phase-
space point evolves in time. On the other hand,
a statistical state is described by a probability den-
sity function (pdf) giving joint probabilities of all
possible values of system variables at all combina-
tions of space-time points (for review, see Mandel
and Wolf, and Goodman [9, 10]),

PE
(
E(r1, t1),E(r2, t2),E(r3, t3), . . .

)
. (5)

With the classical mode decomposition, we can re-
place this pdf with a pdf for all the complex mode
amplitudes,

Pa(a1, a2, a3, . . . ). (6)
Any expectation values of quantities involving the
field can, in principle, be calculated using either of
these pdfs.

For a thermal-like classical state of a single mode,
the pdf for the complex zero-mean random vari-
able a is

Pa(a) =
1

2πσ2
e−|a|

2/(2σ2), (7)

where 2σ2 = 〈|a|2〉 is the variance of a. The
corresponding pdf for the energy (proportional to
W = |a|2) in the mode is

PW (W ) =
1√

2πσ2
e−W

2/(2σ2). (8)

When one speaks of “mode” in optics, it is of-
ten assumed to be the spatial mode (as in a laser
cavity). As in (3), one can always decompose the
field in terms of products of spatial modes u(σ)(ω, r)
and a multiplicative temporal factor e− iωt. But in
practice, such a monochromatic field would require
an infinite time duration to be fully defined or mea-
sured. How can we realistically prepare and measure

a single mode in the laboratory? A simple example
is shown in Fig. 1: open a small hole in a blackbody
cavity for a time T , then spatially filter the emerg-
ing light with a distant, small pinhole, then pass
it through a spectral filter with small transmitting
bandwidth ∆ν such that ∆νT � 1, as described
theoretically in [11]. The probability for energy con-
tent, in this case, is given by (8).

Such a time-frequency filtering process selects
one “time-frequency mode,” also called a temporal-
spectral mode, or temporal mode (TM) for
short†1 [5, 12]. In the following, we will put an em-
phasis on temporal modes because they provide
a mode basis for efficiently describing optical wave
packets that are localized in space and time. Encod-
ing and receiving information in such wave-packet
form generally requires synchronizing a transmitter
with the receiver.

Another important benefit of temporal modes is
that they form a discrete set rather than a contin-
uous set, as is the case for monochromatic modes.
The discreteness makes it easier to distinguish one
mode from another during a detection process.
Their discreteness arises from the fact that, by def-
inition, they are confined to a particular space-time
region; that is, the boundary condition is that they
go to zero at infinity in space and in time. This
result is mathematically analogous to the quanti-
zation of spatial modes in a cavity or an optical
fiber.

To construct TMs, consider a transformation
from the monochromatic modes of (3) to the non-
monochromatic temporal modes. We can choose
any complete orthonormal set of spectral amplitude
functions {fj(ω)} that go to zero at frequencies far
from a chosen central frequency ω0. By definition,
they satisfy∫

dω

2π
f∗l (ω)fj(ω) = δlj ,∑

j
f∗j (ω′)fj(ω) = 2π δ(ω′ − ω),

(9)

†1Note: Please do not confuse the abbreviation TM used
here with the common terminology TM-mode, meaning
transverse magnetic spatial mode.
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Fig. 2. Examples of sets of temporal modes, plotted as densities in a certain area of time-frequency phase
(phasor) space. For a fixed scaling of the time and frequency axes, the modes may be equally broad in both
variables, as in panel (a), or they may be narrow in time, as in panel (b), or narrow in frequency, as in panel (c).
Such temporal modes may be Gaussian in form and are approximately orthogonal if their separations in time
and frequency are large enough. As in panels (d), (e), and (f), an alternative covering of the phase-space area
can be accomplished using mode functions that cover the whole region and can be made strictly orthogonal in
terms of coherent overlap integration as in (9).

where δlj and δ(ω) are the Kronecker and Dirac
deltas, respectively. We can use these functions to
define a set of “temporal-mode” amplitudes,

Aj =

∫
dω

2π
f∗j (ω) a(ω), (10)

where fj(ω) is the spectral amplitude that defines
such a mode labeled by j. Hereafter we drop the
polarization label σ for notational simplicity. The
inverse relation is

a(ω) =
∑
j

fj(ω)Aj . (11)

We see that the continuous (uncountably infinite)
set of amplitudes a(ω) has been converted into a dis-
crete (countably infinite) set Aj .

In terms of TMs, the field in (3) is expressed as
E(+)(r, t) =

∑
j

Aj

∞∫
−∞

dω

2π
Efj(ω)e− iωt ew(ω, x, y)e ikz(ω)z '

Eew(x, y)
∑
j

Aj uj(z, t), (12)

where, for simplicity, we assumed a common polar-
ization vector e and made the approximation that
the transverse mode function w(ω, x, y) ' w(x, y)
is independent of frequency, which is valid for rea-
sonably narrow-band fields. Then the propagating
temporal modes are defined as

uj(z, t) =

∞∫
−∞

dω

2π
fj(ω)e− iωt e ikz(ω)z. (13)

At position z = 0, the temporal mode equals the
Fourier transform of the spectral amplitude

uj(0, t) =

∞∫
−∞

dω

2π
fj(ω)e− iωt = f̃j(t). (14)

Several example sets of temporal modes are shown
in Fig. 2.

In our time-frequency filtering example in Fig. 1,
the strongly filtered field supports essentially only
one TM,

E(+)(r, t) ' EAj=0 ew(x, y)uj=0(z, t). (15)

Thus, the space and time behavior of the
field is determined by the spatial-temporal mode
w(x, y)uj=0(z, t), while the (classical) state is de-
termined by the value of (or the statistical proper-
ties of) the mode amplitude Aj=0. The description
in terms of temporal modes carries over directly to
the quantum treatment of light.

Note that the “incoherent” time-frequency filter-
ing method described in Fig. 1 is necessarily ineffi-
cient, in the sense that to achieve a nearly single-
temporal-mode field, the filtering needs to be so
strong as to pass almost no light. Superior efficiency,
approaching 100%, can be achieved using “coherent”
filtering with a scheme called a quantum pulse gate,
as reviewed in [12] and utilized for noise filtering
in [11].

3. Quantum fields, modes, states,
and photons

The fact that the classical EM field can be de-
composed into a set of classical oscillators inspires
us to seek a representation of the EM field as a col-
lection of (bosonic) quantum harmonic oscillators.
The creation and annihilation operators are labeled
by the continuous frequency variable ω and are de-
fined to obey the commutation relations [13, 14][

â(ω), â†(ω′)
]

= 2π δ(ω − ω′). (16)
The non-commutativity of operators for a given

frequency embodies the essential difference between
quantum and classical theory (and the nature of
the physical systems being described). The en-
ergy eigenstates of each quantum oscillator are
quantized, i.e., they occur at specific, identically-
spaced values, m~ω above the ground state with m
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a nonnegative integer. In the quantum theory, the
mathematical representation of the field is given by
the (Hilbert-space) operator (operators being indi-
cated by carets),
E(+)(r, t) =∑

σ=1,2

∞∫
−∞

dω

2π
E(ω) â(σ)(ω)e− iωtu(σ)(ω, r).

(17)
The form of the commutator (16), along with en-
ergy quantization, requires the scale factor to be
frequency dependent, E(ω) =

√
~ω/(2ε0 cn), where

ε0 and c are the vacuum electric permittivity and
speed of light, respectively, and n is the medium’s
refractive index at the frequency of interest.

For simplicity, we neglect modal dispersion as
occurs in waveguide geometry, discussed in detail
in [15]. This simplification allows us to drop any
mode labels that refer to which waveguide mode is
being considered.

The mode functions u(σ)(ω, r) are the same as
in the classical theory and thus satisfy Maxwell’s
equations. As in the classical theory, a transforma-
tion from monochromatic modes to temporal (wave-
packet) modes can be made using (13) for reason-
ably narrow-band fields. Then the field operator
is

E(+)(r, t) = Eew(x, y)
∑
j

Âj uj(z, t), (18)

where the scale factor for a center frequency ω0 is
E =

√
~ω0/(2ε0 cn) and Âj are annihilation opera-

tors for the state of light “occupying” the temporal
mode uj(z, t). They are given by

Âj =

∫
dω

2π
f∗j (ω)â(ω), (19)

and by (16) it is easily shown that they satisfy the
discrete, rather than continuous, commutation rela-
tion[

Âi, Â
†
j

]
= δij . (20)

In free space (that is, with no interactions), the time
evolution, expressed in the Heisenberg picture, is
fully contained in the wave-packet propagation of
the modes in (13)†2.

Now we may ask, “What is the quantum field?”
It is not Ê(+)(r, t), which is an operator that repre-
sents mathematically the annihilation of energy ex-
citations in the field. The quantum field itself (from
one meaningful point of view) is a physical entity
that is “out there” and is capable of carrying energy
and momentum from one place to another.

†2By the way, the assumption of narrow-band wave pack-
ets is not an essential step, but when this approximation is
removed, it turns out that the resulting wave packets are not
strictly orthogonal in space. This complication arises only for
wave packets whose duration is less than around 10 fs, which
is not usually the case in optical communications applica-
tions. See [16].

How do we specify states of the quantum field?

Definition. A quantum state is a mathematical
form used to determine the probabilities for par-
ticular outcomes of any possible measurement on
a system, either as a pure state (representing max-
imal possessed information) or a mixed state (rep-
resenting partially possessed information).

The most general case is the mixed state, ex-
pressed mathematically as a density operator,

ρ̂ =
∑
j

Pj |Ψj〉〈Ψj |, (21)

where Pj is the (classical) probability that the sys-
tem is in the pure state |Ψj〉. We say such a state
is a statistical mixture of pure states. In the ideal
limit, if all Pj are known to be zero except a single
one, say P0 = 1, then we can describe the state sim-
ply by specifying the form of |Ψ0〉, which in some
cases is described by a wavefunction of some sys-
tems variable or in other cases as a vector in an ab-
stract linear vector space.

A starting point for the quantum state descrip-
tion of the field is the vacuum state, |vac〉, which
carries no energy or momentum (at least not in
a way that is detectable via absorption by an atom
or a photodetector). The simplest non-vacuum state
of the field is the single-photon state, and its gener-
alization, the n-photon (Fock) state, written in the
temporal-mode formalism for mode uj(z, t) as

|1〉j = Â†j |vac〉 =

∫
dω

2π
fj(ω) â†(ω) |vac〉,

|n〉j =
1√
n!

(Â†j)
n|vac〉,

(22)
where Â†j is the creation operator for a given TM
and n is the photon occupation number of a given
TM of the field.

It is interesting that although an n-photon state
of a particular temporal mode does contain a spe-
cific sharp number of photons, it does not contain
a sharp value of energy, because the mode itself is
constructed as a sum of modes having differing fre-
quencies and each frequency mode has an unspec-
ified number of photons (although they must sum
to n). If the light is well collimated, quantum mea-
surement of its energy content can be carried out
using a spectrometer — disperse it on a diffrac-
tion grating followed by a dense array of photon-
counting detectors. If the number of detectors is
much greater than the number of photons n, and
the detectors are 100% efficient, then exactly n de-
tectors will register a detection event (“click”). Each
detector will correspond to a resolved channel l with
energy ~ωl. For n = 1, the probability for a given
detector to click is given by |fj(ω)|2. In general, the
pattern of detectors that click will indicate the total
energy observed for that measurement trial.

To sum up, in the quantum theory of a collec-
tion of oscillators of different frequencies (in the
temporal-mode formalism), what gets quantized is
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not total energy but total excitation. You can have
zero, one, or two excitations but not half an excita-
tion.

A general pure state of the field in a given tem-
poral mode is expressed as

|Ψ〉j =

∞∑
n=0

cn|n〉j =

∞∑
n=0

cn√
n!
Â†nj |vac〉, (23)

where |cn|2 is the probability of observing n clicks
in a detector array, as just described. The coher-
ent state, with cn = exp(−|α2|/2)αn/

√
n! for some

complex amplitude α, is the state from an ideal
laser emitting a pulse in the temporal mode uj(z, t).
Then the probabilities are given by the Poisson dis-
tribution |cn|2 = exp(−|α2|)|α|2n/n!.

A mixed state of the EM field can be represented
by a density operator for a given temporal mode,

ρ̂ =
∑
j

pj
1√
n!
Â†nj |vac〉〈vac| 1√

n!
Ânj , (24)

where pj is the probability to find n photons in
mode j if the photon number is measured. Inter-
estingly, there is a different kind of mixed state,
which has a definite number of photons (field ex-
citations), but they are spread incoherently across
several modes, for example, a single-photon mixed
state is

ρ̂ =
∑
j

Pj Â
†
j |vac〉〈vac|Âj , (25)

where Pj is the probability that the photon will
be found in mode j if detected in a mode-selective
manner.

4. Particles or fields?

Now we can try to clarify “What is a photon?” It
is preferable not to think of the photon as a thing
or a physical entity, but rather as simply one of the
names we use to specify states of the field.

So, when we say, “The atom emitted a photon,”
what we actually mean is “The atom lost energy,
creating a single-photon state of the field.” It is al-
most always safe (prudent) to replace “photon” with
“single-photon state of the field.” If we wish to have
a more physically suggestive way to define a photon,
we can say it is a single “excitation” of the quantum
field.

Nevertheless we note that a single-photon state
can be thought of in two equivalent ways: as the
state of a photon as a distinct entity, or as the
state of a field. Consider such a state occupying
a particular wave-packet mode u1(r, t) that is con-
centrated in a finite volume and traveling through
space. Horizontal and vertical polarization states
|H〉, |V 〉 define a basis for describing the state of
the photon. Say, the photon’s state is diagonal
|D〉 = (|H〉 + |V 〉)/

√
2. Alternatively, we can write

this photon state in terms of the state of the field,
using modes that specify the field’s spatial and po-
larization aspects denoted

uH(r) = eH u1(r, t), uV (r) = eV u1(r, t),

(26)
where eH , eV are polarization vectors. Then we
can express the single-photon diagonal-polarization
state in terms of the occupation numbers of the
uH(r),uV (r) modes,

|1〉H |0〉V + |0〉H |1〉V√
2

. (27)

Furthermore, we can choose a different mode ba-
sis to represent the same state. If we choose modes
that define the field as diagonal and anti-diagonal
polarized, uD(r) = (uH(r) + uV (r))/

√
2, uA(r) =

(uH(r) − uV (r))/
√

2, then the same state is rep-
resented as |1〉D|0〉A. Thus, a transformation of the
“mode basis” from uH(r),uV (r) to uD(r),uA(r)
corresponds to a change of the “state basis” from
|H〉, |V 〉 to |D〉, |A〉.

The quantum theory of light can be constructed
from either of two distinct starting points, as was
made clear by Dirac in his book [17], where he
wrote, “The dynamical system consisting of an as-
sembly of similar bosons is equivalent to the dy-
namical system consisting of a set of oscillators —
the two systems are just the same system looked at
from two different points of view.”

Given the equivalence of the two points of view,
why do many quantum physicists find it more fruit-
ful to consider the field (that is, the collection of
oscillators) as the fundamental physical entity, as
we have done above? Steven Weinberg, a Nobel-
winning quantum theorist, said, “Thus, the inhabi-
tants of the universe were conceived to be a set of
fields — an electron field, a proton field, an elec-
tromagnetic field — and particles were reduced to
mere epiphenomena.” The reasons for this choice are
many and have been summarized in language suit-
able for the general reader in several accounts, in-
cluding Hobson [18], Wilczek [19], and Raymer [20].
Here we offer a summary of such arguments.

1. Quantum fields respect relativity.
Frank Wilczek, also a Nobel-winning quan-
tum theorist, writes, “The concept of local-
ity, in the crude form that one can predict
the behavior of nearby objects without ref-
erence to distant ones, is basic to scientific
practice.” Quantum field theory successfully
describes all known phenomena (that it has
been applied to) without invoking action at
a distance, which would violate Einstein’s rel-
ativity [19].

2. Quantum fields evince identical particles.
Wilczek also writes, “Undoubtedly the single
most profound fact about Nature that quan-
tum field theory uniquely explains is the exis-
tence of different, yet indistinguishable, copies
of elementary particles.” It is known that the
world is made of a limited number of parti-
cle types, and that any two members of the
same type are identical. For example, any two
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electrons are identical, that is, interchange-
able. “We understand this as a consequence
of the fact that both are excitations of the
same underlying ‘ur-stuff’, the electron field.
The electron field is thus the primary real-
ity,” Wilczek says. And the same holds true
for the electromagnetic field and its photon
excitations [19].

3. Quantum fields naturally account for chang-
ing numbers of particles.

Quantum field theory not only accounts for
the creation and destruction of photons when
atoms emit or absorb light. It also accounts
for processes such as creation and destruction
of electrons and positrons. Wilczek writes, “In
this picture it is only the fields, and not the in-
dividual objects they create and destroy, that
are permanent” [19].

4. Quantum fields give a clearer picture of wave-
particle duality.

The electron–matter field is not an electron.
Rather, an electron is an individual excitation
of the electron–matter field, just as a photon is
an individual excitation of the EM field. The
quantum fields themselves behave in a wave-
like manner and represent possible measure-
ments to determine where the electron (or
photon) is located. Therefore, it is not sur-
prising that if one mistakenly believes that
an electron, for example, is a particle, mean-
ingless questions can arise. For example, the
question “Which path did the electron take on
its way to a detector?” has no meaning. On
the other hand, a quantum field permeates
all of space; therefore, it exists within both
paths. So, the proper statement is not that
an electron sometimes behaves like a wave
and sometimes like a particle. One should
rather say that the quantum field always be-
haves like a quantum field with its wave-like
behaviors, and the electron is a manifesta-
tion of that field. It is best to replace the
mysterious concept of “wave-particle duality”
with the less mysterious concept of “quan-
tum field-quantum particle duality” (adapted
from [20]).

5. Superposition, separability,
and entanglement

How is entanglement different from superposi-
tion? For a single quantum entity, |ψ〉A+|φ〉A is
a superposition state, wherein the “+” symbol rep-
resents the superposition of possibilities and can be
read as “in superposition with.” Here normalization
factors have been dropped. For a pair of entities,
|ψ〉A|φ〉B + |φ〉A|ψ〉B is also a superposition state,
but now involving a larger state space.

A nonseparable state of two entities, A and B,
is one that cannot be written as a product state,
|φ〉A|ψ〉B . (For simplicity, we consider only pure
states).

It is worth unpacking what is meant by “quan-
tum entity.” In quantum photonics, the entities are
the field modes, and if they are correlated or entan-
gled, we need to specify a composite (joint) state in
a higher-dimension state (Hilbert) space. Whether
or not we call a nonseparable state entangled de-
pends on the situation and, to some extent, the se-
mantic preference of the user. According to some
users, it is fair to call all nonseparable quantum
states entangled. That would include the state of
the two electrons in a helium atom. Other users will
insist on reserving the use of the word “entangled”
for cases in which the two entities are not interact-
ing (unlike two electrons in a helium atom) and can
be measured independently in separated regions of
space. The justification for this stricter definition
is that in quantum information science, entangle-
ment is regarded as a resource for accomplishing
tasks such as the teleportation of a state across some
distance. In this context, a powerful known fact is
that the amount of such entanglement cannot be
increased by any quantum operations in which each
entity is transformed only locally, even in the pres-
ence of classical (non-quantum) communication be-
tween parties at the two locations. If one wishes to
have distinct names to classify entanglement, one
could say that nonseparability with spatial separa-
tion is called “useful entanglement.”

For a two-mode nonseparable photonic state, can
we transform to a new mode basis for which the
state is separable? From the above discussion, we
see the answer is “No” if the entities are spatially
separated, and we restrict the basis changes to in-
volve only the local states of each entity. But if
we carry out arbitrary global mode-basis change
involving all relevant modes of the combined sys-
tem, the answer is “Yes, for all typically realizable
states.” For example, note that we can write the
above-mentioned single-photon state (now with nor-
malization) as

1√
2

(
|1〉A|0〉B+|0〉A|1〉B

)
= 1√

2

(
Â†+B̂†

)
|vac〉,

(28)
where Â†, B̂† are creation operators for two spa-
tially orthogonal modes, as represented by (19).
Consider the two-mode transformation of the spec-
tral amplitudes,(
fA(ω)

fB(ω)

)
→

(
fC(ω)

fD(ω)

)
=

1√
2

(
1 −1

1 1

)(
fA(ω)

fB(ω)

)
,

(29)
which is equivalent to the transformation of the
mode functions on a 50/50 beam splitter,(
uA(z, t)

uB(z, t)

)
→

(
uC(z, t)

uD(z, t)

)
=

1√
2

(
1 −1

1 1

)(
uA(z, t)

uB(z, t)

)
,

(30)

S34



States, Modes, Fields, and Photons in Quantum Optics

such that the operators transform as(
Â†

B̂†

)
→

(
Ĉ†

D̂†

)
=

1√
2

(
1 1

−1 1

)(
Â†

B̂†

)
. (31)

The state in (28) can then be written as

1√
2

(
Â† + B̂†

)
|vac〉 = Ĉ†|vac〉 = |1〉C |0〉D. (32)

This is just a formal way to say that sending
a single-photon state into a 50/50 beam splitter
yields a mode-entangled state of the two emerg-
ing fields. The beam-splitter transformation is re-
versible, so we can send the mode-entangled state
into the ports of a beam splitter and end up with
a single-photon state in mode C (or in mode D if
we adjust the phase). Thus, the state is nonsepa-
rable (entangled) in one mode basis but not in the
other mode basis. Physically, undoing the entangle-
ment (nonseparability) requires bringing the modes
together to perform a “global” transformation on
them. As said above, the disentanglement cannot
be accomplished by any “local” transformations in-
volving modes A and B separately.

Sperling et al. [7] pointed out that there exist
entangled (nonseparable) states that cannot be dis-
entangled (made separable) by any unitary mode
transformation, global or not. At present, such
states are not readily created using common tech-
niques and have not played a role in quantum in-
formation science.

A very interesting point is that entanglement can
exist with only one “particle” present. If we con-
sider two EM field modes, A and B, that occupy
separate regions of space (e.g., two well-separated
wave-packet modes, uA(r, t) and uB(r, t)), we could
prepare each mode so it contains either zero or
one photon’s worth of quantum-field excitation, but
there is only one photon in total. Label the state of
the EM field in each mode by either (1) if it has one
photon’s worth of excitation, or (0) if it has none.
The state |1〉A|0〉B+ |0〉A|1〉B refers to an entangled
state of the fields in two modes. It may be helpful
to recognize that modes represent different degrees
of freedom of the EM field.

The state is not an entanglement of particle
states. If you “believe” in photons as particles, the
state would be a mere superposition, |A〉+ |B〉, not
entangled in that context. The fact that two dis-
tinct EM modes can have entanglement even when
there is only one photon shared between them sug-
gests again that EM fields, not particles, are truly
the physical entities [6].

Note that there is an important difference be-
tween the joint state of the A, B modes being
considered here and the state of the H, V modes
in (27). The latter represents an excitation that is
necessarily confined to a single spatial region, de-
fined by the common spatial mode. Therefore, such
a state is not considered to be the same kind of
quantum resource as the entangled state of two

spatially separated modes. To make the point more
mathematical, note that if we were to specify the
latter state fully, we should indicate the state of all
the relevant degrees of freedom of the field, includ-
ing spatial location and polarization. Therefore, the
state being considered in the present example is ac-
tually, assuming a common (H) polarization,
|1〉

A,H
|0〉

A,V
|0〉

B,H
|0〉

B,V
+|0〉

A,H
|0〉

A,V
|1〉

B,H
|0〉

B,V
.

(33)

6. Mode errors and state errors

We turn to the question of what types of errors
can occur when quantum information is being en-
coded in the states of light, such as in a quantum
communication system.

We saw in the examples just given that a mode
transformation can be thought of as a change of
state, which is a Schrödinger-picture way of think-
ing. Or we can think, in a Heisenberg-picture way,
that the global state has not changed, but only the
state basis has been altered. Both ways of thinking
are valid if we keep our pictures clear. Nevertheless,
the distinction between modes and states can have
practical consequences, or at least can allow one to
categorize “errors” that might occur in a quantum
information science (QIS) scheme such as a quan-
tum network.

Let us say we created a single-photon state as a
superposition of two time-bin states with complex
amplitudes α and β,

|ψ〉 =
(
αÂ†1 + βÂ†2

)
|vac〉 =

α |1〉u1|0〉u2 + β |0〉u1|1〉u2, (34)

where u1 and u2 refer to temporal modes u1(z, t)
and u2(z, t) defined by (13) and taken here to be
separated time-bin modes that are orthogonal to a
good approximation. We could encode a qubit using
the two states

|ψ〉1 = |1〉u1|0〉u2, |ψ〉2 = |0〉u1|1〉u2,
(35)

or we could choose a transformed (“rotated”) basis
in which to encode the qubit,

|ψ〉+ =
|1〉u1|0〉u2 + |0〉u1|1〉u2√

2
,

|ψ〉− =
|1〉u1|0〉u2 − |0〉u1|1〉u2√

2
.

(36)
These four states are illustrated in Fig. 3.

These two choices of bases are called mutually
unbiased bases (MUBs) [21]. If a qubit is created in
any of the two states in one MUB, the probabili-
ties for detecting the qubit in either of the states of
the other MUB are equal and thus unbiased. Such
pairs of MUBs play important roles in quantum key
distribution (QKD). For a fun simulation of QKD,
see [22].
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Fig. 3. A qubit can be encoded in two possible bases. On the left are two time-bin states that are nearly
orthogonal, and on the right are two superposition states, which are nearly orthogonal by virtue of a relative
phase shift of the components and can equally well be used as a basis.

Given that we launch one of these four states into
a QIP system such as a quantum network, two kinds
of errors can occur — state errors and mode errors.
Recall that we are thinking about states of fields,
not of particles.

A state error occurs if coefficients of the state ex-
pansion (e.g., in (36)) are modified while the forms
of the modes (in this example, time-bin or tempo-
ral modes) remain unchanged. For example, pho-
tons (field excitations) could be lost from the modes
of interest by scattering or absorption, never to be
recovered. Or photons could be added by leakage
of light from other modes into the modes of inter-
est. Another kind of state error is non-deterministic
(random) dephasing between components of the
state, for example,

|ψ〉+ →
|1〉u1|0〉u2 + e iφ(t)|0〉u1|1〉u2√

2
, (37)

where φ(t) is an unknown, uncontrollable phase.
Such a change would drive the pure state into
a mixed state, from which the original pure state
cannot be recovered.

In contrast, a mode error occurs if the forms
of modes become altered by some physical process
while the state remains unchanged. Linear disper-
sion in a fiber, which is deterministic, can often be
reversed or otherwise compensated by a physical
process such as a prism pair. Alternatively, one can
simply redefine the modes of interest to be those
that exist following the predictable effects of dis-
persion. Notice that dispersion is already accounted
for in the definition of the temporal modes uj(z, t)
in (13) through the dispersion relation kz(ω). An-
other kind of deterministic mode change occurs sim-
ply by time delay, either of the two-pulse wave
packet as a whole, or a change of the time delay be-
tween the time bins being used to encode the qubit.
As with dispersion, such changes can be compen-
sated or accounted for theoretically. These examples

point out the importance of knowing any changes
of the modes during propagation, as well as the
need for synchronization in most designs for a quan-
tum network (although important progress has been
made toward using single-atom quantum memories
to remove the need for synchronization [23]).

Other kinds of deterministic (unitary) mode
changes can also occur, such as linear mixing of
the modes of interest with other modes in processes
analogous to linear beam splitting. Such a process
might be reversible if all the involved modes can be
controlled.

Interestingly, the state change illustrated in (37)
can be interpreted instead as a mode change, in
particular,

u1(z, t)→ u1(z, t), u2(z, t)→ e− iφ(t)u2(z, t),

(38)

i.e., a random dephasing between temporal-mode
components of the state. That is, in this case, the
error may be viewed as either a mode or state error
since the phase change can be absorbed into either
the state coefficients or the mode functions.

7. Photon wave functions

Finally, we discuss the question — if we, for ped-
agogical reasons, want to depart from the approach
taken until now in this paper, which treats fields,
not particles, as the fundamental quantities, how far
can we go? Let us first remark that one often hears
talk about “which path” a photon might take in, for
example, a double-slit experiment. Such a question
presupposes that a photon is a particle-like entity
that has a trajectory, or at least a set of possible
trajectories. In contrast, in the field-theoretic ap-
proach, such a question never needs to be asked be-
cause the field fills all of space, so it makes no sense
to ask which path it takes.
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Possible answers to the question depend on how
strict one wants to be in defining what a particle
is. If one simply conceives of particles as discrete
but otherwise abstract entities that carry energy
and momentum, then there seems to be no problem
defining a wave function that describes its prop-
erties and dynamics. However, if one insists that
a particle be an entity that can be localized to
a point in space, then complications arise.

The question, therefore, leads us to the intriguing
possibility of defining a wave function for a pho-
ton — a topic that was explored in the early
days of quantum theory and more recently and
fruitfully by Iwo Białynicki-Birula, whom this pa-
per is meant to honor [1]. For a wave function
for a photon in coordinate space, there should be
a corresponding Schrödinger equation that it sat-
isfies. But what is this wave function, and what
is its Schrödinger equation? The simple answer is
that the photon wave function is a wave packet
that satisfies Maxwell’s equations. Therefore, the
single-photon wave function could be given by
a monochromatic mode such as u(σ)(ω, r) in (3)
or superpositions forming a temporal mode such as
uj(z, t) in (13), and its Schrödinger equation has
the form of Maxwell’s equations. Let us explore this
statement further.

As developed in [1, 2] and reviewed in [16], a com-
pact way to write classical Maxwell’s equations is
to combine the (real) electric and magnetic fields,
E(r, t),B(r, t), into a single complex field, called
the Riemann–Silberstein (RS) vector field,

Ψσ(r, t) =

√
ε0
2

(
E(r, t) + iσ cB(r, t)

)
, (39)

where σ = ±1 describes the field’s helicity (circu-
lar polarization). In (39), Ψσ(r, t) represents two
fields, one for each value of σ, and, if one wishes,
it can be combined into a single two-entry entity
{Ψ+1,Ψ−1} (analogous to a Dirac spinor). For
a single helicity, the free-space Maxwell’s equations
with no charges or currents present can be written
as a vector cross product,

i
∂

∂t
Ψσ(r, t) = c σ∇×Ψσ(r, t) (σ = ±1).

(40)
We can think of this form as a Schrödinger equa-

tion,

i~
∂

∂t
Ψσ(r, t) = HΨσ(r, t), (41)

where the Planck constant ~ has been inserted on
both sides and the (Maxwell) Hamiltonian operator
is defined as H = ~cσ×.

It is interesting that (41) is a wave equation for
the electromagnetic field that is first-order in the
time derivative, whereas in classical optics we usu-
ally think of a wave equation that is second order.
The first-order wave equation here is simply an al-
ternate way to write the two Maxwell’s equations
together, and it embodies more information than
the familiar second-order wave equation†3.

One can fruitfully consider that (41) is the
Schrödinger equation for a single photon (whether
one regards the photon as a particle or as an excita-
tion of the quantized EM field). This statement can
be “tested” by performing a so-called second quan-
tization of the photon wave function to construct a
quantum field theory that permits more than a sin-
gle excitation. That is, replace the classical function
with an operator, Ψσ(r, t)→ Ψ̂σ(r, t),

Ψ̂σ(r, t) =
∑
j

b̂
(σ)
j Ψ

(σ)
j (r, t) +

∑
j

b̂
(σ)†
j Ψ

(σ)∗
j (r, t),

(42)
where Ψ

(σ)
j (r, t) are (vector) mode functions, and

the creation and annihilation operators satisfy
[b̂

(σ)
j , b̂

(σ′)†
k ] = δjkδσσ′ . Hereafter for concreteness,

we consider a single helicity, σ = +1.
We identify this field operator as the complex

sum of electric and magnetic field operators (indi-
cated by carets),

Ψ̂+1(r, t) =

√
ε0
2

(
Ê(r, t) + icB̂(r, t)

)
. (43)

Then we find the electric field part, using
1√
2ε0

(
Ψ̂+1(r, t) + Ψ̂

†
+1(r, t)

)
= Ê(r, t), (44)

and defining positive and negative-frequency parts,
Ê(r, t) = E(+)(r, t) + E(−)(r, t), where

E(+)(r, t) =
1√
2ε0

∑
j
b̂jΨ j(r, t),

E(−)(r, t) =
1√
2ε0

∑
j
b̂†jΨ

∗
j (r, t),

(45)
and we dropped the σ label for simplicity.
Comparing with (18) and identifying the oper-
ators by b̂j=Âj and photon wave functions by
(2ε0)−

1
2Ψ(r, t) = Ew(x, y)ejuj(z, t), we see that

the second quantization procedure leads directly to
the spatial-temporal-mode formalism of quantum
optics.

As long as we restrict our considerations to rea-
sonably narrow-band fields in each mode, where
the frequencies are near a central carrier frequency
ω ' ω0, and the bandwidth is much smaller than ω0,
we have E(ω) h E =

√
~ω0/(2ε0 cn). Then the

single-photon wave functions corresponding to dif-
ferent annihilation operators are orthogonal to a
good approximation, in the sense that integrating
over all space yields∫

d3r Ψ∗j (r, t) ·Ψk(r, t) = δjk. (46)

A subtlety arises when considering exotic ultra-
broadband photons with bandwidth comparable to
(say, 50% or greater than) the carrier frequency.

†3Historically, the desire for a first-order-in-time wave
equation is what drove Dirac to formulate his famous rel-
ativistic Schrödinger wave equation for the electron.
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Then a more careful analysis starting from (17) with
the frequency dependence retained in E(ω) shows
that the photon wave functions corresponding to
different annihilation operators cannot be strictly
orthogonal in space [16]. This non-orthogonality
means that, strictly speaking, a single-photon state
cannot be localized to a point in space; that is, there
is no local spatial probability of finding the photon
(thinking of a particle) at any particular point. In
general, it is more accurate to say that the modulus-
squared of a photon wave function Ψ j(r, t) de-
scribes the spatial distribution of probabilities to
detect the photon’s energy concentrated around dif-
ferent locations r, rather than to find the photon
(as if it were a particle) at a specified point loca-
tion. The photon, viewed as a particle or as a state
of the field, always remains “spread out” within a re-
gion with a minimum volume equal to a cubic wave-
length.

It should be mentioned that the same complica-
tion arises in the temporal-modes formalism when
considering ultra-broadband temporal modes, be-
cause it is mathematically equivalent to the second-
quantized photon-wave-function formalism. In prac-
tice, such details have not (yet) been found to
have significant consequences in quantum informa-
tion science, where ultra-broadband photons are not
typically employed.

If there are two field excitations (photons)
present, the concept of a two-photon wave func-
tion becomes relevant. Its modulus-squared gives
the probability for finding the energies of the two
photons concentrated around locations r1 and r2.
By analogy with a two-electron wave function, such
a function has been defined as (suppressing the po-
larization label for simplicity) [16]

Ψ(r1, r2, t) =
∑
j,k

Cj,kΨ j(r1, t)⊗Φk(r2, t),

(47)

where Ψ j(r1, t) and Φk(r2, t) are single-photon
wave functions, and the product is a vector direct
product. In fact, Cj,k can be chosen arbitrarily as
long as it ensures the symmetry properties of a two-
boson state, namely Ψ(r2, r1, t) = Ψ(r1, r2, t).
Two-photon wave functions expressed in spatial co-
ordinates are not often used in quantum optics the-
ory because the quantized field method is nearly
always more direct and convenient, especially in
scenarios where the number of photons changes in
time. A caveat is that the two-photon wave function
is equivalent to the so-called two-photon detection
amplitude, which arises naturally in standard quan-
tum optics theory when considering joint detection
of two-photon states [9, 24]. Such a formalism arises
naturally from the standard quantum optics theory
when analyzing optical detection.

Thus, we see that a photon-as-particle viewpoint
can be formulated and used if one carefully under-
stands its limitations and its relation to standard
quantum optics theory, which is based on quantizing
the EM field. Further developments have included

treating the case when light interacts with mat-
ter; then, the one- or two-photon wave-function ap-
proach has to be modified, as done, for example, by
Saldanha and Monken and by Keller [25, 26].

When considering fields with more than two exci-
tations (photons), the wave-function picture quickly
becomes inconvenient and overly cumbersome (it
becomes a many-body quantum theory), again giv-
ing credence to the preference among theorists to
stick with the quantized-field approach [16].

8. Mode interference and state
interference

Electromagnetic modes satisfy Maxwell’s equa-
tions, and therefore optical interference is built into
the quantum theory from the start. The mode trans-
formation in (30) is an example of interference.
What is perhaps confusing is that modes interfere
(classically) and quantum-state amplitudes can also
interfere (quantumly). For a single-photon state,
you can think of “classical” mode interference (e.g.,
on a beam splitter) as a quantum change of state
or a change of mode basis, as in (30). For multi-
photon states, or states with an indefinite number
of photons, the situation is more subtle.

As mentioned earlier, a coherent state of a single
monochromatic mode is expressed as

|α〉 = e−|α|
2/2

∞∑
n=0

αn

n!
(â†)n|vac〉 =

e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 (48)

and is found (upon measurement) to contain n pho-
tons with probability exp(−|α|2)|α|2n/n!, a Pois-
son distribution. If the coherent-state field passes
through a phase-shifting element such as a piece of
transparent glass, it picks up a phase shift θ, which
manifests in the coherent state as [27]

|α〉 = e−|α|
2/2

∞∑
n=0

(αe− iθ)n√
n!

|n〉 =

e−|α|
2/2

∞∑
n=0

αn e− inθ

√
n!

|n〉, (49)

that is, the n-photon component is phase shifted n
times more than the one-photon component, keep-
ing the state still a coherent state. (This phase
shift is simply the Schrödinger time-evolution fac-
tor exp(− in~ω t/~), where n~ω is the energy of
the state component). In this case, the “quantum
phases” of each state component are related simply
to the “classical phase” shift θ. This way, we can say
there is “One phase to rule them all,” with apologies
to J.R.R. Tolkien. Such is not the case for more gen-
eral (non-coherent) states of the field, where in gen-
eral the state components exp(− iθn)|n〉 can have
arbitrary values of their quantum phases θn, de-
pending on the means of their generation. This fact,

S38



States, Modes, Fields, and Photons in Quantum Optics

along with the facts that quantum interference of
coherent states mimics perfectly classical interfer-
ence of fields and that photoelectron statistics (Pois-
son) are the same as in a semiclassical model of de-
tection [9, 28], are some of the reasons why coher-
ent states are considered to be the “most classical”
states possible.

A single-photon state also behaves classically in
propagation in the sense that its wavefunction fol-
lows classical Maxwell’s equations, as pointed out
in the previous section. The quantum nature of this
state becomes apparent only when detection occurs;
the photon is “found” to be localized (within a cu-
bic wavelength) at only one detector, not simultane-
ously at two or more. Yet the average rate of detec-
tion events upon repeated trials yields results iden-
tical to those expected from a classical theory treat-
ment augmented by detection statistics. For this
reason, single-photon optics experiments are some-
times thought to be not “classical enough” to bring
out uniquely quantum aspects of nature. Correla-
tions of detection events are more revealing, and
such experiments require the detection of at least
two photons.

Paul Dirac famously tried to sum up the situa-
tion by saying, “Each photon then interferes only
with itself.” [8]. Later it became clear that na-
ture is not that simple. A state of the field in
which two excitations are present, possibly in differ-
ent modes, is called a “biphoton.” The well-known
Hong–Ou–Mandel (HOM) two-photon interference
is illustrated in Fig. 4 and is understood by con-
sidering two single-photon states impinging on two
separate input sides of a 50/50 beam splitter, using
Ĉ†|n〉 =

√
n+ 1 |n+ 1〉,

|Ψ〉 = |1〉A|1〉B = B̂†Â†|vac〉 =

(Ĉ†+D̂†)√
2

(Ĉ†−D̂†)√
2
|vac〉 =

(Ĉ†)2−(D̂†)2

2
|vac〉=

|2〉C |0〉D − |0〉C |2〉√
2

. (50)

That is, both photons are detected in either the
C mode or in the D mode, with a 50% probability;
we never see coincidence events of a detector placed
in the outgoing C mode with a detector in the D
mode [29]. This phenomenon is a strictly quantum
one and does not occur in classical electromagnetic
theory. (Although there are classical mimics of this
effect, the coincidence probability cannot go to zero
in such examples). Therefore, for two-photon inter-
ference, we can say, “Each biphoton interferes only
with itself.” [30, 31].

The general statement might be phrased best
as “Upon detection, each quantum state compo-
nent interferes only with itself, and only if they
occupy the same mode.” One might then wonder,
how to understand the common situation that oc-
curs when two fields of different carrier frequencies

Fig. 4. A separable, nonentangled biphoton state
enters the input paths of a 50/50 beam splitter.
The result is an entangled biphoton state in which
both photons appear in one or the other output
path. Note that because single-photon states do not
carry phase information per se, the introduction of
a phase shift in either path before the beam splitter
will not affect the two-photon interference outcome.

come together and create intensity “beats” at the
difference frequency. It might seem to contradict
the idea that modes interfere only with themselves.
But it has to be noted that when time-resolved de-
tection is performed in order to observe the beats,
a mode projection takes place: the monochromatic
modes of distinct frequencies are both projected
onto a set of common temporal modes (fields con-
fined within a certain short interval). These tem-
poral modes then interfere with themselves. Such
issues were understood as long ago as 1969 [32].

9. Conclusions

In summary: A classical field can be viewed as
a physical entity that fills all of space and can trans-
port energy and momentum in the form of con-
tinuous wave-like excitations. Similarly, a quantum
field can be viewed as a physical entity that fills
all of space and can transport energy and momen-
tum only in the form of discrete excitations; these
excitations exhibit both wave-like and particle-like
behaviors. A “photon” is a label we give to a state
representing a single excitation of the EM field. In
most cases, it is safer to say “a single-photon state
of the field” rather than simply “a photon.”

A convenient way to represent the state of the
field is to decompose the field into a weighted sum
of mode functions. In classical theory, the weight-
ing coefficients can take on continuous values, rep-
resenting a continuum of possible energies. In quan-
tum theory, the weighting coefficients are operators
representing the quantization (discreteness) of pos-
sible energies.

If we are careful, we can describe states in the
field picture or in the particle picture, a viewpoint
discussed in detail by Iwo Białynicki-Birula. We like
to imagine that a given mode is like a container
into which we can put any field state. For the spe-
cial case of the single-photon state, “mode” in the
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field picture means the same as “state” in the parti-
cle picture. In that case, a single photon distributed
coherently between distinct modes represents an en-
tangled state, although such entanglement cannot
be verified experimentally by simply detecting the
photon in one mode or the other. The modes must
interact with other physical entities, such as sepa-
rate atoms.

When more than one photon is present, we recog-
nize that different modes can be put into many pos-
sible combined field states — separable, correlated,
or entangled. Biphoton is the name given to a state
representing a double excitation of the EM field,
whether the excitations are in the same or different
modes. Modes of the field are essentially classical
constructs and satisfy Maxwell’s equations. As such,
they can interfere “classically.” Quantum states can
interfere “quantumly,” as in the HOM effect. These
two kinds of interference create a rich structure for
quantum photonics.

In the context of optics and photonics, the dis-
tinction or boundary between quantum and classi-
cal is somewhat murky, although useful operational
definitions have been developed. Often, we de-
fine “classical” to mean that detection statistics
can be predicted correctly by a theory in which
light is treated as a classical EM wave (although
it may be random, stochastic), and the detectors
(photo-emissive detectors, photodiode, photomul-
tiplier) are treated by quantum theory. By this
“semiclassical” definition, coherent states and any
mixture of them, such as thermal (e.g., blackbody)
states, are considered classical [9]. Single-photon
and biphoton states are then considered quantum.
Still, there are cases where coherent states can be
used to implement an intrinsically quantum task,
such as QKD. There, a highly attenuated laser
pulse can be engineered to be in one of several
possible weak coherent states, and the quantum
behavior occurs upon detection. Any intermediate
measurement of the state (such as by an eavesdrop-
per) will necessarily cause a disturbance of the state
and thus be detectable. The fundamentally lowest
disturbance is dictated by quantum principles re-
lated to the Heisenberg uncertainty principle, and
thus, even though the state of light is considered
“classical,” the security of communication can be as-
sured by the quantum physics of measurement [33].
Harnessing the various degrees of freedom of the op-
tical field, including the temporal-spectral one, can
provide novel means to encoding and manipulating
quantum information, and therefore is an ongoing
topic of research [12].
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We start this short note by remembering the beginnings of the Warsaw School of Quantum Optics, ev-
idently stimulated by Iwo Białynicki-Birula at the Warsaw University, and then Centre for Theoretical
Physics of Polish Academy of Sciences and Adam Kujawski and Zofia Białynicka-Birula at the Institute
of Physics of Polish Academy of Sciences. In the theoretical approaches of the Warsaw School, quantum
field theory was always present, and quantum optics was considered to be applied quantum electrody-
namics. All of us who grew up in this fantastic community have carried and are still carrying the gospel
to others. In particular, now quantum electrodynamics began her run on the red carpet of super intense
laser–matter interactions, attosecond physics, and ultrafast laser physics in general. We will elaborate
on the recent progress in this direction and on the open questions for future investigations. This paper
celebrates the 90th birthday of Professor Iwo Białynicki-Birula, our quantum electrodynamics guru!

topics: quantum electrodynamics, strong field physics, quantum state engineering, attoscience

1. Introduction

1.1. Memories

On the occasion like this, it is appropriate to
start the paper with some personal memories, in
this case by M. Lewenstein: Me and one of my best
friends, Marek Kuś, were supposed to do our Diplo-
mas at the Department of Physics of Warsaw Uni-
versity in the academic year 1978–1979. Like many
other top theory students, our preference was Kat-
edra Metod Matematycznych Fizyki (KMMF), led
by Professor Krzysztof Maurin. I even had a fa-
vorite supervisor — Krzysztof Gawędzki. When I
asked him about the possibility, he told me lit-
erally: “Mr. Maciek, quantum field theory is diffi-
cult, and renormalization group even harder,”†1 and

†1(Polish translation) “Panie Maćku, kwantowa teoria
pola jest trudna, a teoria renormalizacji grup jeszcze trud-
niejsza”

he left Poland starting his Odyssey via Harvard,
Princeton, Institute of Advanced Scientific Stud-
ies (IHÉS), and École Normale Supérieure de Lyon
(ENS Lyon). Still, we wanted to go to KMMF,
but the Dean of the Department, Professor Jerzy
Pniewski, issued a rule that there would be no diplo-
mas in KMMF this year. We had to look for some-
thing comparably challenging, and we chose Zakład
Teorii Pola i Fizyki Statystycznej of Professor Iwo
Białynicki-Birula, the author of the seminal hand-
book of Quantum Electrodynamics [1]. It was in-
deed a Mekka of the Warsaw Statistical Physics
with Jarosław Piasecki, Łukasz Turski, and Bog-
dan Cichocki, but we were interested in quantum
field theory (QFT). And then came two younger
and very convincing guys, Kazimierz† Rzążewski
and Krzysztof Wódkiewicz, who said: “Let us do
quantum optics (QO), which is applied quan-
tum electrodynamics (QED).” And we both got
seduced.

†2Often called Kazik in the community

S42

http://doi.org/10.12693/APhysPolA.143.S42
mailto:maciej.lewenstein@icfo.es


Quantum Optics as Applied Quantum Electrodynamics is. . .

Indeed, the training of QO in Warsaw was heav-
ily biased toward QFT. Master equation approaches
were not “allowed,” one was using full Hamiltonian
and Heisenberg equations. This has taught us very
early that there are no Markov processes in Nature
— everything must have long-time tail corrections
and more. . .

There is another twist to this story related to
strong laser field physics. On the desk of Kazik
Rza̧żewski, I found a preprint of Luiz Davidovich
that Kazik got when they shared the same bureau
at the International Centre for Theoretical Physics
(ITCP) with Luiz. I got absolutely fascinated by
Keldysh’s theory of tunnel ionization and decided to
work on it. At the beginning of 1970, Pierre Agostini
in Saclay published the first result on the so-called
above-threshold ionization. Zofia Białynicka-Birula
published a seminal paper [2] on the subject in 1984.
That was the moment when I decided to join the
operation.

The situation of the super-intense laser–matter
physics is well described below in Sect. 1.2. We
clearly face the situation when QED is on the move
again. This paper is based on the thesis proposal of
Philipp Stammer, a PhD student at ICFO. So, the
plan is to present the motivation to bring quantum
optics as applied quantum electrodynamics back to
town. This is done by introducing various future in-
vestigations, all related to QED of strong laser fields
physics, so to the clear heritage of Iwo Białynicki-
Birula.

1.2. Quantum optics meets strong
laser field physics

For decades the interaction of intense and short
laser pulses with matter has been described suc-
cessfully with semi-classical methods, in which the
quantum nature of the electromagnetic field was not
taken into account. The characteristics of the ob-
served features in the spectra for the processes of
high harmonic generation (HHG) [3, 4] or above
threshold ionization (ATI) [5, 6] were well repro-
duced within the semi-classical picture. Further-
more, the semi-classical approach for the process of
HHG (or even fully classical [7]) provides a power-
ful picture by means of the so-called 3-step model to
gain intuition about the electron dynamics. There,
(i) an electron tunnel ionizes into the continuum
through the barrier formed by the Coulomb poten-
tial of the core and the electric field (via dipole cou-
pling), then (ii) the freed electron is driven in the
presence of the electric field and can (iii) eventu-
ally recombine to the core by emitting the gained
energy in terms of radiation. This description has
led to fruitful analysis in terms of quantum tra-
jectories [8–10] within the strong field approxima-
tion [11]. The progress of strong field and attosecond
physics based on the semi-classical description was
immense, but neglecting the quantum properties of
the field did not allow the use of the language for
posing specific questions about the field observables.

However, including the quantum electrodynami-
cal characteristics of the field can lead to new obser-
vations in the radiation field inaccessible from the
classical perspective, and further allows us to ask
questions unamenable before, for instance to obtain
insights about the quantum state of the field. In
fact, recent theoretical and experimental advances
have indicated that intense laser–matter interac-
tion can exhibit non-classical features. In particu-
lar, quantum optical approaches for the process of
high-order harmonic generation asked for the quan-
tum state of the harmonic field modes [12, 13] and
studied the back-action on the fundamental driv-
ing field [13, 14]. Furthermore, the experimental ad-
vances in combining strong field physics with meth-
ods known from quantum optics [15, 16] allowed
conceiving new experiments in which non-classical
states of light can be generated from the HHG pro-
cess [13, 14, 17]. This progress has then triggered the
subsequent analysis of quantum state engineering of
light using intense laser–matter interaction [18–20].
Nevertheless, and despite using Hilbert space con-
structs for the electromagnetic field, the investiga-
tion has not yet revealed inherent quantum signa-
tures in the emitted radiation from the HHG pro-
cess itself.

Besides these achievements in the quantum op-
tical description of intense laser-driven processes,
the full quantum optical properties of the emitted
radiation in the process of high harmonic genera-
tion have not been revealed yet. The radiation is
obtained from classical dipole antenna-like sources
and thus exhibits the same characteristics as clas-
sical coherent radiation sources. Furthermore, the
quantum state of the electromagnetic field is given
in terms of product coherent states, which are clas-
sical states. Those features originate from the ne-
glected dipole moment correlations in the current
theory [13, 18, 19, 21], which, if taken into account,
would eventually lead to non-classical contributions
in the properties of the emitted harmonic radia-
tion. Thus, further investigation towards accessing
this information with potential hidden and interest-
ing properties seems promising for a more detailed
understanding of the HHG process and for poten-
tial applications in optical technologies. Neverthe-
less, introducing conditioning measurements on the
field after the HHG process leads to the genera-
tion of non-classical field states by means of opti-
cal Schrödinger cat states with high photon num-
bers [14, 17–19]. This suggests the potential appli-
cability of these methods in modern optical quan-
tum technologies and could provide a new photonic
platform for information processing [22, 23]. In par-
ticular, since quantum information processing of-
ten requires entangled or superposition states as
a resource, there is a clear need to generate such
states.

The next section (Sect. 1.3) provides an intro-
duction to the current quantum optical formula-
tion of the process of high harmonic generation.
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This serves to define the stage for introducing the
current open question within the new formalism.
This will then allow us to propose further investi-
gation in this direction. In particular, it highlights
the assumptions and approximations used, which
are then questioned and analyzed in the proposed
future analysis.

1.3. Quantum optical high harmonic generation

In the process of high harmonic generation, coher-
ent radiation of higher-order harmonics of the driv-
ing laser frequency is generated [4, 24]. The trans-
fer of coherence and energy from the intense laser
source to the harmonic field modes (initially in the
vacuum) is achieved by a highly nonlinear interac-
tion of the driving field with the HHG medium, in
which the electron is used as an intermediary be-
tween the optical modes. Until recently, this was
mainly described in semi-classical terms, in which
only the electronic degrees of freedom are quan-
tized [4], although there have been early approaches
to introduce a fully quantized description of the
HHG process [21, 25, 26]. However, recent advances
in the quantum optical analysis of HHG have estab-
lished a new direction in the investigation of strong
field physics. This allows us to study the quan-
tum mechanical properties of the harmonic radia-
tion or to take into account the back-action on the
driving field [12–20, 27]. In particular, it has been
shown that conditioning procedures on processes in-
duced by intense laser–matter interaction can lead
to the generation of high-photon number control-
lable non-classical field states in a broad spectral
range [13, 14, 17–19].

What now follows is a brief introduction to the
quantum optical description of the process of HHG.
We will consider discrete field modes for the sake
of simplicity and would like to refer the reader to
the full quantum-electrodynamical description, in-
cluding a continuum of field modes given in [19].
To describe the process of HHG in the single-
atom picture (see [21], in which case this is legit-
imate), we assume that a single active electron is
initially in the ground state |g〉 and is driven by
a strong laser field which is described by a co-
herent state |α〉 in the fundamental driving mode.
The harmonic field modes q ∈ {2, . . . , N} are ini-
tially in the vacuum |{0q}〉 = ⊗q≥2 |0q〉. The in-
teraction Hamiltonian describing the process in the
length gauge and within the dipole approximation is
given by

HI(t) = −d(t) ·EQ(t), (1)
where the electric field operator

EQ(t) = − ig

N∑
q=1

√
q (b†q e

iqωt − bq e− iqωt) (2)

is coupled to the time-dependent dipole moment op-
erator

d(t) = U†sc(t, t0)dUsc(t, t0). (3)

The dipole moment is in the interaction pic-
ture of the semi-classical frame Usc(t, t0) =

T exp [− i
∫ t
t0

dτ Hsc(τ)], with respect to the Hamil-
tonian of the electron

Hsc(t) = HA − d ·Ecl(t). (4)
This semi-classical Hamiltonian is the same as tradi-
tionally considered in semi-classical HHG theory [4],
where HA = 1

2p
2 + V (r) is the pure electronic

Hamiltonian, and

Ecl(t) = Tr
[
EQ(t) |α〉 〈α|

]
=

ig
(
αe− iωt − α∗ e iωt

)
(5)

is the classical part of the driving laser field. A de-
tailed derivation of the interaction Hamiltonian
HI(t) can be found in [19]. It now remains to solve
the time-dependent Schrödinger equation (TDSE)
for the dynamics of the total system of electron
and field. Since we are interested in the quantum
optical dynamics of the field, and in particular in
the process of HHG, we consider the field evolution
conditioned on the electronic ground state (this is
because the electron returns to the ground state in
the HHG process). We thus project the TDSE on
|g〉, and it remains to solve

i∂t |Φ(t)〉 = −
〈
g
∣∣ d(t) ·EQ(t)

∣∣Ψ(t)
〉
, (6)

where |Φ(t)〉 = 〈g|Ψ(t)〉 with the state of the total
system |Ψ(t)〉. Taking into account that the elec-
tron is initially in the ground state, it is equivalent
to solving for the operator

KHHG =
〈
g
∣∣ T exp

[
i

∫ t

t0

dt′ d(t′) ·EQ(t
′)

] ∣∣g〉,
(7)

which solely acts on the initial field state |Φi〉 =
|α〉 |{0q}〉. This can be solved exactly when neglect-
ing correlations in the dipole moment of the elec-
tron [18, 21], such that we can write

KHHG ≈ T exp

[
i

∫ t

t0

dt′
〈
g
∣∣d(t′)∣∣g〉 ·EQ(t

′)

]
=

N∏
q=1

e iϕqD(χq), (8)

where the shift in each mode is given by the re-
spective Fourier component of the time-dependent
dipole moment expectation value

χq = − ig

∫ t

t0

dt′ 〈d(t′)〉e iqωt
′
. (9)

Thus, the solution to (8) is given by a displacement
operation acting on the field modes
|Φ〉 = KHHG |Φi〉 = KHHG |α〉 ⊗q≥2 |0q〉 =

|α+ χ1〉 ⊗q≥2 |χq〉 . (10)

The harmonic modes are described by coherent
states due to the fact that the source for the coher-
ent radiation is related to the electron dipole mo-
ment expectation value 〈d(t)〉 = 〈g|d(t) |g〉, which
acts as a classical charge current coupled to the
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Fig. 1. Schematic illustration of the HHG con-
ditioning experiment performed to generate opti-
cal cat states with controllable quantum features.
An intense laser field drives the process of HHG, in
which an entangled state of the fundamental mode
and all harmonics is generated. A conditioning mea-
surement on the harmonic field modes in the quan-
tum spectrometer (QS) leads to a coherent state
superposition in the driving field of the form (11),
and is measured with a homodyne detection scheme
after overlapping with a local oscillator of varying
phase delay ϕ. The reconstructed Wigner functions
of the homodyne measurement are shown in Fig. 2.

field operator. It thus only represents the coherent
contribution to the harmonic radiation field, and
no genuine quantum signature is found. Further-
more, the fact that the final state is a product co-
herent state over all modes is a consequence of the
approximation of neglecting the dipole moment cor-
relations. Otherwise, if going beyond the linear or-
der in EQ(t), the field operators for different modes
would mix when evaluating the exact propagator
in (7) (see Sect. 2.3). Nevertheless, a phenomeno-
logical approach to take into account the entangle-
ment between the field modes was performed by the
authors in [17, 18].

However, we can employ conditioning schemes
on certain field modes, which allows for quantum
state engineering of light with non-classical proper-
ties [18, 19]. In particular, it has been shown ex-
perimentally that a conditioning procedure on the
process of HHG can lead to coherent state super-
position states (CSS) in the driving laser mode (in
the infrared (IR) regime) in close analogy to op-
tical cat states [13, 14]. The experimental config-
uration is schematically shown in Fig. 1, in which
the conditioning on HHG is carried out, and a ho-
modyne detection measurement of the fundamen-
tal driving field is performed [13, 19]. To formally
describe the generation of these optical CSS via
a conditioning operation on the HHG state |Φ〉 =
|α+ χ1〉⊗q≥2 |χq〉 from (10), M. Lewenstein has rec-
ognized that it can be obtained through the projec-
tion onto P = 1− |α〉 〈α|. This projector was phe-
nomenologically introduced in [13] and led to the
CSS state
|ψ〉 = |α+ χ1〉 −

〈
α
∣∣α+ χ1

〉
|α〉 . (11)

Then P. Stammer showed in [17, 18] how this projec-
tor follows from a projective conditioning measure-
ment on the harmonic field modes when further tak-
ing into account the correlations between the field
modes, and also derived the actual measurement

Fig. 2. Wigner function of the coherent state su-
perposition in (11) for different displacement of (a)
χ1 = 0.1, (b) χ1 = 1.0, which shows features of
an optical “kitten” state and a “cat” state, respec-
tively.

operation Mχ
α = 1− exp

(
−
∑
q≥2 |χq|2

)
|α〉 〈α|,

which converges to the projector Mχ
α ' P =

1− |α〉 〈α| since
∑
q≥2 |χq|2 is on the order O(1/N),

where N is the harmonic cutoff. The completeness
relation of the associated positive operator-valued
measure for the measurement operator was shown
in [18] within the framework of the quantum theory
of measurement. To reconstruct the quantum state
of the coherent state superposition in (11), a ho-
modyne detection measurement is performed (see
Fig. 1), and the Wigner function of the state is re-
constructed. The Wigner function corresponding to
the CSS in (11) is shown in Fig. 2 for two differ-
ent values of the displacement χ1. The possibility
of experimentally varying the displacement χ1, for
instance by changing the gas density in the HHG
interaction region, allows for a change of the CSS
from an optical “kitten” state for small displacement
(displaced first Fock state) to an optical “cat” state
for larger displacement, as shown in Fig. 2a and 2b,
respectively. This allows us to have control over
the non-classical properties of the generated CSS in
order to generate high-photon number optical cat
states from the infrared to the extreme ultraviolet
regime [13, 17]. We note that the displacement χ1
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can not be arbitrarily large, since it would destroy
the superposition in (11) due to the pre-factor in
the second term, which is given by the overlap of
the two states in the superposition. However, since
α is the initial amplitude of the coherent state, this
value has a very high photon number, and thus the
optical cat and kitten states can live far away in
phase space while the two states in the superposi-
tion are not too distinguishable.

2. Open questions about quantum optics
of high harmonic generation

In the previous section, we have outlined the cur-
rent state of the art of our efforts to have a quan-
tum optical description of the process of high har-
monic generation. However, there we made assump-
tions about the experimental boundary conditions
and performed approximations by neglecting par-
ticular contributions. These need to be tested. Fur-
thermore, the quantum optical description of the
light–matter interaction has not yet revealed any
genuine quantum mechanical feature in the HHG
emission process itself. It turned out that the states
of the harmonic field modes {q} are described by
product coherent states |χq〉 — which are purely
classical. Non-classical signatures, by means of the
optical cat state, emerged through the conditioning
process. However, we believe that the emitted radi-
ation in the process of HHG contains non-classical
signatures once the incoherent contributions from
the dipole moment correlations are taken into ac-
count, and furthermore, that the field state will be
entangled.

In the following, we will outline some open ques-
tions in the description of the process of high-order
harmonic generation from a quantum optical point
of view and provide a motivation why this should
be a matter of interest for future investigations.

2.1. On the role of the optical phase
in high harmonic generation

To describe the experimental conditions of the
HHG experiment, we have assumed that the ra-
diation field which drives the process can be de-
scribed by a single-mode coherent state |α〉. This
would imply that the source emits continuous coher-
ent laser light in a single-mode with a well-defined
phase (coherent in the sense of having non-vanishing
off-diagonal density matrix elements in the pho-
ton number basis). However, standard HHG exper-
iments are performed using a pulsed source of ra-
diation. On the one hand, this would automatically
require a multi-mode description in the frequency
domain due to the finite duration of the pulses (they
are not just finite but rather super short in the
regime of femtoseconds). And thus, we extended
the theory to a continuum of modes given in [19].
Furthermore, assuming a pure coherent state de-
scription implies that the field has a well-defined

phase and would thus require a phase-stabilized
laser system, such that the carrier wave and the en-
velope of the pulse have a fixed phase relation from
shot to shot (carrier-envelope phase (CEP) stabi-
lization [28]). Otherwise, for non-phase-stabilized
driving lasers, where the phase varies from shot to
shot, one has to average over all possible phases and
take into account a proper mixed initial state

ρ|α| =
1

2π

2π∫
0

dϕ |αe iϕ〉 〈αe iϕ| =

e−|α|
2 ∑

n

∣∣α∣∣2n
n!
|n〉 〈n| . (12)

In particular, the experiments in [13, 14], which use
the process of HHG to generate optical cat states,
do not use CEP-stable driving fields. When one an-
alyzses the process of HHG and the conditioning ex-
periment introduced in [13], without the assumption
of having a pure coherent initial state within the
current quantum optical description, there arise for-
mal difficulties and interpretational inconsistencies
with the well-accepted picture of the HHG process.

The difficulty arising in the formal analysis is that
the semi-classical frame from the interaction pic-
ture of the Hamiltonian HI(t) (see Sect. 1.3) is not
well defined for mixed initial states. Within a fixed
semi-classical frame, which is defined via the uni-
tary transformation D(α), we have seen that HHG
effectively leads to a shift in the field modes, i.e.,
ρ0 → KHHG ρ0 K†HHG (see (10)). However, for
the mixed state ρ|α|, there is no well-defined semi-
classical frame defined through a unique displace-
ment operation D(α). This can also be seen from
the fact that the classical part of the driving field
vanishes

Ecl(t) = 〈EQ(t)〉 = Tr
[
EQ(t) ρ|α|

]
= 0, (13)

which implies that there is a vanishing mean electric
field amplitude. Hence, this conflicts with the tra-
ditionally used powerful picture of HHG in terms of
the 3-step model introduced in Sect. 1.2. In this pic-
ture, the presence of a non-vanishing electric field
amplitude is crucial for describing the tunnel ioniza-
tion process and the electron dynamics in the con-
tinuum driven by the field. The underlying physical
property, for the fact that the semi-classical frame
is only uniquely defined for a pure coherent ini-
tial state |α〉, is the phase of the field. A coherent
state has a well-defined phase, which implies that
the semi-classical frame exists via

Ecl(t) = 〈EQ(t)〉 = Tr
[
EQ(t) |α〉 〈α|

]
=

〈α|EQ(t) |α〉 ∝ sin(ωt) (14)
and the classical picture of an electric field driv-
ing the electron process holds. However, it is now
natural to ask if the process of high harmonic gen-
eration requires non-vanishing field amplitudes, as
suggested by the 3-step model, and if harmonics
can be generated from driving fields without optical
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coherence, such as the phase randomized state in
(12), which is diagonal in the photon number ba-
sis. Such a state with vanishing off-diagonal density
matrix elements in the photon number basis does
not exhibit optical coherence, and we thus ask if
optical coherence in the driving field is a necessary
requirement to generate high-order harmonics. For
instance, the electric field expectation value of the
mixed state (12) vanishes 〈EQ〉 = Tr[EQ ρ|α|] =
Ecl = 0, due to the totally arbitrary phase, and
thus there is no well-defined semi-classical frame.
This ultimately leads to the question whether pro-
cesses driven by sufficiently large photon number
states |n〉, which have a completely random phase
due to the well-defined photon number, allow for
the generation of high-order harmonics. Or, even
more general, if incoherent radiation can be used to
drive the parametric process of HHG as recently ob-
served for spontaneous parametric down-conversion
in [29].

In many optical experiments, the presence of opti-
cal coherence is not required to explain the measure-
ment results, and the question of the requirement of
optical coherence was first posed in [30]. It is thus
natural to ask if the process of HHG requires opti-
cal coherence (in the sense of a non-diagonal density
matrix in the photon number basis) or if an optical
field with a vanishing mean electric field amplitude
is sufficient to drive the HHG process. If this is not
the case, and we can generate high-order harmonics
with incoherent light, how do the harmonic radi-
ation properties differ? And furthermore, how can
the powerful picture of the 3-step model be under-
stood for driving fields with vanishing mean-field
amplitude? Those questions suggest that there is
a need for further theoretical investigation about
the role of the optical phase in the HHG process,
and furthermore whether the conditioning experi-
ment in [13] is sensitive to the phase of the field or
not. From an experimental perspective, we are eager
to observe the reconstruction of the Wigner func-
tion for CEP-stabilized driving laser fields. From
the theoretical point of view, the first question nec-
essary to answer in order to describe the experimen-
tal boundary conditions is: What is the quantum
state of an ultrashort few-cycle (CEP-stable) laser
pulse? One way to approach this question could be
by following the arguments similar to [31, 32] or [33],
just for pulses of radiation with and without CEP-
stabilization.

2.2. Theory of quantum optical coherence
of high harmonic generation

In the derivation of the field state after the pro-
cess of HHG, we have thus far always neglected the
correlations in the dipole moment of the electron,
i.e., approximating (7) with (8). Consequently, we
only considered a classical charge (by virtue of the
dipole moment expectation value) coupled to the
field operator. Therefore, we have only considered

the coherent contribution to the harmonic radiation
field. This has the advantage of being exactly solv-
able. However, as commonly known [34], the inco-
herent contribution of the emitted radiation can ex-
hibit non-classical signatures and can lead to in-
teresting observations, such as photon antibunch-
ing [35]. This incoherent contribution originates
from the correlations in the dipole moment. In order
to access the full properties of the harmonic radi-
ation, we should not perform the approximation of
neglecting the dipole moment correlations. Includ-
ing those correlations, one can obtain the complete
properties of the light field in the process of HHG,
which further allows one to obtain a detailed the-
ory of quantum optical coherence for the process of
high harmonic generation. Furthermore, including
those correlations allows asking for the actual quan-
tum state of the field after HHG, going beyond the
product coherent states in (10). Taking into account
terms beyond linear order in EQ(t) would lead to
a coupling of different field modes, and thus to en-
tanglement and squeezing.

However, all the previous analysis was performed
in the Schrödinger picture (or more precisely, in the
interaction picture). However, computing the ob-
servables of the field, such as the spectra or two-time
correlation functions, and eventually finding non-
classical signatures, does not necessarily require the
knowledge of the field state after the interaction.
That’s why we will switch to the Heisenberg picture,
making the field operators time-dependent, which
allows us to obtain two-time averages including the
dipole moment correlations.

We will start with the Hamiltonian of the intense-
laser–matter interaction (here in 1D for linear po-
larization)

H =
∑
q

ωqb
†
qbq +HA − dEQ, (15)

where HA is the atomic Hamiltonian, and
the electric field operator is given by EQ =
− ig

∑
q

√
q(b†q−bq). First, we have to transform the

field operator into the Heisenberg picture

bq(t) = bq e
− iωqt +

√
q g

t∫
0

dt′ d(t′) e− iωq(t−t′).

(16)
We will then compute the first-order correlation
function [34]
G(t, t+τ) =

〈
b†q(t)bq(t+τ)

〉
= q g2 e iωqτ

×
t∫

0

dt1 e− iωqt1

t+τ∫
0

dt2 e iωqt2
〈
g
∣∣d(t1)d(t2)∣∣g〉,

(17)
such that we can use the Wiener–Khinchin theo-
rem [36], stating that the auto-correlation function
of a stationary random process and the spectral
density of this process are a Fourier-transform pair
in the ensemble average, to obtain the power spec-
trum given by
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S(ω) =
1

π
Re

[∫ ∞
0

dτ lim
t→∞

〈
b†q(t)bq(t+τ)

〉
e iωτ

]
.

(18)
It turns out that the power spectral density S(ω)
consists of two terms, the coherent part and an in-
coherent contribution coming from the dipole mo-
ment correlations

G(1)(t, t+τ) = G
(1)
coh(t, t+τ) + q g2 e iωqτ

×
t∫

0

dt1 e− iωqt1

t+τ∫
0

dt2 e iωqt2

×
∫
dp 〈g| d(t1) |p〉 〈p| d(t2) |g〉 , (19)

where the coherent contribution (first term) comes
from the dipole moment expectation value. In the
stationary limit, this term reads

lim
t→∞

G
(1)
coh(t, t+τ) = g2 q

∣∣〈d(ωq)〉∣∣2 e− iωqτ ,

(20)
such that the coherent contribution to the power
spectrum is given by

Scoh(ω) = g2 q
∣∣〈d(ωq)〉∣∣2 δ(ω − ωq). (21)

It shows that the HHG spectrum consists of peaks
at frequency ωq = q ω (when properly taking into
account the finite duration of the driving pulse, the
harmonic peaks will have a finite width), with the
weight of each harmonic given by the Fourier trans-
form of the time-dependent dipole moment expec-
tation value, and it remains to compute the incoher-
ent contribution. However, it also needs to be care-
fully analyzed whether the Wiener–Khinchin the-
orem (WKT) can be used, since it only holds for
a stationary random process in the ensemble av-
erage (see discussion about time-dependent spec-
tra in [37, 38]). One should also analyze if HHG is
an ergodic process, which would then allow one to
use the WKT since the ensemble and time average
agree for a stationary process, and the autocorrela-
tion function in (18) only depends on the temporal
difference (stationarity in the ensemble or temporal
average are not sufficient for ergodicity). Further-
more, we then want to compute the second-order
correlation function

g(2)(τ) = lim
t→∞

〈
b†q(t)b

†
q(t+τ)bq(t+τ)bq(t)

〉〈
b†q(t)bq(t)

〉 〈
b†q(t+τ)bq(t+τ)

〉 ,
(22)

since this would provide insights into possible anti-
bunching signatures, i.e., g(2)(0) < g(2)(τ). How-
ever, we imagine that the coherent contribution
dominates the incoherent contribution, and one
needs to conceive clever experiments to either sep-
arate the two processes for individual harmonics
or to find the conditions in which the two contri-
butions are on the same order of magnitude. This
could eventually be realized with a two-color driving
field (ω and its second harmonic 2ω), which leads to
the appearance of even harmonics in the spectrum.
By varying the phase between the two driving fields,
the amplitude of the even harmonics can be altered,
such that there might be a regime in which the co-
herent and incoherent contributions can compete.

2.3. Entanglement and squeezing
in high harmonic generation

Thus far, we found that the field state of the
harmonic modes is given by product coherent states
of all filed modes (10). This is a consequence of
the approximation performed in (8) (neglecting the
dipole moment correlations), which effectively leads
to a linear expression in the field operators b(†)q .
While the commutator of the exact interaction
Hamiltonian HI(t) = −d(t)EQ(t) at different times
is an operator in the total Hilbert space of atom
plus field,[

HI(t1), HI(t2)
]
∈ HA ⊗HF. (23)

The approximate interaction Hamiltonian
Happ

I (t) = −〈d(t)〉EQ(t) is just a complex number,
i.e., [ Happ

I (t1), H
app
I (t2) ] ∈ C, and thus when

solving (8), the modes do not mix. Going beyond
the linear term of the field operator EQ(t) would
lead, for instance, to squeezing in the field modes.
Furthermore, all field modes will become entangled
due to the mixing of the field operators b(†)q of the
different modes. We can thus start to evaluate the
commutator of the exact interaction Hamiltonian
at different times, yielding

[
HI(t1), HI(t2)

]
=

−g2
∑
qp

√
q p
∑
ijk

|i〉 〈j|
(
dik(t1)dkj(t2)− dik(t2)dkj(t1)

)(
b†qb
†
p e

iωqt1 e iωpt2 − b†qbp e− iωpt2 e iωqt1 + h. c.
)

+g2
∑
q

q
∑
ijk

(
dik(t1)dkj(t2)e

− iωq(t1−t2) − dik(t2)dkj(t1)e iωq(t1−t2)
)
|i〉 〈j| , (24)

where we have used a discrete basis for the atomic
degree of freedom 1 =

∑
i |i〉 〈i|, and introduced

the transition dipole matrix elements dij(t) =

〈i| d(t) |j〉. Note that for the approximation of ne-
glecting the dipole moment correlations and taking
the expectation value in the electronic ground
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state leads to
∑
ijk dik(t1)dkj(t2)〈g|i〉〈j|g〉 '

〈d(t1)〉〈d(t2)〉, and thus the first line in (24) van-
ishes (where the squeezing and mixing of modes
would came from), and the second line reduces
to what one would get from [Happ

I (t1), H
app
I (t2) ].

However, for the exact interaction Hamiltonian
HI(t) = −d(t)EQ(t), we observe that the differ-
ent field modes mix, which would lead to squeez-
ing and entanglement. One could, for instance,
already observe the first signatures of such non-
classical states due to the higher-order terms of
EQ(t) when taking into account up to the quadratic
order in the coupling g ∝

√
ω/Veff with the

quantization volume Veff . Thus, when solving (7)
by using Baker–Campbell–Hausdorff for infinitesi-
mal time steps, one obtains an approximate solu-
tion up to quadratic order in g when only taking
into account [HI(t1), HI(t2) ] ∝ g2, and the time-
dependent transition dipole matrix elements dij(t)
can be computed within the strong field approxima-
tion [11].

3. Conclusions

Motivated by recent studies on the quantum op-
tical description of the process of high harmonic
generation from intense-laser-field-driven atoms, we
identified current challenges and how this can lead
to future investigations. With the proposed studies,
we anticipate that more complete insights into the
process of HHG will be obtained, and that the full
characteristics of the radiation field will be found.
The current quantum optical framework treats the
source of the scattered field as a classical charge
current, similar to a dipole antenna, and thus only
the coherent contribution is obtained through the
dipole moment expectation value. Thus, the radi-
ation properties, as well as the final field state,
do not indicate genuine quantum signatures in the
HHG process. Only via conditioning experiments,
through a post-selection procedure, we obtained
non-classical signatures in the reconstructedWigner
function. It would thus be of great interest to see
if, already at the level of the HHG process itself,
without conditioning, non-classical observations can
be obtained in the radiation properties of the scat-
tered field. In addition to the proposed approaches
present in this manuscript, there exist further ef-
forts in this direction. For instance, there are the
following options to achieve such situations:

• So far, we have considered high-order har-
monics generated in atomic systems. Alter-
natively, one can consider HHG from solid-
state targets. Even in the case of “trivial”
solid-state systems, such as electrons in the
Wannier–Bloch picture [39], one can obtain
electron-field entanglement [40] since the elec-
tron can transition on one site in the lattice,
but might recombine in another side. A sim-
ilar mechanism, of semiconductors driven by

strong coherent radiation, is studied in a re-
cent paper [41], where the potential for gen-
erating non-classical light fields is discussed.

• Another option, besides driving HHG in sim-
ple uncorrelated solid-state targets, is to look
for HHG in laser-driven strongly correlated
materials, such as high-temperature supercon-
ductors [42]. For a simple, yet pedagogical,
model of such a mechanism, see [43, 44].

• Finally, one can use non-classical, for in-
stance, squeezed light to drive the HHG pro-
cess in atoms, which leads to its fingerprints
in the field observable, such as the HHG spec-
tra [45]. Which, however, also do not depict
non-classical signatures in the harmonic radi-
ation based on this observable.

.
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We show that despite fundamentally different situations, the wave functional of the vacuum in a res-
onator is identical to that of free space. The infinite product of the Gaussian ground state wave functions
defining the wave functional of the vacuum translates into an exponential of a sum rather than an in-
tegral over the squares of mode amplitudes weighted by the mode volume and power of the mode wave
number. We express this sum by an integral of a bilinear form of the field containing a kernel given
by a function of the square root of the negative Laplacian acting on a transverse delta function. For
transverse fields, it suffices to employ the familiar delta function, which allows us to obtain explicit
expressions for the kernels of the vector potential, the electric field, and the magnetic induction. We
show for the example of the vector potential that different mode expansions lead to different kernels.
Lastly, we show that the kernels have a close relationship with the Wightman correlation functions of
the fields.

topics: wave functional, vacuum, Wightman tensor, cavity quantum electrodynamics

1. Introduction

The standard approach [1, 2] towards quantiza-
tion of the electromagnetic field is straightforward:
decomposition of the field into modes and quantiza-
tion of the resulting harmonic oscillator amplitudes
by canonical commutation relations. The wave func-
tional of the vacuum proposed by John Archibald
Wheeler [3–5] and extended [6–10] and refined by
Iwo Białynicki-Birula does not rely on a mode ex-
pansion but involves the complete electromagnetic
field. The essence of the wave functional is best
summarized by the following quote from Białynicki-
Birula’s article [7] employing the wave functional to
obtain the Wigner phase space distribution of the
whole electromagnetic field:

“The whole electromagnetic field is treated as one
huge, infinitely dimensional harmonic oscillator. The

wave function and the corresponding Wigner function
become then functionals of the field variables.”

Recent impressive progress in cavity and circuit
quantum electrodynamics invites us to reconsider
the wave functional of the vacuum in the case of a
resonator. Indeed, so far, investigations have con-
centrated exclusively on free space. In the present
article, we show that the expressions for the wave
functional of the vacuum in the two situations are
identical.

1.1. The cradle of the quantum theory of fields

The year 1925 marks not only the birth of modern
quantum mechanics, but is also arguably the begin-
ning of quantum electrodynamics (QED). Indeed,
the “Drei-Männer-Arbeit” [11] not only provided the
foundations of matrix mechanics, but also presented
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the quantization of a free electromagnetic field for
the first time. This was extended only two years
later to include the interaction with quantized mat-
ter [12].

The discovery of the Lamb shift [13] and
the anomalous magnetic moment [14] in 1947
demonstrated that the theory, so far plagued by in-
finities, contained some truth. The renormalization
theory [15, 16], developed shortly after, removed
these infinities and gave rise to the field of QED, a
theory [17] with an unprecedented agreement with
experiment.

Almost 40 years later, new experimental mani-
festations of QED emerged from the use of high-Q
microwave cavities [18, 19] and the interaction of
individual atoms with single modes of the radiation
field. Whereas in the first era of cavity QED, the
experiments were only in the microwave domain,
the optical domain soon followed. The last 20 years
have seen the development of a new rapidly moving
branch of quantum optics summarized by circuit
QED [20] and, recently, waveguide QED [21].

Ever since the proposal of quantized electrody-
namics, there has been a constant drive toward
a deeper understanding of the associated vacuum
fluctuations and the measurability of the field com-
ponents. For example, Lev Davidovich Landau and
Rudolf Peierls [22] applied the uncertainty principle
to relativistic quantum theory and concluded:

“The assumptions of wave mechanics which have
been shown to be necessary in section 2 are therefore
not fulfilled in the relativistic range and the applica-
tion of wave mechanics methods to this range goes
beyond their scope. It is therefore not surprising that
the formalism leads to various infinities; it would be
surprising if the formalism bore any resemblance to
reality.”

Needless to say, this grim outlook was not shared
by Niels Bohr, who, together with Léon Rosenfeld,
immediately started to correct this article. However,
it took them two years to achieve this goal for the
case of free fields [23], and they stated:

“Not only is it an essential complication of the
problem of field measurements that, when comparing
field averages over different space-time regions,
we cannot in an unambiguous way speak about a
temporal sequence of the measurement processes.”

After the discovery of renormalization Bohr and
Rosenfeld returned [24] to this problem and in-
cluded charges. For an interesting commentary by
Rosenfeld providing the historical context of both
articles we refer to [25].

The analogous question of the measurability
of the gravitational field, pioneered by Helmut
Salecker and Eugene Paul Wigner [26], led to
Wheeler’s Geometrodynamics [3] and the quantum
fluctuations of gravity and the quantum foam. It

was in this context that he proposed to consider the
wave functional [4, 5] of electromagnetism as a guide
to linearized gravity. Armed with the insights from
electromagnetism, he was able to derive an estimate
for the fluctuations of the space-time geometry at
distances of the Planck length. For a detailed dis-
cussion of the wave functional of linearized gravity,
we refer to the classic paper by Karel Kuchař [27].

Similarly, but on more general grounds, Julian
Schwinger investigated the effect of the so-called
fluctuating sources (i.e., transient fields) in quantum
field theories [28]. Some of these ideas [29, 30] even-
tually found their way into the framework, which
later became effective (quantum) field theory.

Recent years have seen a renaissance of the
wave functional of the vacuum. It now appears
not only in the Schrödinger representation of quan-
tum field theory [31, 32] but also in possible re-
alizations [33, 34] of the Gedanken Experiment of
Richard P. Feynman [35] addressing the question
of measurability [36] of entanglement between two
quantum systems due to gravity which has recently
attracted significant attention. This field has be-
come quite an active area of research, due to the
emerging technical possibility of preparing almost
macroscopic systems in motional quantum states,
and also because direct tests of the quantum nature
of gravity via the detection of gravitons seem highly
unlikely, as suggested [37] by yet another founding
father of QED, Freeman Dyson.

For this reason, we find it appropriate to revisit
the wave functional of the vacuum and analyze it
for the case of a resonator. This situation is not
only timely, but the set of discrete modes makes
the derivation much cleaner. On the other hand,
the discreteness adds a different complication aris-
ing from the sum over the modal indices, confirming
the well-known adage: “There ain’t no such thing as
a free lunch.”

1.2. Road to the wave functional

We now summarize our path to the wave func-
tional of the vacuum in a resonator using the ex-
ample of the electric field representation. In Fig. 1,
we start from the decomposition of the electric field
E ≡ E(t, r) (left lower corner) into a discrete set
of modes u`. Here, the subscript ` combines the po-
larization index as well as the indices characterizing
the wave vector k` enforced by the boundary con-
ditions on the Helmholtz equation by the shape of
the resonator.

The subsequent quantization of the correspond-
ing electric field amplitudes E` ≡ E`p` using the
canonical commutation relations leads us to the
eigenvalue equation of the electric field operator
Ê` in mode u`. Together with the definition of the
ground state |0`〉 of the `-th mode in terms of the
annihilation operator â`, we find the Gaussian wave
function ψ`(E`) ≡ 〈E` | 0`〉 in the electric field rep-
resentation.
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Fig. 1. Road to the wave functional Ψ [E] of the vacuum in a resonator. We identify five different ingredients
marked by numbers: 1○ mode expansion of the electric field E = E(t, r), 2○ quantization of the field E` in each
mode u` according to the canonical commutation relations, 3○ definition of the electric field eigenstates |E`〉
and the ground state |0`〉 of the `-th mode, 4○ infinite product of all ground state wave functions ψ`(E`), and
5○ wave functional Ψ [E] of the vacuum after the elimination of the mode decomposition. The last ingredient,
i.e., the connection between the discrete sum over the modes and the space integrals of the bilinear form of
the electric field E and a kernel K (E), indicated by a dashed line, constitutes the topic of our article.

In the absence of matter and interactions, the
modes are independent of each other and corre-
spond to a product state with all modes in the
ground state. Hence, we arrive at an infinite product
of Gaussian wave functions. Due to the functional
equation of the exponential function, this product
reduces to a single exponential of an infinite sum
over the squares of the scaled fields E`/E` in the
modes.

The mode expansion we started with shows that
this sum is identical to an appropriate space integral
consisting of a bilinear form of the electric field and
a kernel. In this way, we have eliminated the mode
decomposition and have arrived at an expression
containing the quantum mechanics of the vacuum
as well as the complete electric field distribution
E = E(t, r) without resorting to modes.

We conclude this section by briefly addressing the
differences and detours enforced by free space due to
the continuous superposition of plane wave modes.

In the case of free space, the continuous super-
position of the plane waves, rather than the dis-
crete set of modes, involves an integration over the
wave vector rather than a summation over mode
indices `. The quantization of the field is identical
to that in a resonator, with the exception of the
commutation relation where the Kronecker delta in
` and `′ is replaced by the Dirac delta function in
the difference of the wave vectors k and k′.

However, the infinite continuous product of the
ground state wave functions now requires either a
discretization of the continuum of the wave vectors

or a more sophisticated technique. Once the func-
tional equation of the exponential function has
transformed the infinite product into an infinite
sum, we can continue with the integral, which is
a continuous superposition. In free space as well as
in the resonator, we arrive at the same expression
for the wave functional Ψ [E] of the vacuum.

1.3. In a nutshell

Before we dive into the mathematics, we motivate
our results without detailed derivations and summa-
rize them in Tables I and II. We start our discussion
by recalling in Table I the essential ingredients of
the expansion of a vector field into modes.

Throughout the article, we focus on an expansion
of the vector potential A, the electric field E, and
the magnetic inductionB into a set of discrete mode
functions.

Whereas the decomposition of A and E involves
the mode functions u`, the one of B brings in the
curl of u` due to the fact that there are no magnetic
monopoles. In order to make the curl of u` dimen-
sionless, we have introduced the inverse of the wave
number k`.

The field strengths A`, E`, and B` of A, E, and
B in the mode ` are determined by the products of
the corresponding vacuum fields A`, E`, and B`, and
a dimensionless amplitude. In the case of A` and
B`, this amplitude is given by q`, whereas for E` it
is p`. They are analogs of the familiar coordinate
and momentum variables of a harmonic oscillator.
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TABLE I

Elements of the expansion of a vector field F , such as the vector potential A, the electric field E, and the magnetic
induction B into a discrete set of mode functions u` of the vector potential. Here, ` denotes the mode index
consisting of the polarization and three integers characterizing the wave vector k` determined by the boundary
conditions of the Helmholtz equation imposed by the shape of the resonator. The field strengths A`, E` ,and B`

in the `-th mode are given by the products A` q`, E` p`, and B` q` of the vacuum field strengths A`, E`, and B` as
well as the dimensionless quadrature variables q` and p` of a harmonic mode oscillator of frequency ω`. Here we
have also included the mode expansions in terms of the eigenmodes of the individual fields defined by the solution
of the Helmholtz equation for each field. These are the eigenmodes u` of the vector potential A, the eigenmodes
ν` of the electric field, and the eigenmodes w` of the magnetic induction.

Field F Eigenmodes {f`} Eigenmode expansion {u`}-mode expansion
Mode field
strength

Vacuum field

A {u`}
∑̀
A` u`

∑̀
A` u` A` = A` q` A` =

√
~

ε0ω`V`

E {ν`}
∑̀
E` ν`

∑̀
E` u` E` = E` p` E` = A`ω`

B {w`}
∑̀
B`w`

∑̀
B`k

−1
` (∇× u`) B` = B` q` B` =

1

c
E`

We recall from the Maxwell equations that in the
Coulomb gauge, the electric field is determined by
the time derivative of the vector potential. As a re-
sult, the vacuum electric field E` differs from that of
the vector potential A` by the frequency ω` of the
mode.

In general, the ratio of the magnetic induction to
the electric field is governed by the speed of light c.
This property also holds true for the corresponding
vacuum fields. Thus, the ratio between the mag-
netic induction and the vector potential is given by
the wave number k` due to the dispersion relation
k` ≡ ω`/c of light.

This difference in the wave number dependence of
the vacuum fields has important implications when
we now make the transition to quantum mechanics
and motivate the wave functional of the vacuum in
a resonator. We summarize our path to this expres-
sion in Table II.

We start by recalling that the ground state
wave function ψ` of a single mode is determined
by a Gaussian. Since its argument f` has to be
dimensionless, it must involve the ratio of the
field strength F` divided by the associated vacuum
field F`.

The wave function of the complete electromag-
netic field describing a quantum state with every
mode in the ground state is defined by the infi-
nite product of the corresponding single mode wave
functions. Due to the functional equation of the
exponential function, this product of exponentials
reduces to a single exponential whose argument is
determined by the sum of the arguments of the in-
dividual exponentials. Hence, we arrive at a sum of
the squares of the dimensionless variables f` over all
modes.

When we recall from Table I the definitions of
these vacuum fields, we obtain for f2` the product
of the parameter β(F ), determined by fundamental

constants such as the dielectric constant ε0, reduced
Planck’s constant ~, speed of light c, and resonator
specific parameters such as the square of the field
strengths F 2

` , the mode volume V` and the wave
number k`, or its inverse.

Since F 2
` emerges in this sum, it is tempting to

replace it with an integral of a bilinear form of the
complete field. Indeed, this sum over modes is rem-
iniscent of the energy of the electromagnetic field
in a resonator. However, in contrast to the present
discussion, where the sums involve either the mode
wave number or its inverse, the expression for the
energy contains the square of it.

It is at this point that the difference in the de-
scriptions of the electromagnetic field in terms of
a continuous or a discrete superposition of modes
enters the stage. This subtle point originates from
the definition of the frequency of the mode.

Indeed, when we use a continuous superposition
of plane waves, the wave number given by the ab-
solute value of the wave vector is directly related
to the integration variable representing the super-
position. In contrast, for a discrete superposition of
mode functions, the summation is over the mode
indices defining the frequency, which is determined
by the boundary conditions for the Helmholtz equa-
tion.

It is this distinct feature that forces us to take
advantage of the concept of a fractional root of the
negative Laplacian. This tool allows us to represent
the kernel as an operator acting on the completeness
relation, which is ultimately a Dirac delta function.

Hence, the difference between the kernels of the
vector potential and the electric field or the mag-
netic induction manifests itself in an additional fac-
tor to the Fourier representation of what would
normally be the Dirac delta function by the same
power of the wave number as in the mode sum. This
feature stands out most clearly in Table II.
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TABLE II

Building blocks of the wave functional Ψ [F ] ≡ N (F ) exp(− 1
2
β(F )I(F )[G]) of the vacuum in a resonator for a

free field F = F (t, r), given either by the electric field E, the magnetic induction B or the vector potential A
emerging from the infinite product of ground state wave functions ψ`(F`) ≡ N (F )

` exp[−(F`/F`)
2/2] of the `-th

mode. For the example of A we obtain two different kernels and two different fields in the double integral. For the
modes u`, we find a kernel ∼ 1/r4 with A in the integral whereas for w`, we arrive at the same kernel as in E
and B, but now ∇×A appears. Here N (F ) ≡

∏
`N

(F )
` denotes a normalization constant, and the bilinear form

I(F ) ≡
∫
d3r

∫
d3r′G†(r)K (F )(r, r′)G(r′) associated with F can be reduced to a scalar kernel K (F ) ≡ K (F )(r)

in the mode basis {f`} and is given by the Fourier integral F{F (k)} ≡ (2π)−3
∫
d3k F (k) e ik·r extending over

all space.

Field F Mode basis {f`} F`/F` (F`/F`)
2 β(F ) F (k`) G Scalar kernel K(F )

A {u`}
A`

A`
β(A)A2

` k`V`
ε0c

~
k` A F{k} ∼ −1/r4

E {ν`} = {u`}
E`

E`
=

E`

A`ω`
β(E)E2

` k
−1
` V`

ε0
~ c

1/k` E F{1/k} ∼ 1/r2

B {w`} = {k−1
` ∇× u`}

B`

B`
=
cB`

E`
β(B)B2

` k
−1
` V`

ε0c

~
1/k` B F{1/k} ∼ 1/r2

A {w`} = {k−1
` ∇× u`}

A
(w)
`

A`
β(A)A

(w)2

` k−1
` V`

ε0c

~
1/k` ∇×A F{1/k} ∼ 1/r2

1.4. Overview

Our article is organized as follows: in Sect. 2, we
derive an expression for the wave function of the
vacuum in a resonator in terms of a sum over modes.
For this purpose, we start from the corresponding
probability amplitudes of every mode being in the
ground state for A, E, and B. Since these expres-
sions are identical in their form for the three fields
of interest, we confine ourselves to a general field F .

The wave function of the complete field in the
vacuum is then the infinite product of all Gaussian
wave functions, which translates into an exponen-
tial whose argument is a sum of all field strengths
weighted by a function F (k`) whose form depends
on the field F that we consider.

We devote Sect. 3 to the elimination of the modes
in the infinite product of the ground state wave
functions by expressing the sum over modes by a
double integral over space containing a bilinear form
of the fields and a kernel. For this purpose, we re-
place the expansion coefficient F` by the integral
over the product of the field and mode functions f`
and arrive, due to the appearance of the square of
F` in the mode sum, at a double integral of a bi-
linear form of F and a kernel. The kernel is then
determined by the function F of the square root of
the negative Laplacian acting on the completeness
relation of the modes given by the transverse delta
function. Since the field F is already transverse, it
suffices to work with the familiar delta function,
which allows us to derive an explicit expression for
the kernel and thus for the wave functional of the
vacuum in a resonator.

This analysis demonstrates that the kernels of E
andB are identical, but different from the one ofA.
In Sect. 4, we show that when we use the eigen-
modes of B to expand A, we find the same kernel
as for E and B.

We dedicate Sect. 5 to a comparison of the re-
sulting expressions for the wave functional of the
vacuum in the different representations. Moreover,
we connect our results to the literature.

In Sect. 6, we calculate the Wightman tensor of
the vacuum fields and show how it is related to the
kernels of E, B, and A. Furthermore, we sketch
how vacuum expectation values can be expressed in
terms of the wave functional.

We conclude in Sect. 7, by summarizing our re-
sults and providing an outlook.

In order to keep our article self-contained, we
have included additional material that is helpful in
understanding the main sections and keeping track
of factors of 2. For example, in Appendix A, we
summarize the essential building blocks of the free
electromagnetic field. Here we concentrate on the
expansions of A, E, and B into a complete set of
discrete modes. Moreover, we define the correspond-
ing vacuum electric fields by equating the energy in
a single mode of a given frequency to that of a quan-
tized harmonic oscillator of the same frequency.

In Appendix B, we re-derive the energy of an elec-
tromagnetic field in a resonator. This calculation
also most clearly brings out the difference in the
powers of the mode frequency in the energy and
the infinite product of the ground state wave func-
tions. Moreover, we verify that the mode volumes
of the u`-modes and the w`-modes are identical.
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We devote Appendix C to the derivation of the
ground state wave function in three different repre-
sentations, that is, in the variables of E, B, and A.
In each case, we find a Gaussian whose dimension-
less argument is determined by the ratio of the vari-
able and the vacuum field strength.

In Appendix D, we present an alternative deriva-
tion of the double integral containing the bilin-
ear form of the field and the kernel by reverse
engineering. In contrast to the derivation in Sect. 3,
we start by already assuming that the kernel is a
scalar function and given by a Fourier integral of
the function F . We then reduce this double integral
to a single one of the square of the root of the neg-
ative Laplacian acting on F . The mode expansion
of F then leads us straight to the mode sum of the
wave function of the vacuum. We also point out a
curious analogy to the P - and R-distributions [38]
of quantum optics.

Finally, in Appendix E, we provide an explicit
expression for the kernel by performing the relevant
integrations with the help of a convergence factor.

Finally, in Appendix F, we derive an identity for
the scalar product of two curls, evaluated at differ-
ent positional arguments, needed in the evaluation
of the Hamiltonian density of the electromagnetic
field in Appendix B.

2. Infinite product of ground state
wave functions

In this section, we derive the wave function of the
electromagnetic vacuum in a resonator in terms of
an infinite product of the ground state wave func-
tions. Throughout the section, we use the field F ,
which represents either the electric fieldE, the mag-
netic induction B, or the vector potential A, and
rely on the expansion

F (t, r) ≡
∑
`

F`(t)f`(r) (1)

of these fields into their natural modes f` deter-
mined by the Helmholtz equation subjected to the
boundary conditions of the resonator as outlined in
Appendix A. For the sake of simplicity in notation,
we have not attached a superscript F on the modes
f` but emphasize that they depend on the choice
of F .

The expansion coefficient F` denotes the field
strength in the mode f`. Hence, F` depends on
the choice of the modes. Obviously, in a different
mode expansion, the field strength would be differ-
ent. Again, for the sake of simplicity in notation, we
suppress this dependence in F` but keep it in mind.

2.1. Wave function of the ground state

In Appendix C, we have recalled the expressions
for the ground state wave functions ψ` in the rep-
resentations of the electric field E`, the magnetic

induction B`, or the vector potential A` in the `-th
natural mode given by f` = f`(r). Since the not yet
normalized ground state is completely symmetric in
phase space, it takes the same form in each of these
representations and reads

ψ`(f`) ≡
1
4
√
π

exp

(
−1

2
f2`

)
, (2)

where the dimensionless variable

f` ≡
F`
F`

(3)

involves the field F` in the `-th mode f`, and F`
is the corresponding field strength of the vacuum.
Here F` is either E`, B`, or A`.

The quantities F` are different for the three fields.
Indeed, the strength

A` ≡
√

~
ε0ω`V`

(4)

of the vector potential, which involves the mode vol-
ume V`, is defined by postulating the electromag-
netic energy of the ground state of the mode to be
identical to 1

2~ω`, where ω` denotes the frequency
of the `-th mode f`.

We emphasize that also the mode volume V` de-
pends on the choice of modes. For this reason, it
should also carry a superscript indicating the type
of eigenmodes used, such as u` for the eigenmodes
of A, v` for the eigenmodes of E, or w` for the
eigenmodes of B. However, for the sake of simplic-
ity in notation, we suppress it.

The strength

E` ≡ A` ω` =

√
~ω`
ε0V`

(5)

follows from the Maxwell equations, that is, from
the fact that in the Coulomb gauge without cur-
rents and charges, E is the time derivative of A.

Moreover, for B we obtain in Appendix A the
expression

B` ≡
A`ω`
c

=
E`
c

(6)

for the field strength B` of B. Hence, apart from
a factor of c, the field strengths B` and E` are
identical.

When we substitute the dimensionless variable f`
given by (3) into (2), the probability amplitude
ψ` = ψ`(F`) of finding the field F` of the mode `
in the ground state of this mode reads

ψ`(F`) ≡ N (F )
` exp

[
− 1

2

(F`
F`

)2]
, (7)

where the normalization constant N (F )
` takes the

form

N (F )
` ≡ 1

4
√
π
√
F1
`

. (8)

Due to the presence of F`, the normalization con-
stant π−1/4 of the Gaussian in (2) is modified to
achieve the condition∫ ∞

−∞
dF`

∣∣ψ`(F`)∣∣2 = 1, (9)

dictated by the Born interpretation.
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2.2. Sum over modes

Hence, the corresponding probability amplitude
Ψ({F`}) for finding the field F`1 in the mode `1,
F`2 in the mode `2, etc., in the ground state is the
infinite product

Ψ({F`}) ≡
∏
`

ψ`(F`) (10)

of the ground state wave functions ψ` of all modes.
With the expression (7) for ψ` and the elementary

property ea eb = ea+b of the exponential function,
we arrive at the formula

Ψ({F`}) = N (F ) exp

(
−1

2
β(F )Σ (F )

)
, (11)

where we have defined
N (F ) ≡

∏
`

N (F )
` (12)

representing the infinite product of all normaliza-
tion factors N (F )

` , and introduced the abbreviation

Σ (F ) ≡
∑
`

F 2
` F (k`)V` (13)

for the sum over all modes. Here we have taken into
account that F` is slightly different for the three
fields. For this reason, the factor β(F ) containing
constants of nature such as ~, ε0, and c, listed in
Table II, depends on the choice of F .

Moreover, since A` and E` depend differently on
ω`, as shown by (4) and (5), we have a different de-
pendence of Σ (F ) on the wave number k` ≡ |k`| ≡
ω`/c of the mode indicated in (13) by the contribu-
tion F (k`). Indeed, for E and B, we find

F (E/B)(k`) = k−1` , (14)
while for A, we obtain

F (A)(k`) = k`. (15)
It is this difference in F that leads to different ex-
pressions for the wave functional of the vacuum in
a resonator, as we shall show in the next section.

2.3. Connection to free space

We conclude this analysis of the product of all
ground state wave functions with a side, but not
snide, remark about the corresponding calculation
in free space. Since in this case we have a continu-
ous superposition of modes, we have to deal with a
continuous product of ground state wave functions.
One possibility to describe this unusual quantity,
which is fundamentally different from the discrete
product arising in the case of a resonator, is to em-
ploy the Volterra–Schlesinger product integral [39]
used to define in QED the quantum state after a
time-dependent interaction [40].

However, a much more elementary approach to
overcome this complication of a continuous prod-
uct is to first discretize the modes, perform the dis-
crete product and then replace the sum over modes
again with the appropriate integral. Hence, in free
space, we retreat from the continuous superposition

of modes to a discrete set and then return again to
the continuous one.

In contrast, in the case of a resonator, we always
deal with a discrete set, and the complication of
the infinite product never occurs. We note that it
would be interesting to perform the calculation in
free space evaluating the continuous product, for
example, with the help of the Volterra–Schlesinger
product integral.

3. Bilinear forms and kernels

The goal of the present section is to construct
from the mode expansion and the mode sum Σ (F )

given by (13), an equivalent expression in terms of
the complete field F rather than the field ampli-
tudes F`. For this purpose, we note that the terms
in Σ (F ) are quadratic in the fields F`. Therefore,
Σ (F ) might be represented by a quadratic form of
the total field F . Since Σ (F ) is independent of the
coordinate, there must be an integration over space
involved.

However, this integral cannot just contain F 2 ≡
F †F = F · F , since that would lead to a quantity
proportional to the energy in the resonator. Indeed,
as shown in Appendix B, the contribution of the
electric field or the magnetic induction to the energy
scale is ω2

` in the field oscillator frequency. Hence, a
bilinear form of F and a position-dependent kernel
are necessary to obtain the scaling in k` required by
the function F (k`) given by (14) and (15).

In the present section, we pursue this approach in
four steps. (i) We first obtain an explicit expression
for the expansion coefficients F` of F into the natu-
ral modes f` and establish the completeness relation
of f`. (ii) Then we cast the mode sum Σ (F ) into a
double integral of the fields F and F ′ together with
a matrix kernel. (iii) Since F is transverse, this ker-
nel reduces to a scalar, and (iv) we finally evaluate
this kernel.

3.1. Completeness relation of transverse modes

Central to the representation of Σ (F ) by a double
integral of a bilinear form of F and a kernel is the
expansion

F =
∑
`

F`f` (16)

of the free field F into the modes f` discussed in
Appendix A.

Indeed, the strength F` of F in the mode f`,
which appears quadratically in Σ (F ), follows
from (16) by multiplication of fm, integration over
space, and using the orthonormality relation

1

V`

∫
d3r f †` (r)fm(r) = δ`m (17)

of the modes. Moreover, the integration extends
over the resonator volume, unless specified other-
wise.
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Indeed, the models f` y form a complete and or-
thonormal basis of transverse mode-space since they
are eigenfunctions of the self-adjoint Helmholtz op-
erator applied to the field F as discussed in Ap-
pendix A.

We arrive at the explicit form

F` =
1

V`

∫
d3r′ f †` (r′)F (t, r′) (18)

or

F` =
1

V`

∫
d3r′ f ′`

†
F ′. (19)

Here we have attached a prime on F and f` to em-
phasize the fact that both depend on the integration
variable r′ rather than r.

Since the field F and the modes f` are hermitian
fields, we have the identity F †` = F`, and thus,

1

V`

∫
d3r′ F ′

†
f ′` =

1

V`

∫
d3r f`

†F . (20)

When we substitute (19) into the expansion (16),
we find

F =
∑
`

1

V`

∫
d3r′

(
f ′`
†
F ′
)
f`, (21)

which when we interchange the sum and the inte-
gral reduces to

F =

∫
d3r′

[∑
`

1

V`
f(r)f †(r′)

]
F ′ (22)

or

F ≡
∫

d3r′ D(r, r′)F ′, (23)

where we have introduced the term

D(r, r′) ≡
∑
`

1

V`
f`(r)f †` (r′). (24)

In order to maintain the identity F = F in (23),
the kernel D has to act as a delta-function-like ob-
ject with respect to the spatial coordinates. How-
ever, since our modes are in the Coulomb gauge
and are thus transverse, D cannot be an ordinary
delta function, but must be a transverse delta func-
tion δ⊥. Thus (24) takes the form

D(r, r′) ≡ δ⊥(r − r′) (25)
with the expansion (24) in terms of the modes f`.

Hence, the matrix D defines a completeness rela-
tion and represents the kernel of a projection oper-
ator P⊥ onto the (function) space spanned by the
transverse (generalized Fourier) modes, i.e.,

P⊥(•) =

∫
d3r′ D(r, r′) •, (26)

where (•) acts as a placeholder for an arbitrary vec-
tor field to be projected onto that space.

3.2. Mode sum as double integral

We are now in the position to cast the sum Σ (F )

over modes defined by (13) into a double integral
containing a bilinear form of F and a kernel K .
In particular, we can obtain an exact expression
for K .

For this purpose, we substitute the expression
(19) for F` combined with the symmetry rela-
tion (20) of F` into Σ (F ) and find the identity

Σ (F ) ≡ Σ (F )[F ] =

∫
d3r

∫
d3r′ F †K (r, r′)F ′

(27)
with the kernel

K (r, r′) ≡
∑
`

1

V`
F (k`)f`(r)f †` (r′). (28)

When we compare K to the completeness rela-
tion (24), we find that, apart from the appearance
of F (k`) from Table II, which is due to the differ-
ent powers of k` in the vacuum field strength F`,
they are identical. Therefore, we want to eliminate
F (k`) from the sum over modes in (28) by recalling
the Helmholtz equation in the form(

−∆
)
f` = k2`f`, (29)

which shows that f` is the eigenvector of the nega-
tive Laplacian associated with the eigenvalue k2` .

As a result, we find the identity

F (k`)f` = F
(√
−∆

)
f`, (30)

and the kernel K given by (28) reduces to

K (r, r′) = F
(√
−∆

)
δ⊥(r − r′) (31)

or equivalently

K
mn

(r, r′) = F
(√
−∆

)
δ⊥
mn

(r − r′) (32)

in component notation. Here we have recalled (25).
We emphasize that in (31) and (32), the differ-

entiation in the Laplacian could be with respect to
r or r′. This fact follows directly from the defini-
tion, (28), of the kernel or from the argument of the
transverse delta function. For this reason, we have
not attached a subscript r to the Laplacian.

3.3. Simplification of the kernel

Next, we recall that the tensorial version δ(r)1
3

of the familiar Dirac delta function δ(r) contains
not only the transverse part δ⊥(r), but also the
longitudinal part δ‖(r), and reads in components

δ(r)δmn = δ⊥
mn

(r) + δ‖
mn

(r) (33)
or
δ⊥

mn
(r) = δ(r)δmn − δ‖mn(r). (34)

The operator F
(√
−∆

)
acting on δ‖ does not

change the directionality of the longitudinal part.
This property stands out most clearly in its Fourier
representation

δ‖
mn

(r) ≡
∫

d3k

(2π)3
e ikr kmkn

k2
. (35)

Indeed, we find

F
(√
−∆

)
δ‖
mn

=

∫
d3k

(2π)3
e ikrF (k)

kmkn
k2

, (36)
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where we have used the fact that a plane wave is
also an eigenfunction of the negative Laplacian in
free space corresponding to the eigenvalue k2, i.e.,

(−∆)e ikr = k2 e ikr. (37)
As a result, the kernel K

mn
given by (32) reads

K
mn

= δmnK
(F ) + K ‖

mn
, (38)

where the part
K (F )(r − r′) ≡ F

(√
−∆

)
δ(r − r′) (39)

of the kernel, which is diagonal, arises from the op-
erator F (

√
−∆) acting on the familiar Dirac delta

function.
On the other hand, according to (36), the expres-

sion
K ‖
mn = F

(√
−∆

)
δ‖
mn

(r − r′) (40)

is still longitudinal.
Next, we recall that in the double integral (27),

the fields F and F ′, on which the kernel acts, are
already transverse, since they are expanded into
the transverse modes f`. Hence K ‖ does not con-
tribute, and we arrive at the expression

Σ (F ) =

∫
d3r

∫
d3r′ K (F )F †F ′, (41)

where we have made use of the fact that K (F ) is a
scalar, which can now be moved out of the matrix
products.

3.4. Evaluation of the kernel

Finally, we evaluate the scalar kernel K (F ) given
by (39). Here, two possibilities offer themselves:

(i) We recall the Green’s function relation(
−∆

)1

r
= 4πδ(r), (42)

which leads us to the expression

K (F )(r) =
1

4π
F
(√
−∆

)
(−∆)

1

|r|
(43)

for K (F ), or

(ii) we employ the Fourier representation

δ(r) ≡ 1

(2π)3

∫
d3k e ikr (44)

of the Dirac delta function to evaluate K (F ).

In this article, we pursue the second approach since
it is straightforward. Indeed, from (39) we immedi-
ately find with (37) the representation

K (F )(r) =
1

(2π)3

∫
d3k F (k) e ikr. (45)

In Appendix E, we evaluate this integral for the
two cases F (k) = k−1 or F (k) = k corresponding
to the fields E and B or A, and we find

K (E)(r) = K (B)(r) =
1

2π2

1

|r|2
(46)

or

K (A)(r) = − 1

π2

1

|r|4
. (47)

We note that apart from slightly different pref-
actors, the power laws of the two kernels in (46)
and (47) are different. While K (E) = K (B) decays
as K (E/B) ∼ 1/r2, the one for A, i.e., K (A), de-
cays as K (A) ∼ 1/r4. Moreover, they also differ in
sign. While K (E/B) is positive, K (A) is negative.

At first sight, this sign change might cause a prob-
lem in the exponential. However, when we recall
that the double integral with the bilinear form of A
and K (A) is identical to the mode sum Σ (A) where
each term is positive, we recognize that there is re-
ally no problem here.

3.5. Wave functional

We conclude by combining our results to obtain
the wave functional Ψ [F ] of the vacuum in a res-
onator expressed by the field F . Indeed, when we
use the connection (41) between the mode sum Σ (F )

and the double integral, we find the expression

Ψ [F ]=N (F ) exp

[
−β

(F )

2

∫
d3r

∫
d3r′K (F )F ·F ′

]
,

(48)
where the kernel K (F ) involves the difference r−r′
of the two integration variables only.

We emphasize that in contrast to the infinite
product Ψ({F`}), which is in terms of the set
{F`} of field strengths in all modes and given by
(11), we now have the complete field F . Hence,
the quantity Ψ defined by (48) represents a func-
tional of F as indicated by the square brackets
in Ψ [F ].

4. Vector potential once more

In the preceding section, we have derived the
wave functional Ψ [A] in terms of the vector
potential A and have found a kernel (47), which is
different from the ones of E and B, given by (46).
However, it has been argued [4, 7, 41] that an
expression for a wave functional solely in terms of
A is problematic since the vacuum, and hence the
wave functional should be gauge invariant, and the
full vector potential is not gauge invariant. This
line of reasoning was first used by Wheeler [4] in
his original article on the wave functional, where
we find the quote:

”Often the dynamics of the electromagnetic field
is discussed in terms of the vector potential A, con-
nected with H, by the equation
H = curl A.

Then the probability amplitude is evaluated in the first
instance as a functional of A. Only later is it discov-
ered, as a consequence of gauge invariance, that A
comes into evidence in the state functional only in the
form of H = curl A.”
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Other authors [7, 41] argued in the same vein
and thus concentrated their effort on expressions
for the wave functional of the vacuum in terms of
∇×A ≡ B instead of A. However, we found in (48)
exactly such a wave functional Ψ [A] and a corre-
sponding kernel (47). Hence, we are led to the ques-
tion of how to reconcile these opposing points of
view.

Our answer to this question rests on the fact
that the appearance of ∇×A is not a consequence
of gauge invariance but a specific choice of mode
expansion. Indeed, we first argue that due to the
expansion in transverse modes, our expression is al-
ready gauge invariant. We then obtain an expression
for the wave functional Ψ [A] in terms of ∇×A by
use of the eigenmodes {w`} of the magnetic induc-
tion B without appealing to gauge invariance.

4.1. Field functionals, quantization and
gauge invariance

While the gauge invariance argument seems su-
perficially sound, it contains a very subtle flaw and
is thus not applicable. Indeed, we start by noticing
that electromagnetism is a gauge field theory [29],
and it is thus essential to remove redundant gauge
degrees of freedom during the quantization proce-
dure. It is then, and only then, that we can identify
the actual physical degrees of freedom of the the-
ory. Any observable, such as correlation functions
or the wave functional, are afterwards expressed
solely in terms of the quantized physical degrees of
freedom.

In contrast to earlier works of Wheeler [4] and
Białynicki-Birula [7, 41], we state and rely on a spe-
cific gauge choice from the beginning. Accidentally,
the gauge-fixing of the Coulomb gauge directly iso-
lates easy-to-interpret physical degrees of freedom
in non-relativistic situations for the electromagnetic
field. However, this comes at the cost of sacrific-
ing the manifest Lorentz invariance of the theory.
This procedure partitions the electromagnetic de-
grees of freedom into quantized (transverse) and
non-quantized (longitudinal) degrees of freedom by
enforcing the conditions A0 ≡ 0 and ∇ ·A ≡ 0 for
the vector potential.

These quantized physical degrees of freedom are
exactly our transverse fields A, E, and B. Only
these fields are associated with quantum states, that
is the wave functions of our theory.

In Appendix C, we determine these wave func-
tions for the ground state of the respective fields.

Since these wave functions form the starting point
of our derivation, any expression we obtain from
them is naturally expressed in terms of gauge in-
variant quantities, even if the transverse part of the
vector potential, namely A, appears in it. Conse-
quently, our expression for the wave functionalΨ [A]
of the vector potential (48), together with the asso-
ciated kernel (47), is perfectly valid.

We conclude by returning to the subtle flaw in
the argument of gauge invariance we have alluded
to. Ultimately, a wave functional can only be de-
fined after quantization of a gauge theory such as
electromagnetism has already been achieved, as it
is a fundamentally quantum object. More specifi-
cally, the fields F appearing in it are not classical
fields and, in general, do not even obey the classical
field equations, but are mere c-number fields that
parameterize all quantum mechanically valid field
configurations interfering in an appropriate func-
tional integral.

Simultaneously, at this point in the development
of the theory, the gauge-freedom is already incor-
porated in the choice of the quantized degrees of
freedom, since all physically relevant quantities that
appear, are by construction expressed without the
gauge-redundant degrees of freedom. As a conse-
quence, we cannot argue about the gauge-invariance
of a quantity like a wave functional anymore when
it is expressed in these quantities. Thus ultimately,
it is the simple oversight that not the vector po-
tential but only its transverse part can appear in
field functionals, which leads to the demise of any
post-quantization argument relying on gauge trans-
formations/invariance.

Finally, although we worked in Coulomb gauge
throughout this article, our reasoning applies to
any gauge-fixing chosen during quantization. More-
over, it translates to the wave-functional of other
theories featuring gauge-invariances [42], e.g., the
quantization of weak field gravity [36]. However, we
note that when one is studying such cases, start-
ing from a more modern path-integral formulation
seems preferable [43] since gauge-fixings are imple-
mented more easily via functional δ-functions inside
the path integral.

With these ideas in mind, we briefly comment
on possible generalizations of our calculation to rel-
ativistic situations using the standard QED ap-
proach. While we have sacrificed the manifest
Lorentz covariance by our choice of the Coulomb
gauge, this was simply due to our interest in the
cavity QED situation of the quantization in a res-
onator. If wanted, retaining Lorentz covariance and
determining relativistically invariant analogs of the
expressions (48) for the wave functionals is possible
by resorting to the Gupta–Bleuler [45, 45] method
or the more general approach of BRST quantiza-
tion [46, 47]. For a modern discussion contrasting
these approaches as applied to electromagnetism in
ξ-gauge, a generalization of Lorenz gauge, we refer
to [47].

4.2. Wave functional in eigenmodes of
magnetic induction

In order to reexpress the wave functional Ψ [A],
as suggested by Wheeler and Białynicki-Birula, in
terms of ∇×A, we expand A into the eigenmodes
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TABLE III

Wave functional Ψ [F ] of the vacuum in a resonator for the three fields F = E,B, or A and their
corresponding kernel K ≡ K(r, r′) when expressed in the mode basis {f`} = {u`}, {ν`}, or {w`}. Here,
the prime indicates the field at the integration variable r′ rather than r.

Field F Mode basis {f`}
Mode basis kernel

K(r, r′)
Wave functional Ψ [F ] in field basis

E {ν`} = {u`}
∑
`

k−1
`

V`
ν` ν

′†
` N (E) exp

(
− 1

4π2

ε0
~c

∫
d3r

∫
d3r′

E ·E′

|r − r′|2

)

B {w`} = {k−1
` ∇× u`}

∑
`

k−1
`

V`
w`w

′†
` N (B) exp

(
− 1

4π2

ε0c

~

∫
d3r

∫
d3r′

B ·B′

|r − r′|2

)

A {w`} = {k−1
` ∇× u`}

∑
`

k−1
`

V`
w`w

′†
` N (A(w)) exp

(
− 1

4π2

ε0c

~

∫
d3r

∫
d3r′

(∇×A) · (∇×A′)
|r − r′|2

)

A {u`}
∑
`

k`
V`
u` u

′†
` N (A) exp

(
1

2π2

ε0c

~

∫
d3r

∫
d3r′

A ·A′

|r − r′|4

)

w` ≡ k−1` ∇× u` (49)
of the wave equation for B, rather than the one
for A, i.e.,

A ≡
∑

`
A

(w)
` w`. (50)

Here we have attached a superscript w to the am-
plitude A` to reflect the fact that this expansion is
in the set of modes {w`}.

When we now take the curl of this representation
of A, recall the Coulomb gauge condition, as well
as the Helmholtz equation for u`, we find

∇×A =
∑

`
A

(w)
` k`u`. (51)

Consequently, the expansion coefficient A(w)
` in

the w-representation takes the form

A
(w)
` =

1

k`

1

V`

∫
d3r u†`(∇×A). (52)

When we compare this expression to the cor-
responding one for F`, expressed in the natural
modes f`, i.e., to (19), we note an additional fac-
tor k−1` , which allows us to regain the same kernel
in the double integral as in E and B.

Since the quantization of A now takes place in
the w`-modes, the wave function of the vacuum in
the resonator reads

Ψ [A] = N (A) exp

(
−1

2
β(A)Σ (A(w))

)
, (53)

where now the sum

Σ (A(w)) ≡
∑

`

(
A

(w)
`

)2
k−1` V` (54)

runs over the w`-modes.

When we substitute the explicit form (52) of the
expansion coefficients A(w)

` into the mode sum (54),
we arrive at

Σ (A(w))=

∫
d3r

∫
d3r′ (∇×A)†K (r, r′)(∇′×A′),

(55)

where according to (15) the term F (k`) in the kernel
K defined by (28) takes the form

F (k`) = k−1` , (56)
and is thus identical to the one for E and B in their
natural modes.

As a consequence, the kernel for the vector po-
tential A expanded into w`- rather than u`-modes
is identical to that of E and B. However, now the
wave functional of the vacuum in the representa-
tion of A contains only A in the form ∇ × A. In
this way, Ψ [A] is expressed in terms of the magnetic
induction, which is a gauge invariant quantity.

5. Discussion of wave functionals

We are now in a position to present the explicit
expressions for the wave functionals of the vacuum
in a resonator, as summarized in Table III. More-
over, we compare and contrast the corresponding
expressions to the ones in the literature.

5.1. Dependence on mode expansion

The central message of Table III is that the ker-
nel of the wave functional depends on the mode ex-
pansion of the field. At first sight, this property is
surprising since the creation of the bilinear form of
the complete field removes the field expansion. How-
ever, the wave functional Ψ [A] of the vacuum in the
representation of the vector potential A, summa-
rized in the first and last row of Table III, demon-
strates this feature in a striking way.

Indeed, when we use the eigenmode expansion
of A, given by {u`}, which is identical to the one of
the electric field E, we find a kernel that is propor-
tional to 1/r4 and negative. In this case, the bilinear
form involves only A.
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However, when we employ the eigenmode expan-
sion of the magnetic induction B, i.e., the modes
{k−1` ∇×u`}, the kernel of E, which is identical to
that of B, emerges and enjoys the decay 1/r2. In
this case, the kernel is positive. However, most im-
portantly, the bilinear form does not involve A but
∇×A ≡ B.

This dependence of the kernel on the mode rep-
resentation, and the associated form of the bilin-
ear form, is reminiscent of the different operator
orderings in quantum mechanics and the associ-
ated quasi-probability distribution functions. We
recall [48] that symmetric ordering requires the use
of the Wigner function, whereas anti-normal order-
ing leads us to the Husimi or Q-function. Normal
ordering brings in the P -distribution.

Hence, the same quantum state can enjoy differ-
ent phase space distribution functions depending on
the choice of the operator ordering. Nevertheless,
the quantum mechanical average of interest is al-
ways the same.

This analogy draws attention to the quantity so
far not addressed in our article, that is, the field op-
erators. Indeed, we have concentrated excessively on

the wave functional, which of course, could be em-
ployed to calculate expectation values of the field
operators. In order to perform this evaluation in
an effective way, it is necessary to have the op-
erators to be averaged in the same modes as the
wave functional. Indeed, an identical mode expan-
sion in operators and wave functionals is neces-
sary to express the operator in a c-number repre-
sentation. This requirement is analogous to the fa-
miliar technique of one-particle quantum mechan-
ics to perform averages using wave functions in
the eigenrepresentation of the operator. In this
way, we can evaluate the expectation values by
functional integration as discussed in the next
section.

5.2. Connection to free space

We conclude by comparing and contrasting the
form of the functionals in a resonator to the ones
in free space first suggested by Wheeler [4] and dis-
cussed and extended by Białynicki-Birula. Here we
confine ourselves to the one involving ∇×A, which
according to [7, 41], reads

Ψ [A] = N (A) exp

(
− 1

4π2~

√
ε0
µ0

∫
d3r

∫
d3r′

(∇×A) · (∇′ ×A′)
|r − r′|2

)
. (57)

The only difference to the expression in the fourth
row of Table III is in the prefactor β(A) contain-
ing fundamental constants. Whereas we always use
ε0 and c, Białynicki-Birula’s expression involves the
ratio

√
ε0/µ0. Here µ0 denotes the permeability of

the vacuum.
However, the Kirchhoff identity

1

µ0ε0
= c2 (58)

immediately yields the connection formula√
ε0
µ0

= ε0c, (59)

in complete agreement with our expression in
Table III.

6. Wave functionals and expectation values

In the preceding sections, we have made our way
to explicit expressions for the wave functional of
the electromagnetic vacuum, beginning with the
quantization of the electromagnetic field in a res-
onator. Most of the expressions we obtained coin-
cide with the ones found previously by Wheeler [4]
and Białynicki-Birula [7, 41] for free space, although
now obtained for the case of a resonator. However,
one expression in terms of a bilinear functional of
A is new to the best of our knowledge.

While these functionals are certainly interesting
from a fundamental point of view, we ultimately
go through the trouble of setting up field theory in
order to calculate observables, i.e., scattering cross-
sections, correlation functions, and their more com-
plicated cousins. Naturally, we must thus face the
question of how these calculations can be performed
with the field wave functions and functionals. This
problem constitutes the topic of this section, and
we shall show by the example of such a calculation
for a specific correlation function how this can be
done.

We focus our effort on the Wightman tensor
W (F )

rr′(t) for the field F , which contains all first-
order correlation functions of the vector field F eval-
uated at two points, r and r′, in space. Further-
more, it is of specific interest because it can be used
to easily determine the excitation probability [49]
for an atom in a cavity due to the vacuum field.

6.1. A general correlation function

We begin by stating the definition [49] of the
equal-time two-point Wightman tensor

W (F )

rr′(t) ≡ 〈0|F̂ (t, r)F̂ †(t, r′)|0〉 (60)

for the field F , which is the expectation value of the
outer product of the field operators F̂ (t, r)F̂ †(t, r′)
at fixed time t but in different locations r and r′.
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In fact, (60) describes the spatial correlations in the
vacuum field F at the respective positions r and r′.

For the purpose of illustrating the formalism,
W (F )

rr′ may be seen as a tensorial version of the cor-
relation functions introduced by Glauber [38, 50]
in quantum optics. For example, taking the trace
of the Wightman tensor yields an intensity correla-
tion function, which is a precursor of the (spatial)
first-order coherence function G(1)(t, r; t, r′).

6.2. Wightman tensor via mode decomposition

We begin by expressing the Wightman tensor in
terms of the f`-modes (16), which for (60) yields
the decomposition

W (F )

rr′(t) =
∑
`,`′

〈
0
∣∣F̂`(t)F̂`′(t)∣∣0〉f`(r)f †`′(r

′). (61)

Here we have used the linearity of the mode sums
and acted with the vacuum directly on the operator
parts of the fields. Note that in the process we used
the fact that the fields are hermitian operators, i.e.,
F̂ †`′ = F̂`′ .

6.2.1. Determination of vacuum
expectation value

Proceeding from (61), our next task is to calculate
the field operator expectation value with respect to
the vacuum state O(F )

``′ , for which we introduce the
abbreviation
O(F )
``′ ≡

〈
0
∣∣F̂`(t)F̂`′(t)∣∣0〉. (62)

Since the time argument is identical for both field
operators and is immaterial for what follows, we will
suppress it going forward and simply write F̂`(t) ≡
F̂` from now on to compactify the notation.

In order to evaluate the expectation value (62),
we recall that the non-interacting vacuum ket-state
|0〉 of the free (electromagnetic) field F is a direct
product

|0〉 ≡
⊗
k

|0k〉 = |01〉 |02〉 |03〉 . . . |0〉` . . . (63)

of all ground states of all modes and that the oper-
ator F̂` only acts on the `-th mode. Other ground
states |0k〉 with k 6= ` are not affected by F̂`.

Obviously, the same property holds true for the
vacuum bra-vector 〈0|, and none of the ground
states 〈0k′ | with k′ 6= `′ is affected by F̂`′ , and they
pass to the right, where they meet the ground states
|0k〉 from the ket-vacuum.

Since we can only take the scalar product be-
tween the same modes, we have to distinguish the
two cases ` = `′ and ` 6= `′.

The first case of identical modes, i.e., ` ≡ `′, leads
us to the expression

O(F )
`` = 〈0`|F̂ 2

` |0`〉
∏
k 6=`

〈0k|0k〉 (64)

or
O(F )
`` = 〈0`|F̂ 2

` |0`〉 , (65)
where we have used the normalization condition
〈0k|0k〉 = 1 of the ground state, which in the field
representation reads

∞∫
−∞

dFk 〈0k|Fk〉 〈Fk|0〉 =

∞∫
−∞

dFk
∣∣ψk(Fk)

∣∣2 (66)

and is satisfied, since according to Appendix C we
find

ψk(Fk) =
1
4
√
π

1√
Fk

exp

[
−1

2

(
Fk
Fk

)2
]
. (67)

Moreover, the field operator of the `-th mode
obeys the eigenvalue equation

F̂` |F`〉 = F` |F`〉 (68)
and as a consequence, we have the spectral repre-
sentation

g(F̂`) ≡
∞∫
−∞

dF` g(F`) |F`〉 〈F`| (69)

for integrable functions g ≡ g(x).
When we introduce this spectral representation

for the `-th mode into (66), we obtain

O(F )
`` =

∞∫
−∞

dF` F
2
` |ψ`(F`)|

2
, (70)

which with the help of the Gaussian wave function
(67) reads

O(F )
`` =

1

2
F2
` . (71)

Next, we consider the case ` 6= `′, which yields
the expression

O(F )
``′ = 〈0`′ |F̂`′ |0`′〉 〈0`|F̂`|0`〉

∏
k 6=`,`′

〈0k|0k〉 .
(72)

We emphasize that, in contrast to (64), the mode
indices ` and `′ appear now. Nevertheless, the nor-
malization condition is again 〈0k|0k〉 = 1 for each
mode and reduces (72) to

O(F )
``′ = 〈0`|F̂`|0`〉 〈0`′ |F̂`′ |0`′〉 . (73)

When we now employ the field representation,
again we find with the eigenvalue equation (68) for
` 6= `′ the formula

〈0`′ |F̂`′ |0`′〉 =

∞∫
−∞

dF` F` |ψ`(F`)|2 = 0, (74)

where in the last step we have used the symmetric
Gaussian wave function (67) of the ground state.

When we combine the results (71) and (74), we
find

O(F )
``′ =

1

2
δ``′F2

` . (75)

With the respective definitions of the vacuum
fields F` in (4) and (6), we can bring (75) into the
final form

O(F )
``′ =

δ``′

2

1

β(F )F (k`)

1

V`
, (76)
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which constitutes our result for the vacuum expec-
tation value (62). This expression for the field F is
determined by the physical constants contained in
β(F ), the wave number k` together with the function
F , and the mode volume V` of the `-th mode.

6.2.2. Wightman tensor and kernels

With the result for the vacuum expectation value,
we are now in a position to determine the Wight-
man tensor of the field F . Using the result from (76)
and inserting it into (61), we arrive at

W (F )

rr′(t) =
1

2β(F )

∑
`

F−1(k`)
1

V`
f`(r)f †` (r′)

(77)
for the mode-expanded version of the Wightman
tensor. We observe that this expression seems rem-
iniscent of the expression for the transverse delta
function in terms of the modes (24).

Actually, with the help of the square root of
the negative Laplacian, we can move the function
F−1(k`) out of the sum by reversing its action on
the modes via

F−1(k`)f`(r) = F−1
(√
−∆r

)
f`(r) (78)

and using the independence of the right-hand side
from the summation index `. Together with the rep-
resentation of the transverse delta function (24), we
arrive at the expression

W (F )

rr′(t) =
1

2β(F )
F−1

(√
−∆r

)
δ⊥(r − r′)

(79)
for the Wightman tensor, which is fully consistent
with the results obtained in [49] in free space for the
electric or magnetic field.

When we now compare the expression (79) for the
Wightman tensor W (F )

rr′ with the one (31) of the ker-
nel K (F ), we find that F (

√
−∆r) is either in the

denominator or in the numerator. At the same time
we obtain from the definitions (14) and (15) of F
for E, B, and A the relation

F (E) = F (B) = 1/F (A). (80)
As a result, we arrive at the connection formulae

W (E)

rr′(t) =
~c
2ε0

K (A)(r − r′) =

~c
2ε0

(−∆r) K (E)(r − r′) (81)

and

W (B)

rr′(t) =
~

2ε0c
K (A)(r − r′) =

~
2ε0c

(−∆r) K (B)(r − r′) (82)

for the Wightman tensors W (E)

rr′ and W (B)

rr′ .
From (81) and (82), we make the observation that

the Wightman tensors W (E/B)

rr′ are intimately re-
lated to our kernels K (A/E/B) — either via the ap-
plication of a negative Laplacian or even directly
identical to the Wightman tensor except for a
dimensionful proportionality constant.

While the existence of a relation like this seems
initially surprising, it is only partially so, since ker-
nels can be seen as the field theoretical analog of
covariance matrices for the Gaussian vacuum state.
The Wightman tensors, in turn, collect all possible
quadratic field correlation functions. Thus an inti-
mate relationship between both quantities is to be
expected.

6.3. Wightman tensor using functional integrals

While our approach to determine the explicit
form of the Wightman tensor W (F )

rr′ via mode ex-
pansion and vacuum wave functions was ultimately
successful, it did not rely on wave functionals them-
selves. Thus, the task arises how similar questions
can be framed and answered using the wave func-
tional. We will now give a sketch using functional
methods on how this might be achieved.

We start by recalling the relation [38, 50] between
the functional integration measure and the field ba-
sis,∫

D [F ] ≡
∏
`

∫ ∞
−∞

dF`. (83)

Moreover, we note that the field operators F̂ =
F̂ (t, r) and F̂ ′ = F̂ (t, r′) can be expressed as func-
tional Schrödinger integrals via

F̂ (t, r) =

∫
D [F ] |F 〉 〈F |F (t, r) (84)

and

F̂
′†(t, r′) =

∫
D [F ′] |F ′〉 〈F ′|F

′†(t, r′), (85)

where |F 〉 ≡ |{F`}〉 = |F1〉 |F2〉 . . . and |F ′〉 ≡
|{F ′`}〉 = |F ′1〉 |F ′2〉 . . . correspond to the state vec-
tors of the field.

With these preliminaries settled, we recall the definition of the Wightman tensor (60)

W (F )

rr′ (t) = 〈0|F̂ (t, r)F̂ †(t, r′)|0〉 (86)

and obtain, by inserting the operator expansions from (84) and (85), the double functional integral

W (F )

rr′ (t) =

∫
D [F ]

∫
D [F ′] 〈0|F 〉 〈F |F ′〉 〈F ′|0〉F (t, r)F ′†(t, r′) (87)

representation for the Wightman tensor of the field F .
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At first, this result appears to be too cumbersome
for actual practical use. However, with the help of
the functional Dirac delta function and the relation
δ[F−F ′] ≡

∏
`

δ(F`−F ′`)=
∏
`

〈{F`}|{F ′`}〉= 〈F |F ′〉 ,
(88)

we can collapse one of the functional integrations
in (87) and arrive at

W (F )

rr′ (t)=

∫
D [F ] |〈F |0〉|2 F (t, r)F †(t, r′). (89)

Note that in the process of collapsing the inte-
gration, only a relabeling due to the replacement
F ′ 7→ F has taken place, while the spatial depen-
dence on r′, characteristic of a two-point correlation
function in the expression, was completely retained.

At this point in the development of the functional
approach, we are finally in the position to identify
our wave functionals of the vacuum by
|〈F |0〉|2 ≡ N exp(−β(F )Σ (F )[F ]), (90)

where we have made use of the mode sum in func-
tional form (27), and defined the normalization con-
stant N ≡ (N (F ))2 of the functional.

As a consequence we are lead to a single func-
tional integral representation

W (F )

rr′(t) = N
∫

D [F ] e−β
(F )Σ(F )[F ]F (t, r)F †(t, r′),

(91)
for the Wightman tensor.

Moreover, the normalization constant can be
expressed [32, 51] as another functional integral,
namely

N−1 = Z(F )[F ] ≡
∫

D [F ] exp
(
−βFΣ [F ]

)
, (92)

which we have named Z(F ) to allude to a close anal-
ogy with the partition sum in statistical physics.

In summary, we obtain the now purely functional
expression

W (F )

rr′(t) ≡
∫

D [F ] e−βFΣ [F ]F (t, r)F †(t, r′)

Z(F )[F ] (93)
for the Wightman function W (F )

rr′ . This expression is
the moment of a Gaussian functional integral [51]
and can, in principle, be computed, similar to its
distant cousin — the Gaussian integral in Rn —
by completing the square and calculating a (func-
tional) determinant. However, since we are dealing
with a vector field and not the usual case of a scalar
field [32], things are a bit more complicated. Hence,
we postpone this task together with the detailed dis-
cussion of how the partition sum (92) may be used
together with functional differentiation as a gener-
ating functional to calculate more complex correla-
tion functions.

7. Conclusions

Motivated by the thriving fields of cavity QED
and circuit QED, we analyzed the wave functional
of the vacuum in a resonator. We have found

expressions identical to those of free space discussed
in the literature.

At first sight, this identity is surprising since the
two situations differ considerably in the way the fre-
quency of the mode enters into the mode expansion.
In the continuous superposition of free space, it is
the integration variable governed by the wave num-
ber. In the discrete case of the resonator, summation
rather than integration extends over the mode in-
dices, which in turn determines the mode frequency
in a nontrivial way.

We were able to overcome this complication with
the help of the introduction of the square root of the
negative Laplacian. In this way, we could express
the mode sum by the double integral of a bilinear
form of the fields and of a scalar kernel given by
the Fourier integral of the function reflecting the
difference in the dependence of the vacuum fields
on the wave number.

Moreover, our analysis emphasizes the important
role of mode choice. Although modes have been
eliminated in the wave functional, its form still
depends on them. We have illustrated this phe-
nomenon for the wave functional Ψ [A] of the vector
potential A, which involves either A or ∇ ×A re-
sulting from the u`- or w`-modes.

In hindsight of our calculation, one could argue
that this is not as surprising as one might have
thought. Especially since the wave functional for
the quantum state of the vacuum fields is most nat-
urally expressed in eigenmodes, as they correspond
to physical degrees of freedom that are quantized.
Once we retreat from employing explicit mode ex-
pansion, all the information that is left to fix the
quantum state needs to be retained in the associ-
ated kernel.

We conclude by noting that despite the beauty
of the wave functional, we are not aware of any
application of evaluating, for example, the vacuum
expectation values prevalent in QED. One elemen-
tary example of its usefulness could be the sum of
modes appearing in the second moment of the dis-
placement of an electron due to a vacuum electric
field. This quantity determines the Lamb shift in
the Welton picture [52] and leads to the Bethe log-
arithm.

Indeed, due to the integration of the second-order
time derivative in the Lorentz equation, the dis-
placement contains ω−2` in the mode expansion of
the electric field. Since we deal with the second mo-
ment, the electric field appears in a bilinear way,
and actually, ω−4` enters into the sum of the modes.

Moreover, the vacuum electric field is propor-
tional to ω

1/2
` , reducing to the bilinearity of the

second moment of the displacement in the field the
power to ω−3` . When we replace the sum with an
integration, the volume element contains ω2

` leav-
ing us with ω−1` , creating, after the integration, the
Bethe logarithm.

It would be interesting to see how this expres-
sion emerges from the use of the wave functional,
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which would eliminate the need for performing the
sum over the modes. For this purpose, we first note
that the complication of the square of frequencies
appearing in the mode expansion of the free field
like ω−2` can be removed by the use of the inverse of
the negative Laplacian. Since we deal with the sec-
ond moment, the electric field appears in a bilinear
way, and functional integration with respect to the
wave functional should yield an expression for the
displacement in a straightforward way.

The result we obtained for the (electric field)
Wightman tensor might be a first step in such a di-
rection, as its elements contain all the necessary cor-
relation functions for such a calculation. However,
it is implicitly expected that it also has a singular
behavior in the coincidence limit due to it being a
derivative of a transverse delta function.

Unfortunately, this topic goes beyond the scope
of the present article and has to be postponed to
future publication.
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Appendix A: Modes

In this appendix, we briefly summarize the key in-
gredients of the description of the electromagnetic

field in a resonator with discrete modes in the ab-
sence of charges and currents. We concentrate on
the mode expansions and the energy of the elec-
tromagnetic field. Throughout this section and the
article, we employ the Coulomb gauge. Although
these expressions are well-established, we present
them here for the sake of completeness.

A1: Mode functions and amplitudes

Central to our review of the electromagnetic field
in a resonator are the Maxwell equations consisting
of the two sets of equations

∇ ·B = 0 and ∇×E = −∂B
∂t

(94)

and

∇ ·E = 0 and ∇×B =
1

c2
∂E

∂t
(95)

in the absence of currents and charges, where c de-
notes the speed of light.

We solve the homogenous equations by introduc-
ing the vector potential A = A(t, r) in Coulomb
gauge
∇ ·A = 0 (96)

and the ansatz

E ≡ −∂A
∂t

and B ≡ ∇×A. (97)

As a result, (95) implies the free-space wave equa-
tion

�A(t, r) ≡
[

1

c2
∂2

∂t2
−∆

]
A(t, r) = 0 (98)

for the vector potential A ≡ A(t, r), in the ab-
sence of currents and charges, where ∆ is the three-
dimensional Laplacian.

We emphasize that in the derivation of this wave
equation, we have already used the Coulomb gauge
condition (96) to simplify
∇× (∇×A) = ∇ (∇ ·A)−∆A = −∆A.

(99)
Next, we make the separation ansatz
A(t, r) ≡ A q(t)u(r) (100)

with a real dimensionless spatial real function u =
u(r) and the real dimensionless time-dependent
function q = q(t). In order to ensure that A has
the appropriate units, we have introduced the con-
stant A. The vectorial nature of A is contained in
the function u.

When we substitute the ansatz (100) into the
wave equation (98), we arrive at the Helmholtz
equation[

∆ +
(ω
c

)2]
u(r) = 0, (101)

and the harmonic oscillator equation
q̈ + ω2q = 0 (102)

with frequency ω. Here, dots denote differentiation
with respect to time.
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We emphasize that the solutions of the Helmholtz
equation (101) become unique once we specify a
proper boundary condition. For example, we could
choose
n(r)×A(t, r) ≡ 0 (103)

for all points r ∈ ∂V making up the cavity walls,
which corresponds to a perfectly conducting cavity
surface ∂V with normal vector n(r).

When we apply the Coulomb gauge condition
(96) to the separation ansatz (100), we obtain the
transversality constraint
∇ · u(r) = 0. (104)
While we work in the classical theory this con-

straint is no issue, but as Paul Dirac first no-
ticed [54], it can come to haunt us when we quan-
tize electromagnetism [55–57] or any other gauge
field [29].

The general solution of the harmonic oscillator
equation (102) reads

q(t) = q0 cos (ωt) +
q̇0
ω

sin (ωt), (105)

where we have introduced the arbitrary initial con-
ditions q̇0 ≡ q(t = 0) and q̇0 ≡ q̇(t = 0).

The time-derivative of q leads us to
q̇ = ω p (106)

with
p ≡ p(t) = −

(
q0 sin (ωt)−p0

ω
cos (ωt)

)
. (107)

The boundary conditions imposed by the res-
onator enforce a discrete set of mode functions
u of the vector potential enumerated by a set of
three indices [58] determining an effective wave vec-
tor. Moreover, due to the Coulomb gauge (96) and
(104), we find two polarization directions for u.

For the sake of implementing a concise notation,
we abbreviate these indices consisting of wave vec-
tor and polarization indices by a single quantity `,
and use the set {u`} for the eigenmodes of the vec-
tor potential.

A2: Vector potential

As a result of the linearity of the wave equa-
tion (98), the vector potential A in the resonator
is the superposition

A(t, r) =
∑
`

A`(t)u`(r) (108)

of all modes {u`} which are the eigen-(mode) func-
tion ofA. Here we have introduced the abbreviation

A`(t) ≡ A`q`(t) (109)
for the vector potential contribution originating
from the mode u`.

The mode functions {u`} of the vector potential
form an orthonormal basis of transverse vector fields
inside the resonator with the orthogonality relation

1

V`

∫
d3r u`

†(r)um(r) = δ`m, (110)

where V` denotes the mode volume.

A more general definition for the mode volume is
for example given by

V` ≡
∫

d3r
∣∣u`(r)

∣∣2∣∣u`(rc)∣∣2 , (111)

where rc is a point of special interest of a given
resonator.

For example, in a box resonator with perfectly
reflecting and conducting surfaces exhibiting sinu-
soidal modes, one typically [48] picks rc as the
point of maximal mode amplitude. Alternatively, in
the presence of an atomic dipole at a fixed loca-
tion inside the cavity, one can also use its position.
Such choices can be directly linked to single-atom
cavity QED analogs of the Purcell effect [59], i.e.,
the enhancement (or suppression) of the sponta-
neous emission rate of the dipole in a resonant cav-
ity environment. For recent generalizations to more
complicated systems and open cavities, we refer
to [60, 61].

A3: Electric field

Since there are no charges and currents present,
the electric field (97) in Coulomb gauge takes the
explicit form

E(t, r) = −
∑
`

A` q̇`(t)u`(r), (112)

where we made use of the mode expansion of the
vector potential (108).

With the general solution (105) of the harmonic
oscillator equation (102) and the connection (106)
between q̇` and p`, we find

E(t, r) =
∑
`

E`p`(t)u`(r), (113)

where we have introduced the relation
E` ≡ A` ω`. (114)

Hence, the contribution of each mode to the total
electric field is determined by the amplitude

E`(t) ≡ E` p`(t) (115)
in the mode expansion

E(t, r) =
∑
`

E`(t)u`(r). (116)

A comparison of this expression to the expansion of
the electric field
E(t, r) =

∑
`

E`(t)v`(r) (117)

in its eigenmodes {v`}, reveals that A and the
E share the same set of eigenmodes {u`}. Conse-
quently, the set {u`} of modes of the vector po-
tential can be mapped one-to-one to the set {v`}
of eigenmodes of the electric field. We emphasize
that this property is only true in the absence of
currents and charges, within and on the resonator
boundary, because otherwise the wave equations for
both fields A and E might differ in their bound-
ary conditions and thus lead to different eigenmode
expansions.
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A4: Magnetic induction

We conclude this discussion of the fields by pre-
senting a similar representation for the magnetic in-
ductionB in terms of the mode functions of the vec-
tor potential A. However, in contrast to the electric
field E, linked to A by differentiation in time, the
field B is linked to the vector potential by taking
the curl, that is a coordinate derivative.

Indeed, we find from the definition B ≡ ∇ ×A
of B in terms of A given by (108) the expression

B(t, r) =
∑

`
A`q`(t)

[
∇× u`(r)

]
. (118)

In order to bring out the analogy to E, we multi-
ply and divide in the expansion the mode function
by ω`/c, which yields

B(t, r) =
∑

`
B`(t)

c

ω`

[
∇× u`(r)

]
, (119)

where we have introduced the magnetic induction
in the mode

B` ≡ B` q`(t) (120)
with the vacuum magnetic induction
B` ≡ A`ω`/c = E`/c. (121)

In the last step, we have recalled from (114) the
definition of the vacuum electric field.

When we compare (119) to the eigenmode expan-
sion,

B(t, r) =
∑

`
B`(t)w`(r) (122)

of B, we can again find a one–to–one mapping be-
tween eigenmodes. However, now we have to make
the matching by comparing the expressions∑

`
B`(t)

c

ω`
[∇× u`(r)]

!
=
∑

`
B`(t)w`(r).

(123)
When we note that there can be no reshuffling

of the sequence of mode indices since only the co-
efficient B`(t) contributes to the field energy, the
eigenmodes of B must be related to the eigenmodes
of A by making the identification

w`(r) ≡ c

ω`
[∇× u`(r)] . (124)

However, when we recall that (eigen)-modes are
determined by the boundary conditions resulting
from (124), this is not surprising. The magnetic in-
duction has to fulfill different boundary conditions
to be consistent with Maxwell’s equations on the
resonator surface. We emphasize again that our el-
ementary treatment is valid only in the absence of
currents and charges within and on the resonator
surface. Otherwise, significant changes can arise.
For more details, we refer, for example, to the clas-
sic text [62] on nano-photonics, or more recent work
referenced therein.

A5: Determination of the vacuum
field amplitude

In order to define the quantity A`, we recall from
Appendix B that the energy

H(t) =
ε0
2

∫
d3r

[
E(t, r)2+

(
cB(t, r)

)2] (125)

of the electromagnetic field in the resonator takes
the form

H =
∑
`

ε0A2
`ω

2
`

V`
2

[
p2`(t) + q2` (t)

]
, (126)

where we have used the expansions (112) and (119)
for E and B.

When we compare (126) to the representation

H =
∑
`

~ω`
2

[
p2`(t) + q2` (t)

]
(127)

of the total energy as a sum of all modes, where
each mode contains the energy ~ω`, we obtain the
explicit expression

A` ≡
√

~
ε0ω`V`

(128)

for the amplitude A` of the vector potential due to
a single mode.

Due to the connection (114) between E` and A`,
we find the corresponding relation

E` ≡
√

~ω`
ε0V`

(129)

for the electric field. In the quantized theory, dis-
cussed in Appendix C, E` will become the amplitude
of the vacuum field.

In Table I, we summarize key features of the
mode expansions based on the eigenmodes or the
u`-modes, such as the strength of the fields and the
vacuum field amplitude in each mode. Here, we em-
phasize the different power laws of the mode fre-
quency ω` in A`, E`, and B`.

A6: Natural modes

In this appendix, we have expanded the three
fields A, E, and B into the modes u` of A. How-
ever, since we focus on a situation with no charges
and currents, we can also express E and B in their
natural modes, v` and w`. Indeed, E and B also
satisfy the homogeneous wave equations, i.e.,

�E(t, r) =

[
1

c2
∂2

∂t2
−∆

]
E(t, r) = 0 (130)

and

�B(t, r) =

[
1

c2
∂2

∂t2
−∆

]
B(t, r) = 0 (131)

following from the Maxwell equations, (94)
and (95), in the absence of currents and charges.

Needless to say, E and B have to obey bound-
ary conditions imposed by the resonator, leading
us to the natural modes f` = f`(r) defined by the
Helmholtz equation(

∆ + k2`
)
f` = 0, (132)

and the boundary conditions with k` = ω`/c.
For the sake of simplicity, we have not included

in the modes f` a superscript A, E, or B to express
the fact that they depend on the choice of the field.
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Indeed, for A and E, the natural modes are obvi-
ously u`, i.e.,

u` ≡ f (A)
` = f

(E)
` ≡ v`, (133)

but for B, we find

f
(B)
` ≡ k−1` (∇× u`) ≡ w`. (134)

The introduction of natural modes allows us to
represent the mode expansions of all three fields by
the single expression

F =
∑
`

F`f`, (135)

where F denotes either A, E, or B, and the modes
f` depend on the choice of F .

Appendix B:
Field energy in a resonator

In order to bring out most clearly the similarities
and differences between the total energy H of the
radiation field and the mode sum Σ (F ) defining the
wave functional of the vacuum and, in particular,
the difference in the powers of the frequency of the
mode in H and Σ (F ), we re-derive in this appendix
the energy

H =
ε0
2

∫
d3r

[
E2 + (cB)

2
]

(136)

of the electromagnetic field in a resonator in two
slightly different ways: (i) first, we calculate in typi-
cal textbook fashion the electric and magnetic con-
tribution to the field energy, (ii) then, we use the
previously defined eigenmodes of the field B to find
the magnetic contribution to the field energy.

B1: Textbook quantum optics approach

We begin with the textbook treatment, following
along the lines of [48]. The contribution

H(E) ≡ ε0
2

∫
d3r E2 (137)

to H due to the electric field
E =

∑
`

E` u` (138)

leads us immediately to the expression

H(E) =
ε0
2

∑
`,`′

E`E`′

∫
d3r u`(r) · u`′(r),

(139)
which reduces with the orthonormality relation
(110) of the modes to

H(E) =
ε0
2

∑
`

E2
`V`. (140)

It is slightly more complicated to calculate the
term

H(B) ≡ ε0
2

∫
d3r (cB)

2 (141)

associated with the magnetic induction

B =
∑
`

B`
c

ω`

[
∇× u`

]
. (142)

Indeed, when we substitute the mode represen-
tation (142) into H(B) given by (141), we find the
expression

H(B) =
ε0c

2

2

∑
`,`′

B`B`′
c2

ω`ω`′
J``′ , (143)

where we have introduced the abbreviation

J``′ ≡
∫

d3r
[
∇× u`(r)

]
·
[
∇× u`′(r)

]
.
(144)

With the help of the identity proven in
Appendix F, the integrand in (144) can be rewrit-
ten as

[∇× u`] · [∇× u`′ ] = ∇ · [u`′ × (∇× u`)]

+u`′ · [∇× (∇× u`)] , (145)

where the first term on the right-hand side is a
complete divergence. Hence, the application of the
Gauss theorem converts the volume integral J``′
into a surface integral, which vanishes due to the
mode functions respecting the boundary conditions
of the resonator.

The remaining term
∇× (∇× u`) = ∇(∇ · u`)−∆u` (146)

in (145) reduces with the Coulomb gauge condi-
tion (104) and the Helmholtz wave equation (101)
to [
∇× (∇× u`)

]
=
(ω`
c

)2
u`. (147)

Hence, the integral J``′ given by (144), yields

J``′ =
(ω`
c

)2∫
d3r u`(r) · u`′(r) =

(ω`
c

)2
V`δ``′ ,

(148)
where in the last step we have used the orthonor-
mality relation (110) of the mode functions.

Consequently, we arrive at the expression

H(B) =
ε0
2

∑
`

c2B2
`V` (149)

for the magnetic field energy (143).
We conclude by combining the formulae for the

electric H(E) and magnetic part H(B) given by
(140) and (149), and arrive at the representation

H =
ε0
2

∑
`

A2
` ω

2
` V`

(
p2` + q2`

)
(150)

of the energy in terms of modes. Here, we have re-
called the definitions (115) and (120) of E` and B`,
respectively, together with the connections (114)
and (121).

B2: Magnetic field energy via eigenmodes

When we recall our discussion of the respective
eigenmodes of E and B, and their relation to the
eigenmodes of A, one might think that we could
have avoided the cumbersome calculation of the
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scalar product of the curls of the modes entirely.
However, this suspicion is not quite true, and to
show why, we perform the relevant calculation in
this section.

When we expand the magnetic induction in its
eigenmodes {w`}, we directly obtain for the mag-
netic field energy (141) the expression

H(B) =
ε0
2

∑
`,`′

c2B`B`′

∫
d3r w`

†(r)w`′(r).

(151)
Next, we make use of the orthonormality of the

eigenmodes w`, i.e.,
1

Ṽ`

∫
d3r w`

†(r)w`′(r) = δ``′ , (152)

which leads us to the preliminary result

H(B) =
ε0
2

∑
`

c2B2
` Ṽ`. (153)

We emphasize that, instead of the mode volume
V` of the vector potential modes u`, the mode vol-
ume Ṽ` corresponding to the eigenmodes w` of B
has appeared. Hence, if one wants to express the
total field energy H solely in terms of one mode
volume, a connection between V` and Ṽ` is needed.

However, the only link available between the
eigenmodes w` and u` is (124), i.e.,

w`(r) =
c

ω`

[
∇× u`(r)

]
. (154)

When we take the scalar product of this equation
with itself and integrate over the resonator volume,
we obtain the relation

Ṽ` =

∫
d3r

∣∣w`(r)
∣∣2 =

c2

ω2
`

∫
d3r

[
∇× u`(r)

]
·
[
∇× u`(r)

]
. (155)

The integrand on the right-hand side of this equa-
tion is an old acquaintance of ours — (144) evalu-
ated at ` = `′.

Hence, even in the approach with the eigenmodes
ultimatly no true simplification is gained, but it is
just a slightly different detour. As a consequence,
we again need to apply (145) to (147) to simplify
the scalar product of the two curls, and we obtain

Ṽ` =

∫
d3r

∣∣w`(r)
∣∣2 =(ω`

c

)2( c

ω`

)2 ∫
d3r |u`(r)|2 = V`, (156)

where we have made use of (110) defining the mode
volume of the vector potential modes u`.

As a consequence of the identity V` = Ṽ`, we also
arrive at the expression

H(B) =
ε0
2

∑
`

c2B2
` Ṽ` =

ε0
2

∑
`

c2B2
`V` (157)

for the field energy H(B) due to the magnetic in-
duction.

As an afterthought, we note that one could have
naively imagined that the mode volumes might be
defined independently such that they differ by a nu-
meric factor — maybe via choosing different ref-
erence points in their respective definition of the
mode volume. However, then the expression for the
Hamiltonian (150) would be rescaled in the mode
oscillator coordinate q` corresponding to the mag-
netic field by the factor of Ṽ`/V`. In turn, this fea-
ture would lead to problems in the Hamilton equa-
tions of motion since the symmetry between q` and
p` would be broken, leading to a rescaled Poisson
bracket. This would directly impact quantization
by also rescaling the commutator [q̂`, p̂`] = i by the
factor Ṽ`/V`, which is undesirable. Nevertheless, we
note that the simple argument we have formulated
here might not be as clear-cut when complicated
boundary conditions enter, or open resonators in
the presence of currents and charges are considered.

Appendix C: Wave function
representations of the ground state

In this appendix we derive the wave function ψ`
of the ground state of the electromagnetic field in
the modes u`, v`, or w` specified by the mode in-
dex ` and the field. Indeed, for the vector poten-
tial A and the electric field E, the eigenmodes are
u`. However, for the magnetic induction B they are
w` ≡ k−1` ∇× u`.

Although the material in this appendix is par-
tially contained in standard textbooks on quantum
optics [48], we find it useful to include it in our
article to gain a complete understanding of the ori-
gin and form of the dimensionless arguments of the
Gaussian ground state wave function in the different
representations. We first address in detail the case
of E, and then we will turn briefly to the analogous
calculations for B and A.

C1: Electric field representation

We start from the mode decomposition

E(t, r) =
∑
`

E` p`(t)u`(r) (158)

of the electric field and make a transition to quan-
tum mechanics, namely to the electric field opera-
tor Ê, by promoting the dimensionless amplitude
functions q` and p` of the harmonic field oscillator
of the `-th mode defined by the mode function u`
to operators q` 7→ q̂` and p` 7→ p̂`, and demanding
the canonical commutation relations[

p̂`, q̂`′
]

=
1

i
δ``′ . (159)

Hence, Ê takes the form

Ê(t, r) =
∑
`

Ê`(t)u`(r) (160)
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with
Ê`(t) ≡ E`p̂`(t), (161)

which forces us to introduce a quantum state space
for each mode.

A representative state could be, for example, the
eigenstate |E`〉 defined by the eigenvalue equation

Ê` |E`〉 ≡ E` |E`〉 (162)
for the electric field operator, where E` ≡ E`q` cor-
responds to the eigenvalue. Thus, |E`〉 describes a
state, where the electric field in the `-th mode as-
sumes the well-defined value E`.

The ground state |0`〉 of the `-th field oscillator
is determined by the condition

â` |0`〉 = 0, (163)
where the linear combination

â` ≡
1√
2

(
q̂` + i p̂`

)
(164)

of q̂` and p̂` represents the annihilation operator â`.
When we now substitute the expression for â`

given by (164) into the definition (163) of the
ground state and multiply by the bra-vector 〈E`|,
we arrive at the equation
〈E`| q̂` + i p̂` |0`〉 = 0 (165)

determining the ground state wave function
ψ`(E`) ≡ 〈E` | 0`〉 . (166)

in the electric field representation, which corre-
sponds to the first-order differential equation[
−1

i

d

d(E`/E`)
+ i(E`/E`)

]
ψ`(E`) = 0 (166)

Here we have used the fact that, according
to (162), |E`〉 is an eigenstate of Ê`, and therefore
of p̂`, leading us to the identifications

p̂` 7→ p` and q̂` 7→ −
1

i

d

dp`
(168)

to satisfy the canonical commutation relation (159).
Moreover, in (167), we have expressed the derivative
with respect to p` by E`p` ≡ E`.

Hence, we arrive at the Gaussian wave function

ψ`(E`) = N (E)
` exp

[
−1

2

(
E`
E`

)2
]
, (169)

where the normalization constant

N (E)
` ≡ 1

4
√
π
√
E`

(170)

follows from the condition∫ ∞
−∞

dE`
∣∣ψ`(E`)∣∣2 = 1, (171)

imposed by the Born interpretation.

C2: Magnetic induction representation

Next, we turn to the magnetic inductionB, where
the corresponding operator reads

B̂(t, r) =
∑
`

B̂`(t)w`(r) (172)

with
B̂`(t) ≡ B`q̂`(t). (173)

This decomposition leads us to the eigenvalue equa-
tion

B̂` |B`〉 = B` |B`〉 (174)
for the state |B`〉 of a well-defined value B` of the
magnetic induction B in the `-th mode w`(r) ≡
k−1` (∇ × u`). Here, similarly to the electric field
case, the expression

B` ≡ B`q` (175)
denotes the eigenvalue.

Indeed, in this representation, we have to make
the identification

p̂` 7→
1

i

d

dq`
and q̂ 7→ q` (176)

leading us directly to the differential equation
d

d(B`/B`)
ψ`(B`) = −(B`/B`)ψ`(B`) (177)

for the wave function
ψ`(B`) ≡ 〈B` | 0`〉 (178)

of the ground state of the `-th mode in the magnetic
induction representation.

The differential equation (177) also admits a
solution in the form of a Gaussian

ψ`(B`) ≡ N (B)
` exp

[
−1

2

(
B`
B`

)2
]

(179)

with the normalization constant

N (B)
` ≡ 1

4
√
π
√
B`
. (180)

The only difference from the electric field repre-
sentation discussed in the preceding section is the
fact that the eigenstates |B`〉 are now, apart from
the vacuum fields B`, eigenstates of q̂` rather than
of p̂`.

C3: Vector potential representation

We conclude by briefly discussing the vector po-
tential representation

ψ`(A`) ≡ 〈A` | 0`〉 (181)
of the ground state wave function in the `-th mode
resulting from the operator

Â(t, r) ≡
∑
`

Â`(t) û`(r) (182)

of the vector potential with
Â`(t) ≡ A` q̂`(t). (183)
Since the operator Â` like B̂` is also proportional

to q̂`, we immediately find

ψ`(A`) = N (A)
` exp

[
−1

2

(
A`
A`

)2
]

(184)

with the normalization constant

N (A)
` ≡ 1

4
√
π
√
A`

(185)
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in complete analogy to the distributions (169)
and (179) in the electric field and magnetic induc-
tion variables E` and B`, respectively.

Appendix D:
Reduction scheme for the kernel

In the main body of this article, we have derived
an exact expression for the kernel K of the wave
functional of the vacuum in a resonator represented
by the field F in terms of the natural modes f`.
This kernel is a matrix according to (31), this ker-
nel is a matrix, defined by the action of the func-
tion F containing the root of the negative Laplacian
on the transverse delta function. Since the fields in
the double integral are transverse, we can replace it
with the familiar Dirac delta function of free space.
As a result, the kernel reduces to a scalar K (F ).

In this appendix, we rederive the expression for
the scalar kernel from a slightly different perspec-
tive. From the outset, we assume the kernel to be
a scalar in the form of a Fourier representation of
a root of the negative Laplacian. We first obtain an
exact expression for the double integral containing
the bilinear form of a field F and the scalar kernel
K (F ) expressed as a single integral of the square of
F containing the fourth root of the negative Lapla-
cian acting on F . We then evaluate this integral for
a given mode representation and match the result
with the formula for the mode sum.

This procedure yields the individual scalar ker-
nels. We conclude by comparing and contrasting
this approach to the diagonal and non-diagonal
representation of the density operator in terms
of coherent states, and given by the P - and R-
distribution [38], respectively.

D1: A general identity for Fourier
transformable kernels

We now verify the identity

Ĩ(F ) ≡
∫

d3r

∫
d3r′ F · F ′ K (F )(r − r′) =∫

d3r
∣∣F 4
√
−∆F

∣∣2 (186)

for a vector field F = F (t, r), where the kernel

K (F )(r) ≡ 1

(2π)3

∫
d3k F (k)e ik·r (187)

appears in the double integral with the difference
r − r′ of the integration variables r and r′. Here
F is not a generic scalar function but the function
F (k) = k or F (k) = 1/k appearing in the mode
sum Σ (F ) defined by (13), and given for E and B
by (14), and for A by (15).

Central to the relation (186) is the eigenvalue
equation (37) of e ik·r leading us immediately to
the representation

K (F )(r) = F
(√
−∆r

)
δ(r), (188)

where we have recalled the Fourier representa-
tion (44) of the Dirac delta function.

When we substitute (188) into the left–hand side
of (186), we arrive at the expression

Ĩ(F ) ≡
∫

d3r

∫
d3r′ F ·

[
F
(

4
√
−∆r

)
×F

(
4
√
−∆r′

)
δ(r − r′)

]
F ′. (189)

Here we have used the relation
F
(√
−∆

)
δ(r) = F 4

√
−∆r F

4
√
−∆r′δ(r−r′),

(190)
which is only true for F (k)=k and F (k)=1/k and
follows from the fact that the delta function is in the
difference of the integration variables, i.e., r−r′.

When we recall that the field F vanishes outside
of the resonator, we can integrate both integrals by
part. As a result, we arrive at the representation

Ĩ(F ) =

∫
d3r

∫
d3r′ δ(r−r′)

×
[
F
(

4
√
−∆r

)
F
][
F
(

4
√
−∆r′

)
F ′
]

(191)

of the integral Ĩ(F ). The Dirac delta function allows
us to reduce the double integral into a single one
leading us to the identity (186).

D2: Evaluation of the integral

Next, we evaluate the integral on the right-hand
side of the identity (186) using the expansion

F =
∑
`

F` f` (192)

of F into the natural modes f`, and find∫
d3r

∣∣∣F ( 4
√
−∆

)
F
∣∣∣2 =

∑
`

F 2
` F (k`)V` = Σ (F ),

(193)
where we have used the identity (29) for the action
of the fourth root of the negative Laplacian on f`,
and the orthonormality relation (17). In the last
step in (193), we used the indentities F (k) = 1/k
and F (k) = k and have recalled the definition (13)
of the mode sum Σ (F ).

Together with the identity (186), we finally
arrive at the relation

Σ (F ) =

∫
d3r

∫
d3r′ F · F ′ K (F )(r−r′)

(194)
with the kernels

K (A)(r) ≡ 1

(2π)3

∫
d3k k e ik·r (195)

and

K (E/B)(r) ≡ 1

(2π)3

∫
d3k

1

k
e ik·r, (196)

in complete agreement with the derivation
in Sect. 3.
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D3: A curious analogy

This approach is reminiscent of the representa-
tion [48] of the density operator %̂ in terms of co-
herent states. Multiplying the completeness relation
of the coherent states from the left and from the
right onto the density operator %̂, we obtain the
non-diagonal representation

%̂ =
1

π2

∫
d2α

∫
d2β |α〉 〈α|%̂|β〉 〈β| . (197)

When we compare this expression to the corre-
sponding one of the double integral Ĩ(F ), given by
(186), we note three similarities: (i) the two differ-
ent coherent states |α〉 and |β〉 play the role of the
fields F and F ′, (ii) the matrix element 〈α|%̂|β〉 cor-
responds to the kernel, and (iii) the two integration
over the coherent states translate into a double in-
tegral over coordinates.

Needless to say, there are also fundamental dif-
ferences between the two expressions. For example,
coherent states live in the state space and describe
the quantum mechanics of a single mode. In con-
trast, the bilinear form involves the classical total
fields. Nevertheless, in both cases, states and fields
are associated with vector spaces and therefore take
advantage of similar mathematical tools.

Roy Glauber and George Sudarshan, indepen-
dently, introduced the diagonal representation

%̂ =
1

π

∫
d2α P (α) |α〉 〈α| (198)

of the density operator %̂ involving the P -
distribution.

In our problem, this concept corresponds to the
right-hand side of (186) which, according to (193), is
identical to the mode sum Σ (F ), which only contains
the squares of the field strength and is therefore di-
agonal. This transition from non-diagonal to diag-
onal representation is made possible by derivatives
acting on delta functions. Indeed, the P -distribution
of a coherent state is already a Dirac delta function,
and non-classical states are more singular [48].

Appendix E:
Explicit expressions for kernels

In this appendix, we derive an explicit expression
for the kernel

K (j)(r) ≡ 1

(2π)3

∫
d3k kj e ik·r, (199)

and consider especially the two cases j = 1 and
j = −1 corresponding to K (A) and K (E/B).

We note that while we formally calculate the inte-
gral for all integer values of j in this section, the re-
sulting expressions and integrals are obviously prob-
lematic from the simple viewpoint of Riemann or
Lebesgue integration of functions, since they are ei-
ther singular at the origin or at infinity depending
on the j value. Methods to deal with such singu-
lar integrals have been developed in the theory of

generalized functions [63–65] in terms of Hadamard
finite part regularization. This is the framework in
which the following calculation should be under-
stood.

In the case of an integral with a singularity at the
origin, the standard Hadamard regularization [63]
can be directly applied. In the case of a singularity
at infinity, tools with similar scope were developed
in [66]. For an example of the necessary procedures,
we refer to [64], where the regularization of 1/rj is
discussed in detail. In our calculation, we implic-
itly assume that such a regularization is performed
and the kernel expressions are understood in this
way. After the dust settles, the resulting kernel may
be made sense of as a pseudo-function/generalized
function induced by the meromorphic continuation
of the remaining finite part, with the singular parts
removed.

We begin the formal integration by choosing
spherical coordinates k ≡ |k|, ϑ and ϕ, noting that
the integrand does not depend on ϕ. Thus we im-
mediately arrive at the two-dimensional integral

K (j) =
1

(2π)2

∞∫
0

dk kj+2

π∫
0

dϑ sin (ϑ)e ikr cos(ϑ),

(200)
which after integration over ϑ yields the expression

K (j) =
1

(2π)2 r

1

i

∞∫
0

dk kj+1
(

e ikr − e− ikr
)
.

(201)
Next we eliminate the power kj+1 by j+1 by dif-

ferentiating the radial wave exp(± ikr) with respect
to r in total j+1-times and find

K (j) = − 1

(2π)2
1

r

1

i j

× ∂j+1

∂rj+1

 ∞∫
0

dk e ikr + (−1)j
∞∫
0

dk e− ikr

 .
(202)

In order to evaluate the two remaining integrals,
we introduce the convergence factor exp(−εk) to
calculate the resulting integral, and then let ε > 0
approach zero afterward. With the help of the rela-
tion

∞∫
0

dk e−(ε∓ ir)k =
1

ε∓ ir
, (203)

we finally obtain

K (j)(r) = Pf
1

2π r

(−1)

i j
∂j+1

∂rj+1
d(j)ε (r). (204)

Here we have introduced the abbreviation

d(j)ε (r) ≡ 1

π

ε

ε2+r2
1+(−1)j

2
+

i

π

r

ε2+r2
1−(−1)j

2

(205)
and added the pseudo-function [63, 64] operator
Pf to remind us that the kernel is a pseudo-
functions/generalized function resulting from im-
plicitly performing Hadamard finite part regular-
ization on the integral leading to it, if necessary.
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With the representation

lim
ε→0

1

π

ε

ε2 + r2
= δ(r) (206)

of the Dirac delta function and the identity

lim
ε→0

r

ε2 + r2
= P

(1

r

)
, (207)

where P denotes the Cauchy principal part, we ob-
tain the expression

d(j)(r) =
1 + (−1)j

2
δ(r)

+
i

π

1− (−1)j

2
P
(1

r

)
. (208)

Hence, for even values of j only the delta function
contributes to

d(j) ≡ lim
ε→0

d(j)ε , (209)

whereas for odd ones only the contribution due to
the derivatives of the Cauchy principal part ap-
pears, leading us to the expressions

K (2n) = Pf
(−1)n+1

2π r

∂2n+1

∂r2n+1
δ(r) (210)

and

K (2n+1) = Pf
(−1)n+1

2π2 r

∂2(n+1)

∂r2(n+1)
P
(1

r

)
. (211)

Both kernel expressions should be understood as
pseudo-functions including an implicit regulariza-
tion lending the needed context [63] in which, e.g.,
the derivatives of the Cauchy principal part are to
be interpreted. As is often done in physics, we will
from now on suppress the pseudo-function opera-
tor again for brevity in the notation, assuming the
resulting kernels and objects involving them are un-
derstood implicitly in that sense from now on.

With these considerations, after performing the
derivatives for j = −1 that is n = −1, we find the
kernel

K (−1) = K (E/B) =
1

2π2 r2
, (212)

whereas for j = +1, that is n = 0, we arrive at the
kernel

K (1) = K (A) =
(−1)

π2 r4
. (213)

This expression for K (1) also follows in a
straight-forward way when we note from the defi-
nition (199) of K (j) the connection

(−∆) K (−1) = K (1) (214)

between K (−1) and K (1), i.e., between K (E/B)

and K (A).

Indeed, by direct differentiation of (212), we ob-
tain

K (A) = (−∆)K (E/B) =

− 1

2π2

(
∂2

∂r2
+

2

r

∂

∂r

)
1

r2
= − 1

π2 r4
, (215)

in complete agreement with (213).

Appendix F:
Scalar product of two mode functions

The scalar product of the curls of two-mode func-
tions is crucial for calculating the contributionH(B)

of the magnetic induction to the total energy H of
the electromagnetic field in a resonator performed
in Appendix B.

In (145) we applied an identity for the scalar
product of the curl of two vector fields, which we de-
rive here. We start with a more general identity for
the three vector fields f = f(r, r′) and g = g(r, r′)
and h = h(r, r′).

When we take the divergence of the cross product
between f and h, we obtain

∇r ·
[
f(r, r′)× h(r, r′)

]
= h · (∇r × f)

−f · (∇r × h), (216)

where from now on we suppress the functional de-
pendencies of the fields for brevity.

Replacing h 7→ ∇r′ × g yields

(∇r × f) · (∇r′ × g) = ∇r ·
[
f × (∇r′ × g)

]
+f ·

[
∇r × (∇r′ × g)

]
. (217)

Using the definition of the cross product in terms
of the Levi–Civita symbol, i.e., a× b = ej εjk` akb`
with summation over double-indices implied, the
terms on the right-hand side of the previous equa-
tion can be transformed into
f × (∇r′ × g) = ∇r′(f · g)− (f · ∇r′)v

(218)
and
∇r × (∇r′ × g) = ∇r′(∇r · g)− (∇r · ∇r′)g.

(219)

Reinsertion of these identities into (217) leads to
the desired identity
(∇r × f) · (∇r′ × g) = ∇r ·

[
∇r′(f · g)

]
−∇r ·

[(
f · ∇r′

)
g
]

+
(
f · ∇r′

)(
∇r · g

)
−f · [(∇r · ∇r′) g] (220)

for the scalar product of two curls with differ-
entiation with respect to different arguments r
and r′.

Alternatively, starting from (217) and using the
case of r ≡ r′ and the definition of the vector Lapla-
cian we obtain the identity

(∇r × f) · (∇r × g) = ∇r ·
[
f × (∇r × g)

]
+f ·

[
∇r(∇r · g)−∆rg

]
, (221)

used in (145).
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1. Introduction

Lamb shifts and van der Waals interactions may
be attributed to the coupling of atoms to the zero-
point electromagnetic field. These effects are modi-
fied at finite temperatures and depend on the mode
structure of the field. Analyses of these effects have
involved different formalisms and physical interpre-
tations, all based in one way or another on quan-
tum fluctuations of electromagnetic fields and their
sources, and many invoking in particular the zero-
point energy of the field or its finite-temperature
generalization. Here we take an approach based
on the Pauli–Hellmann–Feynman (PHF) theorem.
We begin in Sect. 2 with brief, heuristic derivations
of the (nonrelativistic) Lamb shift and the van der
Waals interaction based on changes in zero-point
field energy. In Sect. 3, we use the PHF theorem
to derive an exact expression for the Helmholtz free
energy of a system coupled to a heat bath, includ-
ing many-body interactions. This is then applied
in Sects. 3–6 to some aspects of Lamb shifts and
van der Waals interactions, and in particular to the
form of the van der Waals interaction when there is
strong coupling to a single field mode. The physi-
cal interpretation of these results is briefly discussed
in Sect. 7.

2. Scatterings: Lamb shift and van der
Waals interaction at zero temperature

Sixty years ago, in a talk at the Relativity Con-
ference in Warsaw, Richard Feynman [1] returned
to an interpretation of the hydrogen Lamb shift he
had suggested earlier [2, 3]. The argument, briefly,
is as follows. In a box of volume V containing N
identical atoms per unit volume, the zero-point en-
ergy of a field mode of frequency ω is 1

2~ω/n(ω),
where n(ω) is the refractive index. The change in
the total zero-point energy due to the presence of
the atoms is therefore

∆E = 2V

∫
d3k

(2π)3
~ω
2

(
1

n
− 1

)

∼= −
~
πc3

∞∫
0

dω ω3α0(ω) (1)

in the case of a single atom (N V=1) with po-
larizability α0(ω), n(ω)∼=1 + 2πNα0(ω). If we use
the Kramers–Heisenberg formula for α0(ω), sub-
tract out the free-electron energy given by ∆E with
α0(ω)=−e2/(mω2), and introduce a high-frequency
cutoff mc2/~, we obtain, without any need for mass
renormalization, exactly the “Bethe log” expression
for the (nonrelativistic) Lamb shift [4, 5]. This is
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discussed in a bit more detail in Sect. 4. A more
explicit analysis based on Feynman’s idea was done
by E.A. Power [3].

The formula (1) can be expressed in terms of the
forward scattering amplitude f(ω) = α0(ω)ω2/c2

∆E = −2π~c2
∫

d3k

(2π)3
f(ω)

ω
, (2)

which is essentially Feynman’s formula†1 [2]. It is
equivalent to Bethe’s, but it involves a scattering
amplitude for a real scattering process, whereas
Bethe’s formula involves the single closed-loop di-
agram for the emission and absorption of virtual
photons. Feynman remarked that the formula (2) is
simple but “very peculiar. The reason it’s peculiar is
that the forward scatterings are real processes. At
last I had discovered a formula I had always wanted,
which is a formula for energy differences (which are
defined in terms of virtual fields) in terms of actual
measurable quantities...” [1].

A more direct calculation for an atom at position
rA leads to

∆E(rA) = −1

2

∑
kλ

√
2π~ω
V

∣∣∣êkλ e ik·rA
∣∣∣2 α0(ω) =

− ~
8π2

2∑
λ=1

∫
d3k ω

∣∣∣êkλ e ik·rA
∣∣∣2α0(ω), (3)

which of course is equivalent to (2). Here êkλ is a lin-
ear polarization unit vector (k · êkλ = 0, λ = 1, 2).
Now, suppose there is an identical atom B at a po-
sition rB , both atoms in their ground states. The
effect on atom A is to replace êkλ e ik·rA by

êkλ e ik·rA + α0(ω)e ik·rBk3 e ikr

[
êkλ − (êkλ · r̂)r̂

kr

+
( i

k2r2
− 1

k3r3

)(
êkλ − 3(êkλ · r̂)r̂

)]
, (4)

where r = rA − rB , r̂ = r/r, and k = kk̂. The
second term may be thought of as the field at A
from the dipole moment induced in B by the vac-
uum field incident on B, i.e., it may be attributed
to the scattering of the vacuum field by atom B.
When we use this expression in place of êkλ e ik·rA

in (3) and retain only terms up to second order in
α0(ω), we obtain, in addition to the r-independent
Lamb shift of atom A, an r-dependent energy

∆E(r) = − ~c
πr2

∞∫
0

du u4α2
0(icu)

×
(

1 +
2

ur
+

5

u2r2
+

6

u3r3
+

3

u4r4

)
e−2ur,

(5)

†1Feynman added to the energy (2) a contribution from
vacuum polarization, expressed similarly in terms of electron
and positron forward scattering amplitudes.

a well-known expression for the van der Waals
interaction of two molecules in a vacuum, nei-
ther of which has a permanent dipole moment.
(We have used the analyticity of α0(ω) in the
first quadrant of the complex frequency plane to
analytically continue the integral along the pos-
itive real axis to an integral along the posi-
tive imaginary axis.) In the limit of very large
separations, this gives the Casimir–Polder result
∆E(r) = −23~c α2

0(0)/(4πr7) for the retarded van
der Waals interaction, whereas at small separations,
it gives the London result in which ∆E(r) ∝ 1/r6.
Like the Lamb shift, the van der Waals interac-
tion can be expressed in terms of a real scatter-
ing process and a forward scattering amplitude.
The zero-point field is Rayleigh-scattered by each
atom according to the expression (4), and the scat-
tered field modifies the zero-point field at the other
atom from its free-space form, resulting, in effect,
in an r-dependent Lamb shift. This is the van der
Waals interaction energy. The extension to many-
atom systems, multiple scattering, and finite tem-
peratures is perhaps most easily done with a simple
extension of the Pauli–Hellmann–Feynman theorem
(Sect. 3).

3. Free energy of atoms in thermal
equilibrium with radiation

3.1. Pauli–Hellmann–Feynman theorem
for free energy

Consider a Hamiltonian of the general form
H = H0 + λH1, where H0 is the unperturbed
Hamiltonian, and the interaction Hamiltonian is
parametrized by a coupling constant λ. The eigen-
values E(λ) and eigenvectors |ψ(λ)〉 of H will,
of course, depend on λ. According to the Pauli–
Hellmann-Feynman theorem [6–9],

dE

dλ
=
〈
ψ(λ)

∣∣∣ dH

dλ

∣∣∣ψ(λ)
〉
. (6)

In its integral form, the PHF theorem gives the
change E(1) − E(0) in the energy of the system in
the form of the coupling-constant integration algo-
rithm

E(1)− E(0) =

∫ 1

0

dλ

λ

〈
ψ(λ)|λH1|ψ(λ)

〉
, (7)

the difference between the energy with (λ = 1) and
without (λ = 0) the interaction H1 [10]. For a nice
discussion of the history of this “theorem”, see [9].

In the case of thermal equilibrium, there is an ex-
pression analogous to (6), now involving the average
〈. . . 〉 over the canonical ensemble, for the Helmholtz
free energy F (λ, T ) [11, 12]

dF

dλ
=
〈 dH

dλ

〉
, (8)

which follows simply from the definition

F (λ, T ) = −kBT ln
(

Tr
[

e−H(λ)/(kBT )
])
. (9)
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Integration of (8) gives the change in the free en-
ergy in a form similar to the zero-temperature ex-
pression (7)

∆F = F (1, T )−F (0, T )=

∫ 1

0

dλ

λ

〈
λH1

〉
. (10)

For additional information, see, for instance, [11]
and references therein. For more discussion of the
PHF theorem for finite temperatures, see [12].

3.2. Coupling of induced dipoles and
thermal radiation

We now consider a collection of N atoms cou-
pled to a heat bath, specifically an electromagnetic
field in thermal equilibrium at temperature T . The
atoms are assumed to remain in their ground states
with high probability. We assume there are no per-
manent dipole moments, only electric dipole mo-
ments induced by the field. The interaction Hamil-
tonian in the electric dipole approximation is

Hint = −1

2

N∑
n=1

3∑
i=1

[
pi(rn, t)Ei(rn, t)

+Ei(rn, t) pi(rn, t)
]
, (11)

where Ei(rn, t) is the i-th component of the electric
field operator for the thermal field at the position rn
of the atom with dipole moment p(rn, t). Effects of
fields from the atoms themselves are subsumed in
the polarizability, as done below. The coupling con-
stant for the application of the PHF theorem is the
electron charge e. We write Ei(rn, t) in terms of
positive- and negative-frequency components as

Ei(rn, t)=

∞∫
0

dω
[
E

(+)

i (rn, ω)e− iωt+E
(−)

i (rn, ω)e iωt
]
,

(12)

and likewise,

pi(rn, t)=

∞∫
0

dω
[
p

(+)

i (rn, ω)e− iωt + p
(−)

i (rn, ω)e iωt
]
,

(13)
with

p
(+)
i (rn, ω) = α0(ω+i0+)Ei(rn, ω) (14)

in the case of a single atom†2. The polarizability
α0(ω+i0+) is given by the Kramers–Heisenberg for-
mula

α0(ω+i0+) =
2

3~
∑
s

ωsg|dsg|2

ω2
sg − (ω+i0+)2

, (15)

where ωsg (> 0) is the frequency for the transition
between the ground state g and the excited state s
and dsg is the corresponding electric dipole matrix
element. For N atoms, the dipole moment induced
in every atom is

p
(+)
i (rn, ω) = α0(ω+i0+)E

(+)
i (rn, ω)+α0(ω+i0+)

×
N∑
m=1

3∑
j=1

Gij(rn, rm, ω) p
(−)
j (rm, ω). (16)

The dyadic Green function G(rn, rm, ω) is defined
by (66) in Appendix. In matrix form,
p(+)(ω) = α0(ω+i0+)E(+)(ω) + α0(ω+i0+)

× G(ω) p(+)(ω) (17)
or

p(+)(ω) =
α0(ω+i0+)E(+)(ω)

1− α0(ω+i0+)G(ω)
≡ α(ω)E(+)(ω),

(18)
where α(ω) and G(ω) are 3N × 3N matrices and
p(+)(ω) is a 3N -dimensional vector.

For thermal radiation the different frequency
components of E(r, t) are uncorrelated. As re-
viewed in Appendix,


〈
E

(+)
i (rn, ω)E

(−)
j (rm, ω

′)
〉

= ~
π

[
q(ω) + 1

]
GIij(rn, rm, ω) δ(ω − ω′),〈

E
(−)
i (rn, ω)E

(+)
j (rm, ω

′)
〉

= ~
π q(ω)GIij(rn, rm, ω) δ(ω − ω′),

(19)

whereGIij(rn, rm, ω) is the imaginary part ofGij(rn, rm, ω) (= Gji(rm, rn, ω)) and q(ω) = [e~ω/(kBT )−1]−1.
Thus,

〈Hint〉 = −~
π

N∑
n,m=1

3∑
i,j=1

∫ ∞
0

dω αij(rn, rm, ω)
[
2q(ω) + 1

]
GIji(rm, rn, ω) =

− ~
π

Im Tr

{∫ ∞
0

dω α(ω)
[
2q(ω) + 1

]
G(ω)

}
= −~

π
Im Tr

{∫ ∞
0

dω α0(ω+i0+)G(ω)

1− α0(ω+i0+)G(ω)
coth

(
~ω

2kBT

)}
.

(20)

†2We do not include any line broadening effects that would
give an imaginary part to the polarizability. In particular, in
our formulation, radiation reaction is accounted for in (16)

but not in (15). But the polarizability must not have
any poles in the upper half of the complex frequency plane,
whence we add i 0+ to ω in the Kramers–Heisenberg formula.
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3.3. Free energy

As noted above, the coupling constant for the ap-
plication of the PHF theorem may be taken to be
the electron charge e. Since α0(ω+i0+) is propor-
tional to e2, it follows from (20) that

∆F = −~
π

ImTr

{ ∞∫
0

dω coth

(
~ω

2kBT

)

×
1∫

0

dλ

λ

λ2 α0(ω+i0+)G(ω)

1− λ2 α0(ω+i0+)G(ω)

}
=

~
2π

ImTr

{ ∞∫
0

dω coth

(
~ω

2kBT

)
× log

[
1− α0(ω+i0+)G(ω)

]}
. (21)

Using the identity Tr[log(1−X)] = log[det(1−X)],
we can write this as

∆F (T ) = − ~
2π

Im

{ ∞∫
0

dω coth

(
~ω

2kBT

)

× log det

[
α(ω)

α0(ω+i0+)

]}
, (22)

which has the form of the multi-particle gener-
alization of the “remarkable theorem” of Ford,
Lewis, and O’Connell [13] when we identify α(ω) =
α0(ω+i0+)/[1 − α0(ω+i0+)G(ω)] as their “gen-
eralized susceptibility.” This formula gives the
Helmholtz free energy of the interacting system of
oscillators, in this case atoms and the electromag-
netic field, in terms of the polarizability of the atoms
alone. A different derivation is given in the original
paper of Ford et al. [13]. Another derivation, based
essentially on the PHF theorem but not in the form
of the coupling-constant integration algorithm used
here, is given in [11].

4. Lamb shifts

Retaining only the term linear in α0(ω+i0+),
(21) gives, for a single atom at any point r in free
space,

∆F (T ) = − ~
2π

Im

{ 3∑
i=1

∞∫
0

dω coth

(
~ω

2kBT

)

α0(ω+i0+)Gii(r, r, ω)

}
=

− ~
πc3

∞∫
0

dω ω3 coth

(
~ω

2kBT

)
α0(ω+i0+), (23)

since Im [limr→r′ G(r, r′, ω)] = 2ω2k
c2 = 2ω3

c3 as fol-
lows from (66) in Appendix. For T=0 this repro-
duces (1). Subtracting the free-electron (ωsg → 0)
contribution and introducing a high-frequency
cutoff Ω , we replace (23) with the “observable” shift
∆F (0)obs, i.e., the difference in the shift between

bound and unbound electrons

∆F (0)obs = − 2 P

3πc3

Ω∫
0

dω ω3
∑
s

ωsg|dsg|2

×
(

1

ω2
sg−ω2

− 1

−ω2

)
=

− 2

3πc3

∑
s

ω2
sg|dsg|2 P

Ω∫
0

dω ω

ω2
sg − ω2

=

− 2

3πc3

∑
s

ω2
sg|dsg|2

Ω∫
0

dω

ω + ωsg
(24)

for Ω � |ωsg| for all transition frequencies ωsg
(P stands for “principal part”). This, of course, is
the “Bethe log” when we take the high-frequency
cutoff Ω to be mc2/~.

For an atom in a homogeneous dielectric medium,
Im[limr→r′ G(r, r′, ω)] = 2n(ω)ω3/c3 and

∆F (0)diel = − 2

3πc3

∑
s

ω2
sg|dsg|2

Ω∫
0

dω n(ω)

ωsg + ω
.

(25)
The difference between the Lamb shift of an atom
in the dielectric and the atom in vacuum is

∆F (0)diel−∆F (0)vac =

− 2

3πc3

∑
s

ω2
sg|dsg|2

Ω∫
0

dω
(
n(ω)− 1

)
ωsg + ω

. (26)

Since n(ω)−1 can be expected to vary as 1/ω2 as
ω → ∞, we can take Ω → ∞. In any event, it ap-
pears that this modified Lamb shift would be very
difficult to observe because of competing effects and
shifts resulting from the interaction of the guest
atom with the host atoms of the medium.

Note that (23) implies a T -dependent correction
to the Lamb shift

∆Fi(T )−∆Fi(0) = − 4

3πc3

∑
j

|dij |2 P

×
∞∫
0

dω ω3

e~ω/kBT − 1

ωji
ω2
ji − (ω+i0+)2

(27)

for an atom in state i. For transition frequencies
and temperatures such that ~|ωji| � kBT [14],

∆Fi(T )−∆Fi(0) ∼=
4

3πc3

∑
j
|dij |2ωji

×
∞∫
0

dω ω

e~ω/kBT − 1
=

πe2

3m~c3
(kBT )

2
, (28)

where we have used the Thomas–Reiche–Kuhn sum
rule. This is just the average kinetic energy ob-
tained from the equation of motion mẍ = eE for
an electron in a blackbody field at temperature T .
Temperature-dependent corrections to the Lamb
shift of Rydberg atoms have been measured and
found to be consistent with a T 2 scaling [15].
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5. Van der Waals Interactions

The polarizability α(ω) is required from causality
considerations to be analytic in the upper half of
the complex frequency plane. From the definition
of G(ω) it is clear that α0(ω+i0+)G(ω) is analytic
in the upper half of the complex frequency plane.
Assuming for now that log[1 − α0(ω+i0+)G(ω)] is
likewise analytic, we can analytically continue the
integral in (21) and express the (free) energy for
T = 0 as

∆F =
~

2π
Tr

{ ∞∫
0

dξ log
[
1−α0(iξ)G(iξ)

]}
.

(29)

Considering only the contribution that goes as
α2
0(iξ), and ignoring the self-energy terms with

rn = rm, we obtain

∆F2 = − ~
4π

N∑
n=1

N∑
m=1

(1− δmn)

Tr

{ ∞∫
0

dξ α2
0(iξ)Gij(rn, rm, iξ)Gji(rm, rn, iξ)

}
,

(30)
which is found to be just the sum of pairwise van der
Waals interaction energies given by (5). In particu-
lar, for small separations, the (nonretarded) van der
Waals interaction between two ground-state atoms
with polarizabilities α1(ω) and α2(ω) has the well-
known form originally obtained by London

∆E = − 3~
πr6

∫ ∞
0

dξ α1(iξ)α2(iξ) = − 3~
πr6

(
2

3~

)2∑
m

∑
n

|d1m|2|d2n|2ω1mω2n

∫ ∞
0

dξ

(ω2
1m + ξ2)(ω2

2n + ξ2)
=

− 2

3~r6
∑
m

∑
n

|d1m|2|d2n|2

ω1m + ω2n
, (31)

where ωµn (µ = 1, 2) are the transition frequencies
between the ground state and the state n and dµn
are the corresponding transition moments. More
generally (29) accounts for many-body interactions
and retardation.

It may be worth noting that, since the mag-
nitude of the static polarizability αst is roughly
on the order of an atomic radius, we require that
α1stα2st/r

6=α1stα2stGij(r1, r2, ω)Gji(r2, r1, ω)<1
for small r = |r1 − r2|; otherwise overlap of
the atomic wavefunctions must be considered,
which we have not done. This condition can also
be understood from the requirement that the
Hamiltonian must be bounded from below [16].

Renne [17] obtained a formula similar to (29)
based on the zero-point energy of coupled harmonic
oscillators, each having a frequency ω0. Consider
(16) without the first term on the right-hand side
and without allowing for the coupling of each
oscillator to its own field

p
(+)
i (rn, ω) = α0(ω+i0+)

×
∑N

m 6=n
Gij(rn, rm, ω) p

(+)
j (rm, ω), (32)

or, in matrix form,[
1 + α0(ω+i0+)T (ω)

]
p(+)(ω) = 0, (33)

where Tij(rn, rm, ω) = −(1−δmn)Gij(rn, rm, ω).
The condition for a non-trivial solution of this
set of 3N equations is that the “normal-mode”
frequencies ω must satisfy

f(ω) = det
[
1 + α0(ω+i0+)T (ω)

]
= 0. (34)

Solutions of this equation in which all values of ω
are real can be obtained in the nonretarded regime.
In this case, Renne has used the argument theorem
to obtain the sum of the zeros ωs of f(ω), and he
identifies

∑
s

1
2~ωs as the zero-point energy of the

system of oscillators coupled to each other by their
electrostatic dipole interactions. The difference ∆E
between this zero-point energy and the zero-point
energy 3

2N~ω0 of the uncoupled oscillators is shown
to be

∆E =
~

2π

∫ ∞
0

dξ log det
[
1 + α0(iξ)T

]
=

~
2π

Tr

{∫ ∞
0

dξ log
[
1 + α0(iξ)T

]}
, (35)

which is very similar to (29) except that self-
interactions are excluded. Renne proceeds to gen-
eralize this expression to allow for retardation, and
his result is equivalent, except for the Lamb shifts,
to (21) with T = 0. (The temperature dependence
of van der Waals interactions has been studied by
several authors — see, for instance, [16] and refer-
ences therein.)

6. Strong coupling of molecules
to a single cavity mode

There has recently been much interest in mod-
ifications of molecular interactions when there is
a strong coupling of the molecules to a single cavity
mode. Haugland et al. [18], for instance, have shown
in nonperturbative numerical studies that the dis-
tance dependence of van der Waals interactions is
significantly affected by such coupling [18, 19]. They
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also present an illustrative perturbation-theoretic
approach based on a Hamiltonian that includes the
short-distance intermolecular dipole–dipole interac-
tion

VAB = − 1

r3

[
dA · dB − 3(dA · r̂)(dB · r̂)

]
(36)

between molecules A and B, which are assumed to
have no permanent dipole moments. The alteration
of the van der Waals interaction occurs as a result of
the additional coupling of the molecules to the vac-
uum single-mode field. This follows from the PHF
theorem, as we now show with a model of N two-
state atoms interacting with a vacuum single-mode
cavity field of frequency ω and polarization ê, and
with each other via

V = −
N∑
n=1

N∑
m=1

dn · dm−3(dn · r̂nm)(dm · r̂nm)

r3nm

×
[
(σn + σ†n)(σm + σ†m)

]
=

−
N∑
n=1

N∑
m=1

Vnm

[
(σn + σ†n)(σm + σ†m)

]
, (37)

where rnm = |rn − rm| and σn and σ†n are respec-
tively the two-state lowering and raising operators.
The transition frequencies and dipole matrix ele-
ments of the atoms are denoted by ωn and dn. The
Hamiltonian for the interaction of the atoms with
the cavity field in the electric dipole approximation
has the form

Hc = −
N∑
n=1

Cn(a+ a†)(σn + σ†n), (38)

where
Cn = An

(
dn · ê

)√
~ω (39)

and An is a mode function that depends on the
position rn of atom n in the cavity. The complete
Hamiltonian is

H =

N∑
n=1

~ωn σ†nσn + ~ω a†a+Hc + V. (40)

We proceed as in Sect. 3.2. The solution of the
Heisenberg equation of motion for σn(t), omitting
the freely evolving part that plays no role in what
follows, is

σn(t) =
i

~
Cn

∫ t

−∞
dt′
[
a(t′)+a†(t′)

]
e iωn(t

′−t)

+
i

~
∑
m

Vnm

∫ t

−∞
dt′
[
σm(t′)+σ†m(t′)

]
e iωn(t

′−t).

(41)
Since ground-state atoms can be treated effectively
as harmonic oscillators for our purposes, we have
assumed the commutation relation [σµ(t), σ†ν(t)] =
δµν . Now to the lowest order in the coupling con-
stants,

a(t′) ∼= a(t) e− iω(t′−t),

σm(t′) ∼= σm(t) e− iωm(t′−t). (42)

It then follows from (41) and some simple algebra
that

σxn(t) ∼= En(t) +

N∑
m=1

Vnmσxm(t), (43)

where we have defined

En(t) =
2Cn
~

ωn
ω2
n − ω2

[
a(t) + a†(t)

]
, (44)

Vnm =
2Vnm
~

ωn
ω2
n − ω2

m

(45)

and σxn = σn + σ†n.
From the Heisenberg equation of motion for a(t),

a(t) = a0(t) +
iC1

~

∫ t

−∞
dt′
[
σ1(t′) + σ†1(t′)

]
e iω(t′−t)

+
iC2

~

∫ t

−∞
dt′
[
σ2(t′) + σ†2(t′)

]
e iω(t′−t) ∼=

a0(t) +
C1

~

(
σ1(t)

ω − ω1
+

σ†1(t)

ω + ω1

)

+
C2

~

(
σ2(t)

ω − ω2
+

σ†2(t)

ω + ω2

)
(46)

in the approximation σµ(t′) ∼= σµ(t)e− iωµ(t
′−t),

with a0(t) the freely evolving annihilation opera-
tor for the single-mode cavity field. Likewise

σ1(t) ∼= σ10(t) +
C1

~

(
a0(t)

ω1 − ω
+

a†0(t)

ω1 + ω

)

−V12
~

(
σ2(t)

ω1 − ω2
+

σ†2(t)

ω1 + ω2

)
, (47)

and

σ2(t) ∼= σ20(t) +
C2

~

(
a0(t)

ω2 − ω
+

a†0(t)

ω2 + ω

)

−V12
~

(
σ1(t)

ω2 − ω1
+

σ†1(t)

ω1 + ω2

)
, (48)

with σµ0(t) the freely evolving lowering operator for
atom µ.

For the application of the PHF theorem, we re-
quire the expectation value of Hc for the state |ψ〉
in which the atoms are in their ground states and
the cavity field is in its vacuum state. Considering
only atom 1, for instance,〈

H(1)
c

〉
= −C1

〈
σ†1a+a†σ1

〉
− C1

〈
aσ1+σ†1a

†〉,
(49)

where we have used the fact that the atom and field
operators commute, as assumed when writing the
Heisenberg equations. Consider first the first term
on the right-hand side of (49). Since a0(t)|ψ〉 = 0,
the only nonvanishing part of this term would have
to come from the last two terms on the right-
hand side of the expression (46). But these do not
contribute to −C1〈σ†1a+a†σ1〉 any terms involving
〈σµ(t)σ†µ(t)〉 = 1 for ground-state atoms, only terms
such as 〈σ1(t)σ1(t)〉=〈σ1(t)σ†2(t)〉=0. Thus, the first
term on the right-hand side of (49) vanishes within
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the approximations we have made, and so〈
H(1)
c

〉
= −C1

〈
aσ1(t) + σ†1(t)a†(t)

〉 ∼=
−2C1

〈
a(t)σ1(t)

〉
. (50)

We will make the simplifying assumption in this
illustrative model that ω � ω1, ω2, as would be the
case, for instance, for infrared transitions in an op-
tical cavity. Then

σ2(t) ∼= σ20(t)− C2

~ω
(
a0(t)− a†0(t)

)
−V12

~

(
σ1(t)

ω2 − ω1
+

σ†1(t)

ω2 + ω1

)
, (51)

and, from the expression (41),

σ1(t) ∼= σ10(t) +
C1

~

(
a0(t)

ω1 − ω
+

a†0(t)

ω1 + ω

)
−C2V12

~ω
2ω2

ω2
1 − ω2

2

(
a0(t)− a†0(t)

)
(52)

to first order in V12. Thus,〈
a(t)σ1(t)

〉 ∼= 〈a0(t)σ1(t)
〉

=

C1

~
1

ω1 + ω
+

2C2V12
~ω

ω2

ω2
1 − ω2

2

, (53)

since σ10(t)|ψ〉 = 0, 〈a0(t)a0(t)〉 = 〈a†0(t)a0(t)〉 = 0,
and 〈a0(t)a†0(t)〉 = 1, and〈

H(1)
c

〉 ∼= − 2C2
1/~

ω1 + ω
− 2C1C2V12

~ω
ω2

ω2
1 − ω2

2

. (54)

The same approach for atom 2 gives〈
H(2)
c

〉 ∼= − 2C2
2/~

ω2 + ω
− 2C1C2V12

~ω
ω1

ω2
2 − ω2

1

. (55)

For the expectation value of Hc = H
(1)
c + H

(2)
c ,

we therefore obtain

〈Hc〉 ∼= −
2C2

1/~
ω1 + ω

− 2C2
2/~

ω2 + ω
− 2C1C2V12/(~ω)

ω1 + ω2
.

(56)

Since C2
1 and C2

2 are proportional to e2, and
C1C2V12 is proportional to e4, the PHF theorem
introduces factors

1∫
0

dλ

λ
λ2 =

1

2
and

1∫
0

dλ

λ
λ4 =

1

4
(57)

for the first two terms and the last term, respec-
tively, on the r.h.s. of (56), so that the change in
the atom-field system due to their interaction is

∆E = −A2
1(d1 · ê)2

ω

ω + ω1
−A2

2(d2 · ê)2
ω

ω + ω2
− 1

2

A1A2

r3

(d1 · ê)(d2 · ê)
[
d1 · d2 − 3(d1 · ê)(d2 · ê)

]
ω1 + ω2

(58)

when we use the definition (39).
The two-state model simplifies some algebra in

our Heisenberg-picture calculation, but the result
(58) is easily generalized to include contributions
from all the allowed transitions from the ground
states of the two atoms. The first term on the r.h.s.
of (58), for instance, generalizes to

∆E1 = −A2
1

∑
s

∣∣(d1 · ê)sg
∣∣2 ω

ω + ωsg
(59)

in the notation of (15). After accounting for addi-
tional self-energy terms, we obtain the Lamb shift
due to the coupling of atom 1 to the single-mode
field. But of greater interest here is the interatomic
interaction term in (58). For strong coupling to
a single-mode field, the nonretarded van der Waals
interaction varies as 1/r3 rather than 1/r6 [18, 19].
When generalized to include all allowed transitions
from the ground states, we obtain, except for the
factor A1A2, the result of the perturbation-theoretic
analysis of [19]. This factor has an interesting im-
plication for the physical interpretation of the 1/r3

interaction, as discussed in the following section†3.

†3Note that when we include a term of second order in V12,
we obtain another contribution to ∆E that corresponds to
the familiar 1/r6 van der Waals interaction.

7. Conclusions

Zero-temperature Lamb shifts and van der Waals
interactions have clear physical interpretations in
terms of fluctuating zero-point fields. In particu-
lar, for the van der Waals interaction between two
atoms in free space, each atom is “driven” by the
zero-point field at its location, and the fluctuations
of the zero-point fields at the two locations are cor-
related. The correlation decreases rapidly with the
distance r between the two locations, giving the r−6
dependence of the nonretarded van der Waals inter-
action.

In the case of strong coupling of the atoms to
a single cavity mode, unlike the case in which the
atoms are coupled to the infinite set of modes of
free space, there is no decrease in electric field cor-
relations with r, and for small r, the van der Waals
interaction varies as r−3 rather than r−6. Such r−3
behavior is also found in a different scenario, when
each atom experiences an externally applied single-
mode field [20]. In this case, the interpretation of
the r−3 behavior is obvious — the two atoms have
correlated induced dipole moments and experience,
for small r, just the r−3 electrostatic dipole–dipole
interaction. But in the more subtle r−3 behavior
resulting from the coupling of the atoms to a zero-
point, vacuum cavity mode [18, 19], each atom has
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a dipole moment induced by the zero-point field
whose fluctuations are correlated for effectively all
values of r. We note that the presence of the factor
A1A2 in the energy (58) implies that there is no van
der Waals interaction if one of the atoms finds itself
at a node of the cavity field, i.e., if either A1 or A2

vanishes.
The derivations of the zero-temperature Lamb

shifts and van der Waals interactions using the
PHF theorem make it clear that these effects are
attributable to the fluctuations of the zero-point
electromagnetic field. They can also be said to
be attributable to changes in zero-point energy,
as in Feynman’s argument for the Lamb shift in
Sect. 2. But the fluctuation perspective seems to
offer a more physical picture of interacting dipoles
as opposed to just energy “bookkeeping”. Moreover,
Lamb shifts and van der Waals interactions can
be understood from the perspective of the quan-
tum fluctuations not of zero-point fields but of the
“source” fields generated by the dipoles themselves.
The same is true for Casimir’s famous attraction
between conducting plates [21].
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Appendix: Electric field correlations
and dyadic Green function

The positive-frequency part of the electric field
operator for a vacuum or thermal field can be
expressed as

E(+)(r, t) = i
∑
kλ

√
2π~ωk
V

akλ e− iωkt e ik·rêkλ,

(60)

where, as usual, akλ is the photon annihilation operator for the plane-wave mode with the wave vector k and
the polarization index λ. For thermal radiation, 〈a†kλak′λ′ 〉=q(ω)δ3kk′δλλ′ and 〈akλa

†
k′λ′λ′〉=[q(ω)+1]δ3kk′δλλ′ ,

where q(ω)=[e~ω/kBT−1]−1, and it follows after taking
∑

kλ(. . . )→ V/(2π)3
∑
λ

∫
d3k(. . . ) in the familar

fashion that
〈
E+
i (rn, t)E

(−)
j (rm, t

′)
〉

= ~
πc3

∫∞
0

dω ω3
[
q(ω) + 1

]
Fij
(
ωr
c

)
e iω(t′−t),〈

E−i (rn, t)E
(+)
j (rm, t

′)
〉

= ~
πc3

∫∞
0

dω ω3 q(ω)Fij
(
ωr
c

)
e− iω(t′−t),

(61)

Fij(x) ≡
(
δij − r̂ir̂j

) sin (x)

x
+
(
δij − 3r̂ir̂j)

(
cos (x)

x2
− sin (x)

x3

)
, (62)

where r = |rn − rm|. Thus, for thermal radiation,
〈
E+
i (rn, ω)E

(−)
j (rm, ω

′)
〉

= ~
πc3ω

3
[
q(ω) + 1

]
Fij
(
ωr
c

)
δ
(
ω − ω′

)
,〈

E−i (rn, ω)E
(+)
j (rm, ω

′)
〉

= ~
πc3ω

3 q(ω)Fij
(
ωr
c

)
δ(ω − ω′).

(63)

The electric field ES(rn, t) at a point rn from an
electric dipole source at rm is

ES i(rn, t) = − 1
c2r (δij−r̂ir̂j) p̈j

(
t− rc

)
− (δij−3r̂ir̂j)

[
1
cr2 ṗj

(
t− rc

)
+ 1
r3 pj

(
t− rc

)]
.

(64)
We therefore identify

E
(+)
S i (rn, ω) = Gij(rn, rm, ω) p

(+)
j (rm, ω), (65)

Gij(rn, rm, ω) = k ω
2

c2

[
(δij − r̂ir̂j)

1
kr

+ (δij−3r̂ir̂j)
(

i
k2r2 −

1
k3r3

) ]
e ikr,

(66)

with k = nω/c, and (19) then follows from (63).
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We study the effect of the limiting field strength of Born–Infeld electromagnetism on the dynamics of
charged particle scattering. We formulate the Born–Infeld limiting field in an invariant manner, showing
that it is the electric field-dominated eigenvalue “a” of the field tensor Fµν which is limited rather than
the individual field vectors. Heavy ion collisions in particular provide uniquely large values of the field
invariants that appear in the Born–Infeld action, amplifying nonlinear effects. Thus “a” is the dominant
input into the force between heavy ions that we use to compute the scattering angle as a function of the
impact parameter. We evaluate the Born–Infeld effects, showing relevance at small impact parameters
and exhibiting their dependence on the value of the limiting field strength.

topics: Born–Infeld electromagnetism, heavy-ion collisions, strong fields

1. Introduction

In recent years, relativistic heavy ion collisions
have been explored as a testing ground for strong
electromagnetic (EM) field effects [1–6]. In periph-
eral collisions with large impact parameters, electro-
magnetic forces dominate the scattering processes,
and strong field effects such as light–light scat-
tering and spontaneous pair production can be
observed.

In this paper, we suggest that heavy ion collisions
also can serve as a potential means of exploring clas-
sical, nonlinear electromagnetic effects. Specifically,
we will study the nonlinear Born–Infeld (BI) theory
of electromagnetism and its effect on the scattering
of relativistic heavy ions. The nonlinearity in BI the-
ory is dependent on the EM field tensor invariants,
S and P (defined in Appendix A), which are quite
large in relativistic heavy ion collisions.

Nonlinear EM theories inherently contain a char-
acteristic electric field strength scale, E0. In the BI
theory, this field scale acts as an upper limit to the
electric field in the rest frame of a particle [7, 8].

This feature yields a finite electromagnetic mass of
the particle, without the divergences that appear in
Maxwell’s theory, and a vanishing electromagnetic
self-stress on the particle [9]. Additionally, the BI
theory is the only nonlinear theory of EM in which
the wave velocity does not depend on its polariza-
tion [10], and the waves can be linearly superposed
with a constant background field [11].

We begin by reviewing the Lagrangian and field
equations of BI theory in Sect. 2. We determine the
form of the Lagrangian in terms of the EM field
tensor eigenvalues a and b (see Appendix A). This
allows us to formulate the BI limiting field condi-
tion in an invariant manner rather than the usual
picture, where E0 is the limiting electric field in the
rest frame of the particle. Our formulation shows
that the electric-like eigenvalue a is a true bounded
quantity.

In Sect. 3, we formulate the equations of motion
of colliding ions. In order to yield a soluble prob-
lem, we approximate the ions as test particles un-
dergoing Lorentz force motion. We then determine
the EM fields of each ion separately by first solving
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the BI field equations in the rest frame and then
Lorentz boosting to the center-of-momentum frame.
This approach allows us to sidestep the difficulties
that arise when one considers the force acting on a
BI particle [12–15], which we will turn our attention
to in future work.

We present numerical results for ion motion in
Sect. 4. In particular, we look at the scattering
angle dependence on the impact parameter for a
range of E0 values. We see that the BI limiting field
suppresses the scattering angle when the impact
parameter is small, allowing the ions to approach
each other more closely than in the framework of
Maxwell electrodynamics. For larger values of E0,
this requires smaller impact parameters.

2. Born–Infeld electromagnetism

2.1. Review of well-known relations

In this section, we review the equations of BI the-
ory and formulate the limiting field condition in
Lorentz invariant form. Definitions of all relevant
mathematical quantities and notation can be found
in Appendix A. The free Lagrangian of the Born–
Infeld theory is, in a flat spacetime with the metric
gµν), given by

L = ε0E
2
0

[
1−

√
−det

(
gµν +

cFµν
E0

)]
, (1)

where Fµν is the EM field tensor. Computing the
determinant yields the equivalent form

L = ε0E
2
0

(
1−

√
1 +

2Sc2
E2

0

− P
2c4

E4
0

)
, (2)

where S and P are the EM field tensor invariants,
see (54) and (55) in Appendix A. In the limit of
large E0, (2) becomes the Maxwell Lagrangian,

L → S
µ0
, as E0 →∞. (3)

Upon coupling (2) to the current density jµ and
performing the variation with respect to the four-
potential Aµ, one arrives at the BI field equations

∂µHµν = jν , (4)

∂µF̃
µν = 0, (5)

where the displacement field tensor Hµν is defined
to be

Hµν ≡ 2
δL
δFµν

=
1

µ0

Fµν − Pc
2

E2
0
F̃µν√

1 + 2Sc2
E2

0
− P2c4

E4
0

(6)

and F̃µν denotes the dual EM tensor defined in (49)
in Appendix A. The BI equations then take a form
identical to the Maxwell equations in a dielectric
medium. The nonlinear BI effects can then be in-
terpreted as the effect of the dielectric medium on
the field close to its source.

One can invert (6) and solve for Fµν (see [7]),
yielding

Fµν = µ0

Hµν + Qµ
2
0c

2

E2
0
H̃µν√

1− 2Rµ2
0c

2

E2
0
− Q

2µ4
0c

4

4E4
0

, (7)

where R and Q are invariants of the displacement
field tensor defined in (56) and (57) in Appendix A.

2.2. Eigenvalue formulation of BI theory

We can also formulate the BI theory in terms
of the EM field tensor eigenvalues, ±a and ± ib,
often used in the context of the Euler–Heisenberg–
Schwinger effective action of quantum electrody-
namics (QED) [16] (see (63) in Appendix A). This
approach has the benefit of making the limiting field
condition explicit in the action. The eigenvalues are
related to the invariants S and P through

a =

√
−S +

√
S2+P2, (8)

b =

√
S +

√
S2+P2, (9)

where a is the electrically-dominated eigenvalue and
b is the magnetically-dominated eigenvalue, such
that for zero magnetic field a = E/c and for zero
electric field b = B. Since the expressions under all
four square roots are strictly positive, one can easily
check that the following identities are true

a2 − b2 = −2S, (10)

a2b2 = P2, (11)
as well as a2 > 0 and b2 > 0. This allows us to
re-write the determinant in (2) as the product of
eigenvalues,

L = ε0E
2
0

1−

√√√√ 4∏
k=1

Λk

 , (12)

where the eigenvalues Λk of δµν + Fµν c/E0 are de-
fined in Appendix A, below (64). Now (12) can be
simplified to

L = ε0E
2
0

(
1−

√(
1−c2 a

2

E2
0

)(
1+c2

b2

E2
0

))
.

(13)
In fact, (13) can also be obtained by directly subsi-
tuting (10) and (11) directly into (2).

The expression under the square root in (13) must
be positive in order for the Lagrangian to be real
and the corresponding field equations to be real.
Imposing this constraint yields an upper limit for
the field strength,

a <
E0

c
, (14)

while there is no limit on the value of b. Thus, it is
the electric field-like invariant eigenvalue a that is
limited in general, not just the electric field.
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We now study the limiting field behavior of two
different configurations of invariants. When P = 0,
we have

a =
√
−S + |S|. (15)

For an electrically-dominated system, S < 0 and
a =

√
−2S. In this case, S is limited. For a

magnetically-dominated system with S > 0, we
have a = 0 and the fields are therefore not limited.

When S = 0, we have
a =

√
|P|, (16)

and therefore P is limited.

2.3. Value of the limiting field constant E0

As we will argue below, experimental data in rel-
ativistic heavy ion collisions or other strong field en-
vironments could be used to determine the BI lim-
iting field constant E0. Born and Infeld originally
calculated the value of E0 on the assumption that
the experimentally measured mass of the electron is
entirely electromagnetic, yielding the limiting field
value

E0 = 1.18× 1020
V

m
. (17)

However, we now know that the electron mass is
made up in part of non-electromagnetic compo-
nents. Therefore, the Born and Infeld value of E0

cannot be exact. Instead, we must determine E0 by
studying the dynamics of charged particles exper-
imentally. There were previously several studies of
possible bounds on the BI limiting field constant
with conflicting results [17–21]. We hope that fur-
ther studies of the effects of BI theory on particle
dynamics in strong-field environments, such as in
the present paper, as well as relatively recent papers
on the BI effects in laser-plasma acceleration [22, 23]
can lay the groundwork for an experimental study
of the value of E0.

It is also interesting to compare the nonlinear
classical theory with the nonlinearity inherent in
QED. We can compare the classical BI limiting
field (at least the value calculated by Born and
Infeld) to the field strength that appears in the
Euler–Heisenberg–Schwinger effective Lagrangian
of QED [16, 24, 25]

EEHS =
m2
ec

3

e~
= 0.0112E0. (18)

Thus EEHS represents the scale at which quan-
tum nonlinear effects set in, while E0 corresponds
to classical nonlinear effects. We see here that the
quantum nonlinear scale is approximately two or-
ders of magnitude smaller than the classical nonlin-
ear scale.

Additionally, we can compare E0 to the limiting
acceleration value that appears in the Eliezer–Ford–
O’Connell (EFO) radiation reaction (RR) force
model [26]. The EFO radiation reaction force can
be written as

FµEFO = τ0P
µ
ν

d

dτ
(eF ναuα), (19)

which yields the following equation of motion(
gµν−

eτ0
m
Pαµ Fαν

)
u̇ν =

e

m
(Fµν + τ0Ḟµν)u

ν ,

(20)
where the dot refers to the proper time derivative
and τ0 is the characteristic RR time scale (for elec-
trons τ0 = 6.26 × 10−24 s). The orthogonal projec-
tion tensor is defined as

Pµν = gµν −
uµuν
c2

. (21)

To solve the acceleration in (20), one must invert the
tensor gµν − eτ0

m Pαµ Fαν by taking its determinant,
which takes a similar form to the BI Lagrangian (2)

−det
(
gµν−

eτ0
m
Pαµ Fαν

)
= 1 +

e2τ20
m2

(
2S+uFFu

c2

)
.

(22)
As we have shown in [26], in certain field configura-
tions, (20) leads to an upper limit on the accelera-
tion analogous to the BI limiting field

aEFO =
c

τ0
=

3

2

4πε0mc
2

e2
= 4.80× 1031

m

s2
, (23)

where the value is given for electrons. The electric
field corresponding to this limiting acceleration is

EEFO =
EEHS

α
= 1.53E0, (24)

where α ≈ 1/137 is the fine structure constant. We
see that the classical limiting field appearing in the
radiation reaction force is of the same order of mag-
nitude as the BI limiting field E0, which is obtained
by requiring all of the electron mass to be of elec-
tromagnetic origin.

3. Heavy ion scattering

3.1. Force on a BI particle

We will consider the scattering of two identical
heavy ions, both of charge Ze and mass m. We will
approximate ions as test particles. In this case, the
force on each charge is given by the Lorentz force.
For ions located at positions x1 and x2 and with
fields Fµν1 and Fµν2 , our system of equations is

mu̇µ1 = ZeFµν2 u1ν , (25)

mu̇µ2 = ZeFµν1 u2ν . (26)
For symmetric collisions, the ions will have the same
proper time, τ . In the test particle approximation,
the field of one ion acts on the other ion. The BI
effects in our equations of motion come from Fµν ,
which is a solution of the BI field equations and
therefore is restricted by the limiting field condition
a < E0/c. We neglect backreaction from the self-
field of each ion.

Our test particle approach allows us to formulate
a tractable problem, since the closed-form expres-
sion for the force between two relativistic charges in
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BI theory is not known. The Lorentz force, which we
use here, is the leading order force on the BI charge
for small acceleration [27]. The first-order BI cor-
rections to the Coulomb force between two static
charges have been calculated in [28].

Our first step, then, is to solve the BI equations
for a single ion undergoing relativistic motion. An
analogous problem for Maxwell’s equations is solved
by the Lienard–Wiechert fields [29]. However, in the
nonlinear BI theory, the exact solution to this prob-
lem is not yet known.

3.2. Fields of a relativistic BI particle

To obtain an approximate solution for the field
of the ion, we will assume that its acceleration is
relatively small so that its rest frame is approxi-
mately inertial. In the rest frame, assuming that
the ion is located at a position x′0 with charge Ze,
the BI equations simplify to
∇ ·D′(x′) = Ze δ3(X ′), X ′ ≡ x′ − x′ (27)

while the magnetic field vanishes
H ′(x′) = 0. (28)

Here (27) is solved by the Coulomb field

D′(x′) =
Ze

4π

X ′

|X ′|3
. (29)

We can then Lorentz boost the rest frame fields,
(28) and (29), to the center-of-momentum (CM)
frame where the ion is moving with velocity v
with negligible acceleration. The D and H fields
transform identically to E and B, whose trans-
formation formulae are given in [29]. The details
of the Lorentz transformation are presented in
Appendix B. There, the displacement fields in the
CM frame are given in Appendix B as (72) and
(73), therefore

D(t,x) =
Ze

4π

γ

R3
X, (30)

H(t,x) =
Ze

4π

γ

R3
v ×X, (31)

where
R =

√
X2
⊥ + γ2X2

‖ . (32)

We then compute the invariants R and Q,
using (30) and (31), which leads to

R = −1

2

(
Zec

4πR2

)2

, (33)

Q = 0. (34)
Now (33) is obtained by noting that(v

c
×X

)2
−X2 =

R2

γ2
. (35)

We can now compute the E and B fields corre-
sponding to (30) and (31). In three-vector form, (7)
reads

E =
1

ε0

D√
1− 2Rµ2

0c
2

E2
0

, (36)

B = µ0
H√

1− 2Rµ2
0c

2

E2
0

, (37)

where we have substituted Q = 0. Upon combin-
ing (36) and (37) with the expressions for D, H,
and R, we find

E =
Zeγ

4πε0R3

X√
1 +

(
Ze

4πε0R2 /E0

)2 , (38)

B =
Zeγ

4πc2ε0R3

v ×X√
1 +

(
Ze

4πε0R2 /E0

)2 . (39)

The behavior of these fields in the ultrarelativistic
limit is studied in [30].

As a final step, we will check that our fields obey
the limiting field constraint from (14). For this,
S and P need to be computed. By the well-known
duality symmetry of BI theory [8],
P = µ2

0Q, (40)
and therefore P vanishes. Computing S using (7),
we find

S = µ2
0

R
1− 2Rµ2

0c
2

E2
0
− Q

2µ4
0c

4

E4
0

, (41)

which simplifies to

S = −1

2

(
Ze

4πε0R2

)2
1 + 1

E2
0

(
Ze

4πε0R2

)2 . (42)

In this case P = 0, so from (58) given in the Ap-
pendix A, we have that a =

√
−2S and therefore

a =
Ze

4πcε0R2√
1 + 1

E2
0

(
Ze

4πε0R2

)2 . (43)

In the limit R→ 0,
a→ E0

c (44)
and we see that our fields obey the invariant limit-
ing field condition.

4. Numerical results

Our heavy ion collisions are described by the sys-
tem of equations (25) and (26), which depend on
the electric (38) and magnetic (39) fields. We in-
tegrate the equations using the fifth-order Runge–
Kutta–Dormand–Prince method [31] and use the
constraint u2 = c2 as an estimation of the numeri-
cal error. Ions are assumed to start from τ = −∞
with incoming velocities ±v0 as well as transverse
separation in the y-direction by an impact parame-
ter ρ. The initial longitudinal separation is taken to
be large enough such that the results are converged
with respect to its small variations. We use ρ for the
impact parameter rather than the usual b because
the latter is reserved for the EM tensor eigenvalue
in this paper.
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Fig. 1. Scattering angle as a function of impact
parameter ρ for collisions C–C (panel (a)) and Ca–
Ca (panel (b)), with γ = 1.5.

We present the results for four pairs of collid-
ing ions: Au–Au, U–U, Ca–Ca, and C–C to study
a range of charge-to-mass ratios. We compute the
scattering angle θ by comparing the incoming and
outgoing momentum vectors for the ions.

In Fig. 1, we plot the relationship between θ and
ρ for C–C (panel (a)) and Ca–Ca (panel (b)), at
γ = 1.5. In Fig. 2, we present the scattering an-
gle for Au–Au at γ = 1.5 (panel (a)) and U–U at
γ = 1.2 (panel (b)). The scattering angle is com-
puted for the Born and Infeld value of E0 given
in (17), as well as for 2E0, 10E0, and the Maxwell
theory corresponding to E0 → ∞. The results are
shown for ρ > 10 fm to ensure that the collisions
remain peripheral and the point particle approxi-
mation remains valid.

Our results show that BI effects are most signifi-
cant at smaller impact parameters, where the field
seen by each ion is bounded. This is in contrast to
Maxwell’s theory, where the force approaches infin-
ity for smaller and smaller impact parameters. The
limiting BI field significantly suppresses the scat-
tering angle at lower impact parameters, with the
scattering angle decreasing moreso as E0 decreases.
At larger impact parameters, BI effects are relevant
for smaller values of E0 and become negligible at
10E0 and above.

Fig. 2. Scattering angle θ as a function of impact
parameter ρ for Au–Au collisions with γ = 1.5 (a)
and U–U collisions with γ = 1.2 (b).

Fig. 3. Scattering angle as a function of incoming
γ at a fixed impact parameter, ρ = 12 fm.

BI effects are additionally amplified for large Z.
The C–C results in Fig. 1b show a relatively small
BI contribution to the scattering, even at 1E0. In
contrast, the Au–Au collisions in Fig. 2a with a
charge approximately 13 times larger show a sig-
nificant BI effect on the scattering angle.

Figure 3 plots the scattering angle as a func-
tion of the incoming γ at a fixed impact parame-
ter ρ = 12 fm. The scattering angle decreases as γ,
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and thus the inertia of the ions, γm, increases. Due
to this, BI effects are amplified at lower γ, where
the scattering angle is in general larger for all val-
ues of E0. The U–U plot shown in Fig. 2b demon-
strates the effect of large Z = 92 as well as a smaller
γ = 1.2, maximizing BI effects.

5. Conclusions

In this work, we have studied the limiting field
feature of BI theory and established that the
electric-like eigenvalue of the EM field tensor a is
limited in all inertial frames by the electric field
strength constant E0. In the rest frame of the parti-
cle, this becomes the limit on the electrostatic field,
yielding finite electric field energy as usual.

We then applied BI theory to study the dynam-
ics of relativistic heavy ion collisions. We showed
that the limiting field can have a significant impact
on the scattering angle at a low impact parameter
when the ions pass through the region of the field
greatly altered by nonlinear effects. This causes a
reduction in force and thus scattering angle at low
impact parameter compared to Maxwell’s theory.
The difference between the BI and Maxwell’s the-
ory is most relevant for smaller values of the limit-
ing field E0 and diminishes as this limiting value is
increased.

Looking at the fixed scattering angle in Fig. 2,
say 0.4◦, we see that the BI force predicts a smaller
corresponding impact parameter by approximately
25% for 10E0. The BI impact parameter is ρBI ≈
12 fm, while the Maxwell impact parameter is
ρMax ≈ 15 fm. This impact parameter shift is even
larger for smaller values of the limiting field con-
stant. A shift in perceived impact parameter such
as we see here would have a significant effect on all
impact parameter-sensitive calculations using pe-
ripheral heavy ion collision data, such as nuclear
size [32, 33].

Moreover, self-field effects will likely be relevant
at these small impact parameters. In BI theory this
includes two phenomena, i.e., the radiation reaction
and the nonlinear superposition of the self-field and
the external field. In future work, we will turn our
attention to formulating a framework for BI particle
motion that includes these effects in a self-consistent
manner.

Appendix A: Mathematical
identities and notation

The conventions and notation used in this paper
are as follows. We use a flat spacetime metric with
a negative signature

gµν = diag(1,−1,−1,−1). (45)

The electromagnetic field tensor is given in terms of
the EM four-potential Aµ = (φ/c,A) as

Fµν = ∂µAν − ∂νAµ, (46)

and can be written in terms of electric fields E and
magnetic fields B in cartesian coordinates as the
following 4× 4 matrix

Fµν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx
Ez/c −By Bx 0

 . (47)

We also use the displacement field tensor Hµν ,
which can be written in terms of the displacement
fields D and H as

Hµν =


0 −cDx −cDy −cDz

cDx 0 −Hz Hy

cDy Hz 0 −Hx

cDz −Hy Hx 0

 . (48)

We can also construct the corresponding dual ten-
sors

F̃αβ =
1

2
εαβµνF

µν , (49)

H̃αβ =
1

2
εαβµνH̃µν , (50)

where the totally antisymmetric Levi–Civita sym-
bol is defined such that

ε0123 = −ε0123 = 1. (51)

The dual tensors written in matrix form are

F̃µν =


0 −Bx −By −Bz
Bx 0 −Ez/c Ey/c

By Ez/c 0 −Ex/c
Bz −Ey/c Ex/c 0

 , (52)

H̃µν =


0 −Hx −Hy −Hz

Hx 0 −Dzc Dyc

Hy Dzc 0 −Dxc

Hz −Dyc Dxc 0

 . (53)

From the field tensors, we can construct the follow-
ing four field invariants

S =
1

4
FµνFµν =

1

2
(B2 − E2/c2), (54)

P =
1

4
Fµν F̃µν = B ·E/c, (55)

R =
1

4
HµνHµν =

1

2
(H2 − c2D2), (56)

Q =
1

4
HµνH̃µν = H · cD. (57)

Evaluating the BI action requires a computation
of the determinant of the tensor gµν+Fµνc/E0. The
four eigenvalues of Fµν are Λk ≡ {±a,± ib}, defined
by [16]

a =

√
−S +

√
S2+P2, (58)

b =

√
S +

√
S2+P2. (59)
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The parameter a is electrically dominated such
that for zero magnetic field

a = E/c, (60)
and the parameter b is magnetically dominated
such that for zero electric field

b = B. (61)
For E/c and B of equal magnitude, we have S = 0
and

a = b = |P|. (62)
In general, the determinant of Fµν can be written
as the product of eigenvalues
−det(Fµν) = −det(gµαF

α
ν ) =

−det(gµα) det(F
α
ν ) = det(Fαν ) =

4∏
k=1

Λk = −a2b2 = −P2, (63)

because of the identity det(AB) = det(A) det(B)
and in the flat spacetime background
det(gµν) = −1. The last equality follows ei-
ther from direct computation with the matrix
form (47) or manipulation of (58) and (59). Fol-
lowing the same steps, we find the determinant of
gµν + Fµνc/E0 to be

− det
(
gµν +

Fµνc

E0

)
=

det
(
δµν+

Fµν c

E0

)
=

4∏
k=1

(
1 + Λk

c

E0

)
=

(
1−a c

E0

)(
1+a

c

E0

)(
1− ib

c

E0

)(
1+ib

c

E0

)
=(

1− c2a2

E2
0

)(
1+

c2b2

E2
0

)
= 1+

2Sc2

E2
0

−P
2c4

E4
0

,

(64)
which is used in the main text of this paper, where
Λk ≡ 1 + Λkc/E0 are eigenvalues of δµν + Fµν c/E0.

Appendix B: Fields of a uniformly
moving charge

The displacement fields of the ion in the CM
frame are given by the Lorentz transformation of
the rest frame fields (29) and (28). The transforma-
tion equations are [29]

D‖ = D′‖, (65)

H‖ = H ′‖, (66)

D⊥ = γ
(
D′⊥ −

v

c2
×H ′

)
, (67)

H⊥ = γ (H ′⊥ + v ×D′) . (68)

Unprimed fields represent the fields in the CM
frame, while primes refer to quantities in the rest
frame. We apply the Lorentz boost along the −X‖
direction so that the charge is seen moving along the

+X‖ direction. Therefore, X⊥ and X‖ represent
the transverse and parallel components of X with
respect to the ion velocity, v.

The coordinate transformation is
X0 = γ v ·X ′/c, (69)

X‖ = γX ′‖, (70)

X⊥ = X ′⊥. (71)
The terms t′ that usually appear in the Lorentz
transformation are absent above because the rel-
ative position vector X ′ = x′ − x′0 is taken to be
the difference of two vectors at the equal time in the
rest frame. In (69), X0 is the difference in time be-
tween the observation point x and the source point
x0 in the CM frame.

In the CM frame, we then find our boosted fields
to be

D(t,x) =
Ze

4π

γ

R3
X, (72)

H(t,x) =
Ze

4π

γ

R3
v ×X, (73)

where
R =

√
X2
⊥ + γ2X2

‖ . (74)

Note that all components of the fields (72)
and (73) obtain the factor γ under the transforma-
tion. The parallel components acquire the factor γ
from the coordinate transformation, while γ in the
transverse components comes from the field trans-
formation.

To validate our results for the fields D and H
of the charge in uniform motion, obtained by the
Lorentz transformation, we show that (72) and (73)
are consistent with the Lienard–Wiechert solution
of Maxwell’s equations. Starting with the Lienard–
Wiechert solution, it can be shown that the electric
field of a charge in uniform motion can be written
as (see [34], page 105–106, Example 4.5)

E =
Ze

4πε0γ2
X

|X|3
(
1− v2

c2 sin2(ψ)
) 3

2

, (75)

where ψ is defined as the angle between the position
vector X and the direction of motion,
|X⊥| = |X| sin(ψ). (76)

The denominator in (75) can be re-written as

|X|3
(
1−v

2

c2
sin2(ψ)

) 3
2

= |X|3

(
|X|2−v

2

c2 X
2
⊥

) 3
2

|X|3
=

(
X2
‖ +X2

⊥/γ
2
) 3

2

=
R3

γ3
. (77)

Then (75) becomes

E =
Ze

4πε0

γ

R3
X, (78)

which is consistent with (30). The magnetic field
is obtained by B = v × E/c2, which is consistent
with (31).
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We use the reduced state of the field formalism (Entropy 21, 705 (2019)) to derive conditions under
which a Bogoliubov transformation can be considered semi-classical. We apply this result to the dy-
namical Casimir effect in a moving medium (Phys. Rev. A 78, 042109 (2008)), discussing its classical
and quantum features.
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1. Introduction

Arguably one of the most surprising predictions
of quantum field theory is the Casimir effect, a phys-
ical force arising solely from the presence of quan-
tum fluctuations in the vacuum [1–3]. Since its
original formulation in 1948 [4], the phenomenon
has garnered a lot of interest, in particular giv-
ing rise to many alternative formulations and gen-
eralizations. One such generalization, dubbed the
dynamical Casimir effect, predicts the spontaneous
production of particles in a medium following from
non-trivial time dependence of either its boundary
or its material coefficients [5–8].

In 2008, Professor Iwo Białynicki-Birula work-
ing together with Professor Zofia Białynicka-Birula†
established a third mechanism generating the dy-
namical Casimir effect — oscillatory motion of

†This is a good opportunity to acknowledge the fact that
59 papers out of a total of 206 so far published by Profes-
sor Białynicki-Birula, as well as the comprehensive textbook
on quantum electrodynamics [9], have been written in this
admirable collaboration which started as early as 1957 [10].

a medium [9–11]. In fact, this mechanism is more
general and applies to all kinds of motion, as long
as its speed varies in time, and one carefully picks
the “incoming” and “outgoing” annihilation and cre-
ation operators (see an example of a uniformly
accelerated medium [12]). A loosely related phe-
nomenon occurs around large rotating and/or grav-
itating bodies [13].

The dynamical Casimir effect is obtained by per-
forming a Bogoliubov transformation, i.e., a linear
transformation of the creation and annihilation op-
erators of the quantum field preserving canonical
commutation relations [14]. If the Casimir effects
are among the most interesting phenomena in quan-
tum theory, Bogoliubov transformations are among
its most reliable tools. Originally used to describe
superconductivity [15, 16], today they are widely
used in many branches of quantum physics, from
optics and theories of magnetism to field theory in
a curved spacetime (Unruh effect, Hawking radia-
tion) [14, 17–19].

While the most prominent applications of the Bo-
goliubov transformations suggest the latter to be
inherently quantum, we observe that from the for-
mal point of view, Bogoliubov transformations are
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essentially equivalent to a change of basis of the
Hilbert space. For this reason, one may expect that
at least some Bogoliubov transformations could
have classical analogs, similar to local unitary ro-
tations of the Hilbert space, which do not entangle
the system. If so, this could shed new conceptual
light on the phenomena described by them.

In this paper, we derive an exact set of condi-
tions under which Bogoliubov transformations can
be considered semi-classical. By semi-classical (fur-
ther also referred to as just “classical”), we under-
stand models which can be described by certain
kinetic equations for reduced single-particle states
and their displacements — so-called reduced state
of the field formalism [20]. This framework has
recently been proven to be an effective tool in
probing the classicality of quantum Gaussian evo-
lution [21].

In the case of isolated systems, the transforma-
tions allowed by our conditions turn out to have
a simple interpretation in terms of passive oper-
ations, which correspond to classical devices such
as beam splitters. In the case of open systems, the
conditions are less restrictive, which we interpret as
some of the total dynamics’ “quantumness” being
encoded into the environment. Our findings allow us
to conduct an in-depth discussion of the classicality
of the dynamical Casimir effect derived in [11]. We
find that, while the overall phenomenon is quan-
tum in nature, the individual photons experience
each other as semi-classical dissipative effects.

This paper is organized as follows. In Sect. 2, we
introduce the dynamical Casimir effect in moving
media. In Sect. 3, we briefly summarize the most
important properties of our main tool — the re-
duced state of the field (RSF). In Sect. 4, we de-
rive our main results, namely classicality conditions
for Bogoliubov transformations. In Sect. 5, we build
upon these findings to assess the classicality of the
dynamical Casimir effect. We conclude in Sect. 6.

2. Dynamical Casimir effect
in a moving medium

The electromagnetic field is fully described by the
set of four three-component vectors, D and E, de-
scribing the electric field, along with B and H, de-
scribing the magnetic field, which altogether fulfill
the Maxwell equations in vacuum [22, 23]
∂tD(r, t) = ∇×H(r, t),

∇ ·D(r, t) = 0,

− ∂tB(r, t) = ∇×E(r, t),

∇ ·B(r, t) = 0.
(1)

In the Heisenberg picture, the operators associated
with these fields fulfill exactly the same set of equa-
tions.

Assuming the field propagates through a homo-
geneous, isotropic medium moving with a velocity v
and characterized by constant material coefficients
µ, ε, the field vectors are related by the Minkowski
constitutive relations [24]

D +
v

c2
×H = ε (E + v ×B) ,

B − v

c2
×E = µ (H − v ×D) ,

(2)
where c is the speed of light.

In the convenient Riemann–Silberstein approach
(see a review [25]), the electromagnetic field is com-
bined into two vectors

F :=
1√
2 ε
D +

i√
2µ
B,

G :=
1√
2µ
E +

i√
2 ε
H.

(3)
The advantage of this approach can already be seen
in the considered problem, as the constitutive rela-
tions (2) can always be solved for G, yielding

G =
c

n

[
F +

n2−1

c2n2−v2
v ×

(
v × F + icnF

)]
,

(4)
where n := c

√
εµ > 1 is the refractive index of

the medium. Then, assuming position-independent
velocity, v(r, t)=cβ(t), the vacuum Maxwell equa-
tions (1) reduce to just one equation

∂tF = − ic δ(t)
(
β(t) ·∇

)
F +

c

n
α(t)∇× F

− c
n
δ(t)β(t)×∇

(
β(t) · F

)
, (5)

where

δ(t) :=
n2−1

n2−β2(t)
, α(t) := 1− δ(t)β2(t).

(6)

Under a further assumption that the velocity has
a constant direction m, and with the help of the
Fourier decomposition

F (r, t) =

∫
d3k√
(2π)3

e ik·r− iφ(k,t)

×
[
e(k)f+(k, t) + e∗(k)f−(k, t)

]
, (7)

where e are elliptic polarization vectors [11], the
Maxwell equations lead to a pair of ordinary differ-
ential equations for the functions f±

∂tf̂±(k, t) =

∓ iω(k)
[
η+(k, t)f̂±(k, t)− η−(k, t)f̂∓(k, t)

]
,

(8)
with

η±(k, t) :=
1

2

[
α(t)

σ2(k)
± σ2(k)∆(k, t)

]
,

∆(k, t) := 1− δ(t)β2(t) cos2
(
θ(k)

)
.

(9)
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The parameter θ denotes the angle between the
wave vector k and the velocity direction m, while
σ is a free real parameter defining the polarization
geometry. Last but not least, the phase

φ(k, t) := ω(k) cos
(
θ(k)

) t∫
0

dτ δ(τ)β(τ) (10)

has been extracted to achieve a simplification of the
resulting equations (β = |β|).

To obtain the dynamical Casimir effect, it is as-
sumed that the medium is moving with a time-
dependent velocity from time t = 0 up to t =
T [11, 12]. If the medium just before and after was
“still” (characterized by β(t) = const), the corre-
sponding operators f̂±, after a suitable choice of
σ [11], can be interpreted in terms of the creation
and annihilation operators of photons with right he-
licity

f̂+(k, t)=


√

~ω(k) âR,in(k)e− iω(k)t, t < 0√
~ω(k) âR,out(k)e− iω(k)(t−T ), t > T

,

(11)
and left helicity

f̂−(k, t)=


√
~ω(k) â†L,in(−k)e iω(k)t, t < 0√
~ω(k) â†L,out(−k)e iω(k)(t−T ), t > T

.

(12)
Here, âL/R,in/out and their Hermitian conjugates
fulfill all the expected properties of the standard
annihilation and creation operators. Note that such
interpretation is not possible during the accelera-
tion period t ∈ [0, T ] itself, due to the impossibility
of separation into positive and negative frequency
parts.

The final operators are given by the initial ones
via the relation [11]

âR,out(k)=e− iφ
[
fR+âR,in(k)+fR−â

†
L,in(−k)

]
,

â†L,out(−k)=e− iφ
[
fL+âR,in(k)+fL−â

†
L,in(−k)

]
,

(13)

where φ ≡ φ(k, T ), while fL± ≡ fL±(k, T ), fR± ≡
fR±(k, T ) are solutions to the differential equations
(8) subject to initial conditions

fR+(k, 0) = fL−(k, 0) = 1,

fR−(k, 0) = fL+(k, 0) = 0.
(14)

It is worth adding that, due to the canonical com-
mutation relations for the outgoing photons (13)[

âR,out(k), â†R,out(k)
]

= 1,[
âR,out(k), âR,out(k)

]
= 0,

(15)
we have
|fR+|2 = |fR−|2 + 1, (16)

with an analogous relation for fL+ and fL−.

Let us remark that in the original work [11],
the functions f were denoted as f1± ≡ fR± and
f2± ≡ fL±. Here, we change the notation to make
the connection to photon helicity more immediate,
as well as to avoid confusing the indices with expo-
nentiation. We stress, however, that despite corre-
sponding to different photon helicities, the two pairs
of functions are interrelated via the initial condi-
tions and have to be considered together.

The Casimir effect is finally obtained by consider-
ing the system initially in the vacuum and comput-
ing the photon number densities after the motion
〈n̂R(T )〉 = 〈0| â†R,out(k)âR,out(k) |0〉 =∣∣fR−(k, T )

∣∣2δ(0),

〈n̂L(T )〉 = 〈0| â†L,out(k)âL,out(k) |0〉 =∣∣fL+(k, T )
∣∣2δ(0),

(17)

where δ(0) is the Dirac delta singularity. Note that,
due to the symmetry of the evolution equations gov-
erning the left and right helicity functions, the two
densities are, in fact, equal
〈n̂R(T )〉 =

〈
n̂L(T )

〉
≡
〈
n̂(T )

〉
. (18)

As was verified in [11, 12], at least for some k, this
number is a growing function of T . Therefore, the
motion of the medium results in potentially un-
bounded particle production in the vacuum and,
hence, the prediction of the dynamical Casimir ef-
fect.

Transformation (13) at the heart of the discussed
phenomenon is an example of a Bogoliubov trans-
formation [15, 16], namely a linear transformation{
ân, â

†
n

}
→
{
â′n, â

′†
n

}
of the creation and annihi-

lation operators preserving the canonical commu-
tation relations [14]. As the main result of this
paper, we will derive the precise conditions under
which such transformations can be considered semi-
classical, with special emphasis put on the classi-
cality of the dynamical Casimir effect in a moving
medium.

3. Reduced state of the field

To assess the (semi)classicality of Bogoliubov
transformations, we first need to define a sensible
criterion for what is classical. To this end, we will
employ the mesoscopic formalism of the reduced
state of the field (RSF) [20], which was already used
for similar purposes before [21]. Since the framework
itself is not the main focus of our study, here we
provide only basic information about it. For more
details, see the introduction of the formalism by
Robert Alicki in [20], its semi-classical interpreta-
tion in [21], and its application to thermodynamics
in [26].

We consider an N -mode, continuous variable
Hilbert space described by a set of N annihila-
tion and creation operators âk, â

†
k′ fulfilling the
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canonical commutation relations[
âk, â

†
k′

]
= δkk′ ,

[
âk, âk′

]
=
[
â†k, â

†
k′

]
= 0.

(19)
As always, an arbitrary n-particle state in the
many-body Hilbert space can be constructed by act-
ing on the vacuum state with n appropriate creation
operators. Since, in principle, the number of parti-
cles in a given mode can be arbitrary, the N -mode
Hilbert space is infinitely dimensional, and so is the
density operator ρ̂ constituting the full quantum de-
scription of the system.

In some cases, however, the full quantum formal-
ism is not necessary and can be replaced by a sim-
pler, mesoscopic framework. For example, Gaussian
states and dynamics can be efficiently studied in
the symplectic picture [27–29]. Similarly, to describe
macroscopic fields and associated evolution, a for-
malism called reduced state of the field (RSF) has
been recently developed [20].

In the RSF framework, instead of by the density
operator, the system is described by the pair (r, |α〉).
Here,

r :=

N∑
k,k′=1

Tr
[
ρ̂ â†k′ âk

]
|k〉 〈k′| (20)

is the single-particle density matrix, while the aver-
aged field equals

|α〉 :=

N∑
k=1

Tr
[
ρ̂ âk

]
|k〉 . (21)

The single-particle density matrix contains the
simplest non-local information about the system.
Additionally, its diagonal elements equal the mean
particle numbers rkk = 〈â†kâk〉. Consequently, the
matrix is normalized to the mean total particle
number. Note that, by construction, the single-
particle density matrix is non-negative. The aver-
aged field, on the other hand, contains additional
local information.

Much like the previously mentioned symplectic
picture requires observables and transformations
that are Gaussian, the RSF formalism employs ob-
servables that are either additive [20]

Ô =
∑N

k,k′=1
okk′ â

†
kâk′ , (22)

or linear

σ̂ =
∑N

k=1

(
σ∗kâk + σkâ

†
k

)
. (23)

In the case of macroscopic fields, which are usually
modeled as non-interacting fields with dynamics
governed by equations linear in creation and annihi-
lation operators, the most relevant observables are
of this form. For example, the Hamiltonian is ad-
ditive, while the position and momentum operators
are linear.

Defining the reduced observables corresponding to
(22) and (23) as

o =
∑N

k,k′=1
okk′ |k〉 〈k′| , |σ〉 =

∑N

k=1
σk |k〉 ,

(24)

we can indeed see that the associated expectation
values can be rewritten in the RSF formalism as [21]

Tr
[
ρ̂ Ô
]

= tr
(
r o
)
, Tr

[
ρ̂ σ̂
]

= 〈σ|α〉+ 〈α|σ〉 .
(25)

The RSF framework comes equipped with ded-
icated entropy measures and evolution equations,
both derived from the standard quantum descrip-
tion. In the case of entropy, we have the reduced
von Neumann and Wehrl entropies [20, 21]
sv
(
r, |α〉

)
:= tr

[
(rα+1N ) ln

(
rα+1N

)
−rα ln

(
rα
)]
,

sw
(
r, |α〉

)
:= tr

[
ln
(
rα + 1N

)]
+N,

(26)
where rα := r− |α〉 〈α| and 1N denotes the iden-
tity matrix in dimension N . The reduced entropies
arise from applying the maximum entropy principle
to the standard von Neumann and Wehrl entropies,
respectively [30, 31].

Finally, RSF evolves according to the reduced ki-
netic equations [20, 21]

dr

dt
= − i

~
[
h, r
]

+ |ζ〉 〈α|+ |α〉 〈ζ|

+
1

2

{
γ↑ − γ↓, r

}
+ γ↑ +

∑
j

ηj
(
ujru

†
j − r

)
,

d |α〉
dt

= − i

~
h |α〉+

1

2

(
γ↑ − γ↓

)
|α〉+ |ζ〉

+
∑
j

ηj
(
uj − 1

)
|α〉 ,

(27)
which are derived from the Gorini–Kossakowski–
Lindblad–Sudarshan (GKLS) equation [32, 33] un-
der the assumption that the considered quantum
field can be treated as a set of individual particles
subject to spontaneous decay and production, as
well as interaction with coherent classical sources
and random scattering by the environment. The op-
erators entering (27) represent

• The Hamiltonian

h := ~
N∑
k=1

ωk |k〉 〈k| , ωk > 0; (28)

• Coherent sources

|ζ〉 :=

N∑
k=1

ζk |k〉 ; (29)

• Particle creation rates

γ↑ =

N∑
k,k′=1

γkk
′

↑ |k〉 〈k′| , γ↑ > 0, (30)

and analogously particle annihilation rates γ↓;

• Unitary interactions with rates ηj > 0
(
∑
j ηj = 1)

uj =

N∑
k,k′=1

ukk
′

j |k〉 〈k′| , u†juj=uju
†
j=1N .

(31)
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For a large number of non-commuting uni-
taries, the last term in either of the reduced
kinetic equations represents random scatter-
ing.

Note that, while not explicitly stated in the orig-
inal work [20], it is clear from the derivation of the
reduced kinetic equations that all the quantities en-
tering it may be time-dependent, provided they ful-
fill the respective constraints (imposed by complete
positivity) during every instant of the evolution.

Although RSF was originally designed to cap-
ture the quantum features of macroscopic fields, it
has been recently shown to have a convincing inter-
pretation as a semi-classical description of bosonic
many-body systems [21]. For example, it was proved
that the RSF formalism contains no information
about distillable entanglement in the system, and
that both of the reduced entropies are akin to
Wehrl’s semi-classical entropy [31], typically con-
sidered as such due to its close association with the
phase-space.

Because, by construction, the reduced kinetic
equations (27) preserve the RSF formalism’s semi-
classical set of degrees of freedom, any time evo-
lution model of the density operator, which can be
rewritten as reduced kinetic equations, must be nec-
essarily semi-classical itself. Based on this princi-
ple, in [21], quantum Gaussian evolution of light
was found to be classical if and only if it consisted
strictly of so-called passive optical transformations,
e.g., beam splitting and phase shifting. Contrary to
their remaining active counterparts, such as quan-
tum squeezing, passive transformations can be un-
derstood operationally by treating light as a classi-
cal wave. In this paper, we adopt a similar method-
ology for Bogoliubov transformations — if they pre-
serve the set of the degrees of freedom contained
within RSF, we will regard them as semi-classical,
and if not, we will regard them as inherently quan-
tum.

4. Classicality of Bogoliubov
transformations

We are now equipped with the tools necessary
to assess the classicality of Bogoliubov transforma-
tions. We will consider two distinct cases, i.e., Bo-
goliubov transformations in isolated (closed) sys-
tems and in open systems. The main results of
this section are presented in Propositions 1–3, with
proofs in Appendix A.

4.1. Isolated system

In the case of an isolated system, the most general
transformation of the density operator is unitary

ρ̂′ = Û ρ̂Û†. (32)
For the transformation to be of the Bogoliubov-
type, Û must be such that, for some complex
matrix X ,

Â′n := Û†ÂnÛ =

2N∑
m=1

XnmÂm, (33)

with

Ân :=

{
ân, n ∈ {1, . . . , N},

â†n, n ∈ {N + 1, . . . , 2N}.
(34)

To preserve the canonical commutation relations,
the matrix X has to fulfill the so-called symplectic
property [34, 35]
XSX † = S, (35)

where S = diag
[
1N ,−1N

]
. As a consequence of the

symplectic property,

X =

[
X↑ X↓
X ∗↓ X ∗↑

]
, (36)

where Xl are of size N ×N .
Calculating the change in RSF implied by

a generic Bogoliubov transformation and forcing
the result to be fully contained within the for-
malism, we obtain the classicality conditions for
the closed system Bogoliubov transformations. Fur-
thermore, if the unitary transformation in (32) de-
pends smoothly on time, then so does the matrix X ,
turning the discrete Bogoliubov transformation into
a continuous Bogoliubov evolution. In such a case,
the density operator can be differentiated with re-
spect to time, and the resulting evolution equation
can be compared with the reduced kinetic equa-
tions.

Proceeding in this way, we obtain our first major
result.

Proposition 1. Isolated system Bogoliubov transfor-
mations (as described above) are compatible with the
RSF formalism and are thus classical with respect to
it if and only if

0 = X↓. (37)
Additionally, if the transformation depends smoothly
on time, the corresponding reduced kinetic equations
(27) exist and are governed by

h =
i~
2

(
dX↑
dt
X−1↑ −X

−†
↑

dX †↑
dt

)
, (38)

with the remaining terms vanishing.

Proof. See Appendix A.

The obtained classicality condition is easy to in-
terpret. Substituting (37) into the symplectic condi-
tion (35), we immediately find that X is also unitary
in addition to being symplectic, which means that
it is passive. Thus, in a complete analogy to quan-
tum Gaussian evolution [21], Bogoliubov transfor-
mations in isolated systems are semi-classical only
if they correspond to passive transformations.

Let us also remark that while the absence of
the dissipative terms in the obtained reduced ki-
netic equations was to be expected in an isolated
system, the lack of coherent classical sources was
not. Indeed, it is easy to see that this lack is not
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a fundamental property of the Bogoliubov evolu-
tion, but rather a consequence of the Bogoliubov
transformations (33) being defined, for simplicity,
without constant terms (independent of the creation
and annihilation operators).

4.2. Open system

In the more general case of an open system, the
total density operator of the system and environ-
ment (also called bath) is as well transformed ac-
cording to (32). However, we are only interested in
the state of the system, given by a partial trace over
the degrees of freedom of the environment:

ρ̂S = TrE [ ρ̂ ] . (39)

The Bogoliubov transformation itself (33) remains
the same. Still, assuming the system and the envi-
ronment span NS and NE modes respectively, it is
convenient to additionally split the matrices enter-
ing the block decomposition (36) into

X↑ =

[
X↑S X↑C
X↑C′ X↑E

]
, X↓ =

[
X↓S X↓C
X↓C′ X↓E

]
,

(40)
where XlS is an NS×NS matrix associated with the
system, XlE is an NE ×NE matrix associated with
the environment, and XlC , XlC′ are appropriately-
sized matrices associated with both. Note that the
case of the closed system can be retrieved easily
by setting NE = 0 (which, in particular, implies
Xl = XlS) and dropping the then-redundant lower
indices S.

For a generic initial state of the bath-system en-
semble, the dynamics of the latter cannot be sepa-
rated from the dynamics of the former, making it
impossible to even compare with the RSF formal-
ism. Nonetheless, even in this completely general
setting, we were able to derive necessary conditions
for classicality of Bogoliubov transformations.

Proposition 2. Open system Bogoliubov transforma-
tions (as described above) can be compatible with the
RSF formalism and thus be classical with respect to it
only if

0 = X↓S . (41)

Proof. See Appendix A.

Unlike the condition (37) for the closed system,
the classicality condition for the open system is dif-
ficult to interpret. However, comparing it with its
closed system counterpart, we can at least see that
the latter is much more restrictive: it requires the
whole matrix X↓ to vanish, while the former requires
only its system part X↓S to vanish. Therefore, de-
pending on how we define the degrees of freedom of
the system, we may find the same total dynamics
to be either classical or quantum from the point of
view of the system. This will indeed be the case in

the next section, where we will find that the dynam-
ical Casimir effect falls exactly into this category.

Still, any such interpretation has to be made with
care, since it must be stressed that the condition
(41) is not equivalent to classicality, but only nec-
essary for it. In stark contrast to the closed sys-
tem, in the case of an open system, whether or
not a given Bogoliubov transformation is classical
from the point of view of RSF depends not only on
the matrix X defining it, but also on the total ini-
tial state of the system-environment ensemble. It is
possible that, for particularly strongly correlated to-
tal initial states, the only semi-classical Bogoliubov
transformations are those that induce completely
separate dynamics for the system and environment,
essentially defying the notion of an open system.

To make stronger statements, we are therefore
forced to make some restrictions. Firstly, we as-
sume that the initial total state is separable with
respect to the bipartition between the system and
the bath. This is a typical assumption in the theory
of quantum open systems. In particular, the GKLS
equation cannot be derived without it [36]. Since,
in particular, the reduced kinetic equations govern-
ing the time evolution in the RSF formalism are
derived from a GKLS equation, it is only natural to
also make this assumption in the present case.

Secondly, we assume that the bath is initially in
the vacuum state. Note that while this assumption
is a very strong one, it is fulfilled by many well-
studied and useful models, such as quantum-limited
amplification, quantum-limited attenuation, and
phase conjugation channels, utilized, e.g., in studies
of Gaussianity, entropy, and entanglement [37–39].
More importantly for us, as we will discuss in the
next section, it is also satisfied by the dynamical
Casimir effect.

Under the above assumptions, we obtain our final
main result for Bogoliubov transformations.

Proposition 3. The classicality condition (41) is both
necessary and sufficient for open system Bogoliubov
transformations with the environment initially in the
vacuum state. Additionally, if such transformations de-
pend smoothly on time, the corresponding reduced ki-
netic equations exist provided
W > 0, W −Yr > 0 (42)

and are governed by

h = −~Y i

2
, γ↓ =W, γ↑ =W −Yr, (43)

with the remaining terms vanishing. Here,

Yi := − i
(
Y − Y†

)
,

Y :=
dX↑S
dt X

−1
↑S ,

Yr := Y + Y†,
D := X↓CX †↓C ,
W := dD

dt − YD −DY
†.

(44)

Proof. See Appendix A.
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Interestingly, the obtained Bogoliubov reduced
kinetic equations do not depend on any compo-
nents of the matrix X labeled by the subscripts
C ′, despite depending on the components labeled
by C. At first, this may appear surprising, since
a priori both are equally responsible for describing
the correlations between the system and the envi-
ronment. The asymmetry is resolved by interpret-
ing the C components as encoding the influence of
the environment on the system, and the C ′ com-
ponents as encoding the influence of the system on
the environment. The lack of the C ′ components
in the description of the system then becomes ex-
pected. As an additional argument for this view, we
observe that if we exchanged the roles of the sys-
tem and the environment, the equations would de-
pend on the C ′ components, with the C components
missing.

Proposition 3 will be our main tool in the study
of the classicality of the dynamical Casimir effect.
Before we do it, however, let us illustrate our results
so far with a short but instructive example — the
Gaussian amplification process.

Example (Gaussian amplification process). In the
Gaussian amplification process, an arbitrary initial
state of the N -mode system

ρ̂(t0) =

∫
d2Nz0
πN

P0(z0) |z0〉 〈z0| (45)

is driven by a heat bath into the state [40]

ρ̂(t) =

∫
d2Nz0
πN

P0(z0)

N⊗
j=1

∫
d2zj
π

ρj(t) |zj〉 〈zj | ,

ρj(t) :=
1

nj(t)
exp

(
−|zj − z0j eκjt|2

nj(t)

)
.

(46)

Here, the integration is over the real and imaginary
parts of the complex vectors z0, z; P0(z0) denotes
the Glauber–Sudarshan P representation [41, 42] of
the initial state; |zj〉 are coherent states; κj is the
amplification rate of the j-th mode; and

nj(t) := (1 +mj)
(

e2κjt − 1
)
, (47)

wheremj is the mean number of photons in the j-th
mode of the bath, assumed to be effectively constant
throughout the whole process (this is true as long
as the bath is much bigger than the system).

The corresponding RSF can be easily calculated

rkk′(t) =

∫
d2Nz0
πN

P0(z0)

N∏
j=1

∫
d2zj
π

ρj(t)zkz
∗
k′ ,

αk(t) =

∫
d2Nz0
πN

P0(z0)

N∏
j=1

∫
d2zj
π

ρj(t)zk.

(48)
The integrals over zj can be performed using the
standard result [43]∫

d2Nz

πN
e−z

†µz+s†z+z†s =
es
†µ−1s

det[ µ ]
, (49)

where µ denotes an invertible matrix and s is a vec-
tor of size N . In our case,

µ−1 = n(t) :=
∑N

j=1
nj(t) |j〉 〈j| ,

s = n−1(t)
∣∣z0(t)

〉
,

|z0(t)〉 :=
∑N

j=1
z0j eκjt |j〉 .

(50)
This yields
r(t) = n(t) +

〈 ∣∣z0(t)
〉〈
z0(t)

∣∣ 〉
0
,∣∣α(t)

〉
=
〈 ∣∣z0(t)

〉 〉
0
,

(51)

where 〈·〉0 := (π−N )
∫

d2Nz0 P0(z0)(·). The formu-
lae (51) induce the following differential evolution
equations

dr

dt
=

1

2

{
2κ (1+m)− 2κm, r

}
+ 2κ (1+m) ,

d |α〉
dt

=
1

2

(
2κ (1 +m)− 2κm

)
|α〉 ,

(52)

wherem:=
∑N
j=1mj |j〉 〈j| and κ :=

∑N
j=1 κj |j〉 〈j|.

Clearly, the equations have the form of reduced
kinetic equations (27) with γ↑ = 2κ (1+m),
γ↓ = 2κm and h = |ζ〉 = µ(du) = 0.

According to Proposition 2, any open system Bo-
goliubov evolution that can be represented by re-
duced kinetic equations has to necessarily fulfill the
classicality condition (41). To see that this is indeed
the case in the Gaussian amplification process, we
observe that it is generated by a Bogoliubov trans-
formation of the form [37]

X↑ = cosh
(
κt
) [1N 0

0 1N

]
,

X↓ = sinh
(
κt
) [ 0 1N

1N 0

]
.

(53)

Clearly, X↓S , being the upper left-hand side block
component of X↓, vanishes, as required by the afore-
mentioned condition.

The fact that we found the Gaussian amplifica-
tion process to be semi-classical is not surprising
— intuitively, Gaussian amplification can be inter-
preted as pumping particles into the system until
it reaches essentially macroscopic size. The process
is well known for turning quantum phenomena into
more classical ones. For example, it was previously
shown that the Glauber-Sudarshan P distribution
of an infinitely amplified state approaches the semi-
classical Husimi Q distribution [44, 45]. Similarly,
the von Neumann entropy of the maximally ampli-
fied state approaches the semi-classical Wehrl en-
tropy [30, 38]. More recently, it has been shown
that the amplified Pegg-Barnett phase formalism
approaches the Paul phase formalism [46].
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5. Classicality of the dynamical
Casimir effect

Armed with the classicality conditions (37)
and (41), we are now ready to come back to the dy-
namical Casimir effect. We begin by observing that
while the phenomenon spans an infinite number of
modes of photons with both helicities, its defin-
ing Bogoliubov transformation (13) couples them in
pairs only. Any mode k of the right helicity photons
is coupled only to itself and the mode −k of the left
helicity photons. For this reason, we can restrict our
analysis to two modes with no loss in generality.

Written in terms of the matrix X , the Bogoliubov
transformation (13) reads

X =


e− iφfR+ 0 0 e− iφfR−

0 e iφf∗L− e iφf∗L+ 0

0 e iφf∗R− e iφf∗R+ 0

e− iφfL+ 0 0 e− iφfL−

 .
(54)

The interpretation of classicality depends on what
we consider to be the system.

In the most natural view, the system spans pho-
tons with both left and right helicity. Hence, we
have a closed, two-mode system. Comparing (54)
with (36), we easily find the classicality criterion
(37) to read explicitly

fR−(k, T ) = 0 = fL+(k, T ). (55)

Looking at (17), we can immediately see that this
implies no Casimir effect, i.e., the photon produc-
tion in the vacuum is zero. Thus, according to the
RSF formalism, any dynamical Casimir effect is nec-
essarily non-classical, as expected.

To see the physical reason for this, we go back
to the differential equations (8), along with the ini-
tial conditions (14). It is easy to see that (8) can be
fulfilled if and only if η−(k, t) = 0. This is equiv-
alent to σ(k) = [α/∆(k)]1/4, where, due to the
time-independence of σ, α and ∆ have to be time-
independent too, implying constant velocity. The
equations for the remaining functions can then be
easily solved, yielding [11]

fR+(k, t) = f∗L−(k, t) = e− i ω̃(k)t, (56)

where ω̃ = ω
√
α∆. Substituting this into (13), we

find that the final creation and annihilation opera-
tors simplify to just

âR,out(k) = e− i [φ(k,T )+ω̃(k)T ] âR,in(k),

â†L,out(−k) = e− i [φ(k,T )−ω̃(k)T ] â†L,in(−k),
(57)

i.e., they are multiplied by a phase. Obviously, this
phase is irrelevant to the expectation values of the
corresponding number operators on the vacuum,
which is why the dynamical Casimir effect cannot
take place for constant velocities.

However, there is another point of view. Nothing
stops us from interpreting exclusively the left he-
licity photons as the system, and the right helicity
photons as the environment. Then, we are dealing
with an open one-mode system subject to influence
from a one-mode environment. By comparing (54)
with (36), (40), we immediately find that now, the
classicality condition (41) always holds, regardless
of the form of the functions fR±, fL±. Crucially,
because the mode associated with the right helicity
photons is initially in the vacuum state, then, due
to Proposition 3, this classicality condition is both
necessary and sufficient. Does this mean that the
Casimir effect is, in the end, classical? Or maybe it
means that the RSF formalism is not a valid tool
for probing classicality after all?

In our opinion, neither. Consider, for ex-
ample, the maximally entangled two-qubit Bell
state [47, 48]
|Φ+〉 := 1√

2

(
|00〉+ |11〉

)
. (58)

If, in an analogy to the Casimir effect, we consider
only the first qubit as the system, we will find it to
be in the maximally mixed state

ρ̂S = Tr2nd qubit |Φ+〉 〈Φ+| = 1
2 1̂2, (59)

which can certainly be considered classical. Of
course, this does not mean that the Bell state that
we started with was classical. Instead, its “quan-
tumness” was contained in the correlations between
the two qubits, rather than any of the two qubits
themselves.

In the case of the Casimir effect and the Bogoli-
ubov transformations in general, it is even more ap-
parent what happens with the quantumness. Con-
sider the matrix element X↓12 = X↓C = fR−(k, T ),
which in our case, encodes the correlations be-
tween photons with left and right helicities. For
a generic initial state, these correlations are poten-
tially quantum. Thus, if a closed system is to be
considered classical, they must necessarily vanish
X↓12=X↓C=0, as they constitute an integral part of
the system. However, in the case of an open sys-
tem, the discussed correlations are no longer part
of the system, and instead enter it only at the
level of the environmental effects, most easily seen
through the evolution (44). Therefore, even if they
have a strictly quantum origin, the system experi-
ences them only as dissipation, which in this case
happens to have a semi-classical interpretation in
terms of particle annihilation and creation rates.

Alternatively, we can think of the Casimir process
as consisting of two parts. The first, captured by the
matrix X↑, describes the morphing of photons with
left helicity into those with right helicity and vice
versa. The second, captured by the matrix X↓, de-
scribes the creation of photons with both helicities.
The former, being semi-classical, is unconstrained
by the RSF formalism. The latter, however, being
more quantum in nature, is forbidden by RSF, un-
less the quantumness can be encoded into the envi-
ronment, as discussed previously.
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Finally, let us observe that even though the Bo-
goliubov transformation (13) is technically of the
discrete type, as the creation and annihilation op-
erators are formally ill-defined during the accelera-
tion period t ∈ [0, T ], the functions fR± and fL±
defining the transformation are well defined at all
times. Adding that to the fact that the final mo-
ment of acceleration T is completely arbitrary, we
can consider (13) as defining a smooth Bogoliubov
evolution in the parameter T .

Since, as explained previously, the initial total
state fulfills the requirements of Proposition 3, the
Bogoliubov evolution at hand must have a repre-
sentation in terms of the reduced kinetic equations
(27) with (43) at the input. Indeed, making use of
the latter equation, we find

h = ~ω
(
η+ + η−Re

[
fR−
fR+

]
+ δβ cos(θ)

)
,

γ↑ = 2ωη−
|fR−|2

|fR+|2
Im

[
fR+

fR−

]
,

γ↓ = 0.
(60)

For more details regarding the derivation of these
identities, see Appendix B. Here, we focus on their
physical significance.

To start with, we note that, as expected, the
Hamiltonian for the photons is proportional to their
frequency. Furthermore, the particle annihilation
rate is zero, which intuitively corresponds to the
fact that the dynamical Casimir effect results only
in the spontaneous creation of particles, not their
disappearance. Finally, once again abusing the dif-
ferential equations (8), we can easily calculate that
the time derivative of the total photon density (18)
equals

d 〈n̂〉
dT

= 2ωη−|fR−|2 Im

[
fR+

fR−

]
, (61)

which, using (16) and (60), can be rewritten as sim-
ply

d 〈n̂〉
dT

= γ↑ (〈n̂〉+ 1) . (62)

This result has three worthwhile implications.
Firstly, it has a sound physical interpretation: the

time derivative of the total photon density in the dy-
namical Casimir effect turns out to be simply pro-
portional to the current photon density times the
current particle creation rate. Secondly, it tells us
that the non-negativity of γ↑, which is required for
the result to be physical, is equivalent to the non-
negativity of photon number growth. In particular,
because of the initial condition (14), a valid matrix
γ↑ by its very construction prevents negative photon
numbers. Finally, because of the 〈n̂〉-independent
term on the r.h.s., our final result (62) proves that
the dynamical Casimir effect occurs for any non-
zero γ↑, which can be traced to any non-constant ve-
locity of the medium (γ↑ = 0 holds only for η− = 0,
which holds only for β = const).

6. Conclusions

In this paper, we employed the recent mesoscopic
formalism of the reduced state of the field to de-
rive the exact conditions under which Bogoliubov
transformations in either isolated or open systems
should be considered semi-classical. Applying our
result to the case of the dynamical Casimir effect
in the medium moving with a varying speed, we
found that, while the photons with left and right
helicity see each other as semi-classical objects, the
Casimir effect itself is genuinely quantum, as ex-
pected. Let us stress that the analysis is made pos-
sible because for each wave vector, we can consider
two polarization degrees of freedom. Therefore, it is
essential that the described phenomenon is “based
on full Maxwell equations in three dimensions” as
pointed out at the end of the Conclusions section
in [11].
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Appendix A

In this appendix, we prove our main results re-
garding the classicality of Bogoliubov transforma-
tions, i.e., Propositions 1–3.

To this end, in addition to RSF, we will employ
two auxiliary mesoscopic fields. The first, defined
originally in [21], is the conjugate RSF

c :=
∑N

k,k′=1
Tr
[
ρ̂ âk′ âk

]
|k〉 〈k′| ,

|α∗〉 :=
∑N

k=1
Tr
[
ρ̂ â†k

]
|k〉 .

(63)
The second is the generalized RSF

g :=
∑2N

k,k′=1
Tr
[
ρ̂ Â†k′Âk

]
|k〉 〈k′| ,

|A〉 :=
∑2N

k=1
Tr
[
ρ̂ Âk

]
|k〉 .

(64)
It is easy to see that the three reduced fields are
related to each other as follows

g =

[
r c

c∗ rT + 1N

]
,

|A〉 = |α〉 ⊕ |α∗〉 .
(65)

We add that, by definition, r = r†, c = cT , and
|α〉∗ = |α∗〉.
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Proof of Proposition 1

We start with Proposition 1. It is easy to see that
due to (64), (32), (33), under a generic Bogoliubov
transformation, the generalized RSF (g, |A〉) trans-
forms as

g′ = X gX †, |A′〉 = X |A〉 . (66)

Then, (65) and (36) imply

r′ := X↑rX †↑+X↑cX †↓+X↓c†X †↑+X↓
(
rTS+1N

)
X †↓ ,

|α′〉 = X↑ |α〉+ X↓ |α∗〉 . (67)

Clearly, this couples RSF to the conjugate field,
meaning that it does not preserve the set of the as-
sociated degrees of freedom. For an arbitrary initial
state, the coupling vanishes only if (37) is fulfilled,
which is what we wanted to show.

Assuming the time-dependent case with the clas-
sicality condition (37) fulfilled, (67) reduces to

r(t) = X↑(t)r(t0)X †↑ (t),

|α(t)〉 = X↑(t) |α(t0)〉 .
(68)

These equations are reversible, i.e.,
r(t0) = X−1↑ (t)r(t)X−†↑ (t),

|α(t0)〉 = X−1↑ (t) |α(t)〉 .
(69)

Taking the time derivative of (68) and making use
of (69), we obtain the reduced kinetic equations (27)
with (38) at the input. This concludes the proof.

Proof of Proposition 2

To prove Proposition 2, we observe that the re-
duced fields of the total state of the system and the
environment have the structure

r =

[
rS rC

r†C rE

]
, c =

[
cS cC

cTC cE

]
,

|α〉 = |α∗〉∗ = |αS〉 ⊕ |αE〉 , (70)
where (rS , |αS〉), (cS , |α∗S〉) are the reduced fields of
the system; (rE , |αE〉), (cE , |α∗E〉) are the reduced
fields of the environment; and rC , cC contain the
system-bath correlations. This fact follows directly
from the definitions of the fields. For example,

(rS)kk′ := Tr
[
TrE(ρ̂)â†k′ âk

]
=Tr

[
ρ̂ â†k′ âk

]
:=rkk′ .

(71)

The remaining relations are proved in a similar fash-
ion.

For a generic initial total state, the dynamics are
quite complex. Making use of the block-form decom-
positions (70) and (40) in (68), we obtain a rather
lengthy expression for the transformed RSF of the
system, which can be written as

r′S=F↑↑(r)+F↓↑(c
∗)+F↑↓(c)+F↓↓

(
rT + 1

)
,

|α′S〉=X↑S |αS〉+X↑C |αE〉+X↓S |α∗S〉+X↓C |α∗E〉 ,

(72)
where

Fab(x) := XaSxSX †bS+XaSxCX †bC + XaCx†CX
†
bS

+XaCxEX †bC . (73)

Similarly to the case with the closed system trans-
formation, (72) may preserve the set of the degrees
of freedom associated with the RSF formalism in
the system only if it does not depend on the conju-
gate field of the system, (cS , |α∗S〉). Close inspection
of (72) reveals that this is possible only if (41) is
fulfilled, which is what we wanted to prove.

Let us stress, however, that this condition is
merely necessary for the RSF degrees of freedom to
be preserved. Depending on the state of the bath,
the remaining fields rc, cC , rE , and cE will, in gen-
eral, cause the system to go beyond the RSF frame-
work. In the most radical case, the equations may
preserve the formalism’s set of degrees of freedom
only if all terms dependent on these additional fields
vanish, reducing the system-environment ensemble
to two separate closed systems.

Proof of Proposition 3

Finally, to prove Proposition 3, we note that, as
is easy to calculate from their definitions, the initial
reduced fields with the environment initially in the
vacuum state fulfill

rC = rE = cC = cE = 0, |αE〉 = |α∗E〉 = 0.

(74)
Plugging this into (72), we find that it simplifies to

r′S = X↑SrSX †↑S + X↓CX †↓C ,

|α′S〉 = X↑S |αS〉 , (75)
where we assumed the classicality condition (41).
Clearly, the final field depends only on the initial
RSF, preserving the associated degrees of freedom.
Therefore, in this case, the condition (43) is not only
necessary, but also sufficient for classicality.

It remains to show that if the transformation de-
pends smoothly on time, the corresponding reduced
kinetic equations are given by (43). In the time-
dependent case, (75) becomes

rS(t) = X↑S(t) rS(0)X †↑S(t) + X↓C(t)X †↓C(t),

|αS(t)〉 = X↑S(t) |αS(0)〉 .
(76)

These relations are reversible
rS(0) = X−1↑S (t)

[
rS(t)−X↓C(t)X †↓C(t)

]
X−†↑S (t),

|αS(0)〉 = X−1↑S (t) |αS(t)〉 .
(77)
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Differentiating (76) with respect to time, making
use of (77), and rearranging the terms, we arrive at
the differential evolution equations

dr

dt
=

1

2

[
Yi, r

]
+

1

2

{
Yr, r

}
+W,

d |α〉
dt

=
1

2
Yi |α〉+

1

2
Yr |α〉 ,

(78)
where the matrices Yr, Yi,W are as defined in (44).
Clearly, the derived equations have the form of
the reduced kinetic equations characterized by (43).
Thus, they describe valid dynamics provided the γl
matrices are non-negative, as required by (42). This
concludes the proof.

Appendix B: Proof of (60)

In this appendix, we derive the explicit forms of
the operators (60) governing the reduced kinetic
equations for the dynamical Casimir effect.

By comparing (54) with (36) and (40), we imme-
diately identify
X↑S = e− iφfR+, X↓C = e− iφfR−. (79)

Plugging this into (44) and then (43), on the way
utilizing the differential equations (8), we obtain,
after a lengthy but straightforward calculation,

h = ~ω
(
η+ + η−Re

[fR−
fR+

])
+ ~

dφ

dt
,

γ↑=2ωη−|fR−|2
(

Im
[fR+

fR−

]
+ Im

[fR−
fR+

])
,

γ↓=2ωη−

[
|fR−|2 Im

[fR+

fR−

]
+
(
|fR−|2+1

)
Im
[fR−
fR+

]]
.

(80)
It remains to show that these formulas reduce
to (60).

In the case of the Hamiltonian, all we need to do
is to differentiate (10) with respect to time. Due to
the Leibniz integral rule,

dφ(k, t)

dt
= ω(k)δ(t)β(t) cos θ(k), (81)

from which we immediately see that the first lines
of (80) and (60) coincide.

As for γ↑, we observe that for any complex num-
ber w

Im
[
w−1

]
= − Im[w]

|w|2
. (82)

Taking w = fR+/fR−, we get

γ↑ = 2ωη−|fR−|2
(

1− |fR−|
2

|fR+|2

)
Im
[fR+

fR−

]
.

(83)

Using (16) and simplifying, we quickly find that the
second lines of (80) and (60) also coincide.

Finally, we have to show that γ↓ = 0. Once again
utilizing the relation (16), we obtain

γ↓=2ωη−|fR−|2
(

Im
[fR+

fR−

]
+
|fR+|2

|fR−|2
Im
[fR−
fR+

])
.

(84)

It is easy to see that the bracketed term vanishes
upon the use of (82).
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Free electromagnetic fields, satisfying Maxwell’s equations with no charges and electric currents, can
be described by complex vector fields. In the standard formulation with fields sharply dependent on
position and time, one obtains integrals that are mathematically ill-defined. This happens for the
massless Pauli–Jordan function, which is used to describe the time evolution of fields and appears in the
Poisson brackets for classical fields. This difficulty can be solved by introducing smeared fields as linear
functionals with test functions. In this way, the massless Pauli–Jordan function becomes a tempered
distribution, allowing a mathematically rigorous analysis.

topics: Riemann–Silberstein vectors, Poisson brackets, Pauli–Jordan function, tempered distributions

1. Introduction

The electric and magnetic fields in empty space
can be expressed in terms of a pair of com-
plex vector fields F (x) = E(x)− i cB(x) and
F ∗(x) = E(x)+i cB(x), where x = (t,x) and
c = (µ0ε0)−1/2 [1]. This can be extended to an
arbitrary homogeneous and isotropic dielectric [2].
These fields are called the Riemann–Silberstein
(RS) vectors [3] and can be analysed in various as-
pects in both classical and quantum physics. In [3]
Białynicki-Birula claims that it is a complex vector-
function of space and time coordinates that ad-
equately describes the quantum state of a single
photon. It is also argued that it can be practi-
cal for describing the quantum states of excitation
of a free electromagnetic field, the electromagnetic
field acting on a medium, the vacuum excitation of
virtual electron–positron pairs, and for comparing
the photon with other quantum particles that have
their wave functions. Also, the Schrödinger equa-
tion for a photon and the Heisenberg uncertainty
relations can be formulated in terms of the RS vec-
tors [4]. More mathematical aspects of this formal-
ism are presented in [5] and [6]. An overview of
many features of classical and quantum electromag-
netic fields described by RS vectors can be found
in [7].

In this article, we will discuss other aspects of
classical fields in empty space, with particular ref-
erence to objects defined by momentum integrals
that do not converge, as this can lead to self-
inconsistency.

2. Poisson brackets and temporal evolution

In a free space with no charges and currents, the
RS vectors allow us to express Maxwell’s equations
in a compact form
∂tF (x) = ic∇× F (x), ∇ · F (x) = 0,

∂tF
∗(x) = − ic∇× F ∗(x), ∇ · F ∗(x) = 0.

(1)
The electromagnetic energy density can be written
as a simple expression if we scale the RS vectors by
a constant factor

H(x) =
ε0
2
E2(x) +

1

2µ0
B2(x) = V ∗(x) · V (x),

V (x) =

√
ε0
2
F ∗(x),

V ∗(x) =

√
ε0
2
F ∗(x).

(2)
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This leads to the Hamiltonian that generates the
equations of motion for V (x) and V ∗(x) by means
of the Poisson brackets (PB) for fields at equal time
t = t0,{
Vi(t0,x), V ∗j (t0,y)

}
PB

= i c εikj ∂
x
k δ

3(x− y),{
V ∗i (t0,x), Vj(t0,y)

}
PB

=− i c εikj ∂
x
k δ

3(x− y),{
Vi(t,x), Vj(t0,y)

}
PB

=
{
V ∗i (t,x), V ∗j (t0,y)

}
PB

=0,

(3)
where Einstein’s summation convention for re-
peated indices is applied. Moreover, the equa-
tions of motion can be solved by means of the
integral [8]

V (t,x) =

∫
R3

d3y

[
∂

∂t
D(t−t0,x−y)V (t0,y)

− icD(t−t0,x−y)∇× V (t0,y)

]
, (4)

where the function D(t,x) should satisfy the follow-
ing properties(

∂2t − c2∇2
)
D(x) = 0, D(0,x) = 0,

∂tD(t,x)
∣∣
t=0

= δ3(x). (5)
The general solution (4) can be used to transform

the Poisson brackets for equal time (3) into the gen-
eralized Poisson brackets for arbitrary instants [8]{
Vi(t,x), V ∗j (t0,y)

}
PB

=(
c2δik∇2−c2∂i∂k+ic εikj∂

x
k∂t
)
D(t−t0,x−y),{

Vi(t,x), Vj(t0,y)
}

PB
= 0

(6)
The standard definition of D(t,x), called the

massless Pauli–Jordan function [9], is given by the
momentum integral

D(t,x) = i

∫
R3

d3k

2ω (2π)3
(

e− ik·x − e ik·x), (7)

(k · x = ωt− k · x; ω = c|k| = ck), which is clearly
ill-defined. However, it is generally argued that this
divergent integral defines a distribution that can be
written explicitly using the Dirac delta distribution
accordingly

D(t,x) =
sgn(t)

2πc
δ
(
c2t2 − x2

)
. (8)

Formally, the standard definition (7) is the in-
verse Fourier transform of a function that is not in-
tegrable but is only locally integrable in R3. For this
type of function, the corresponding Fourier trans-
form can be consistently defined and calculated us-
ing tempered distributions, as recently proposed
in [10]. One might expect that the appearance of
such divergent momentum integrals as in formula
(7) is a consequence of the use of fields with a sharp
dependence on the position vector. Therefore, we
can try a different approach, using smeared fields to
check whether the new results are consistent with
the previous ones.

3. Smeared Riemann–Silberstein vectors

Smeared fields are linear functionals for test func-
tions, which vanish rapidly at infinity, so one may
define smeared fields as integrals with test functions
of the Schwartz class S(R3) ∈ f : R3 → R [11]

Vi[t, f ] :=

∫
R3

d3x Vi(t,x)f(x),

V ∗i [t, f ] := (Vi[t, f ])∗ =

∫
R3

d3x V ∗i (t,x)f(x).

(9)
Thus, all these integrals converge, and integra-

tion by parts can be easily performed without the
boundary term at infinity. This smearing can eas-
ily be applied to relations for fields with a sharp
dependence on the position vector. From Maxwell’s
equations (1) one obtains the relations for smeared
RS vectors

∂tVi[t, f ] = − iVk[t, uikf ], Vi[t, ∂if ] = 0,

∂tV
∗
i [t, f ] = iV ∗k [t, uikf ], V ∗i [t, ∂if ] = 0,

(10)
where uik := c εijk∂j . Next, smearing of non-
vanishing Poisson brackets for equal time (3) gives
Poisson brackets for smeared RS vectors at equal
time t = t0
{Vi[t0, f ], V ∗j [t0, g]}

PB
= i(uijg, f),

{V ∗i [t0, g], Vj [t0, f ]}
PB

= − i(g, uijf),
(11)

where the inner product in the space of the Schwartz
test functions f, g ∈ S(R3) is [11]

(g, f) =

∫
R3

d3x g(x)f(x). (12)

The equations of motion for smeared fields can
be easily diagonalized as

∂ta
(+)
i [t, f ] = ia

(+)
i [t, ωf ],

∂ta
(−)
i [t, f ] = − ia

(−)
i [t, ωf ],

(13)
with auxiliary smeared fields defined as

a
(+)
i [t, f ] := Vi[t, ωf ] + Vj [t, uijf ],

a
(−)
i [t, f ] := Vi[t, ωf ]− Vj [t, uijf ],

(14)
where a new test function ωaf : R3 → R, is given
by means of the inverse Fourier transform (a ∈ N)

(ωaf)(x) :=

∫
R3

d3k

(2π)3
e ik·x(c|k|)aF{f}(k).

(15)
The equations of motion for auxiliary smeared

fields can be easily solved as

a
(+)
i [t, f ] := a

(+)
i [t0, e iω(t−t0)f ],

a
(−)
i [t, f ] := a

(−)
i [t0, e− iω(t−t0)f ],

(16)

S108



Smeared Field Description of Free Electromagnetic Field

where one has(
e± iωtf

)
(x) =

∞∑
n=0

(± it)n

n!
(ωnf)(x) =

∫
R3

d3k

(2π)3
e± iω(k)tF{f}(k). (17)

These solutions enable us to write the smeared
RS vector at an arbitrary instant t as

Vi[t, f ] :=
1

2

(
a
(+)
i [t, ω−1f ] + a

(−)
i [t, ω−1f ]

)
=

Vi
[
t0, cos(ωτ)f

]
+ iVk

[
t0, uik sin(ωτ)ω−1f

]
=∫

R3

d3y
(

cos(ωτ)f
)
(y)Vi(t0,y)

− i

∫
R3

d3y
(

sin(ωτ)ω−1f
)
(y)Ui(t0,y), (18)

where τ = t−t0, Ui(t0,x) = uikVk(t0,x), and we ex-
tend the previous definition (15) to the case a = −1.
When we integrate both sides of (4) with the test
function f(x) ∈ S(R3), assuming local integrabil-
ity of D(τ, x), we obtain the tempered distribution
S ′(R3). Next, by switching the order of the inte-
grals, we get a functional, which can be compared
with (18)
Vi[t, f ] =∫

R3

d3y
∂

∂t

 ∫
R3

d3x f(x)D(τ,x−y)

Vi(t0,y)

− i

∫
R3

d3y

 ∫
R3

d3x f(x)D(τ,x−y)

Ui(t0,y).

(19)

Hence, we conclude that the massless Pauli–
Jordan function D(τ,x−y) satisfies the integral
equation∫

R3

d3x f(x)D(τ,x−y) =
(
sin(ωτ)ω−1f

)
(y).

(20)
If we choose t0 = 0 and y = 0, then the integral
equation (20) becomes the definition of the tem-
pered distribution D[t, f ] as a linear functional

D[t, f ] :=

∫
R3

d3x f(x)D(t,x) =
(
sin(ωt)ω−1f

)
(0),

(21)
which can be taken as a starting point for further
analysis.

4. Analysis of the Pauli–Jordan
functional D[t, f ]

Our analysis of D[t, f ] will use the calculation
method proposed in [10], thus we start with

D[t, f ] =
(
sin(ωt)ω−1f

)
(0) =∫

R3

d3k

(2π)3
sin(ckt)

ck
F{f}(k) =

∫
R3

d3k

(2π)3
sin(ckt)

ck

 ∫
R3

d3x f(x)e− ik·x

 . (22)

The next step requires switching the order of the in-
tegrals and if we do this directly in its present form,
we get a divergent momentum integral, so such a fi-
nal step would be mathematically incorrect,

D[t, f ] =

∫
R3

d3x f(x)

 ∫
R3

d3k

(2π)3
sin(ckt)

ck
e− ik·x

 .
(23)

Note, however, that the divergent integral in square
bracket in (23) is D(t,x), which was defined earlier
by (7). Since here it appears as the result of erro-
neous mathematical operations, hence we can con-
clude that the standard definition of (7) is flawed
or at best symbolic. For the smeared vector RS, we
can avoid this pitfall, but we must carefully follow
the steps below.

Firstly, the Fourier transform of the test func-
tion in S(R3) allows integration by parts without
a boundary term, so we can perform the following
transformation of integrals

D[t, f ] =

∫
R3

d3k

(2π)3
sin(ckt)

ck

 ∫
R3

d3x f(x)e− ik·x

=

∫
R3

d3k

(2π)3
sin(ckt)

ck

1

k2

 ∫
R3

d3x (−∆)f(x)e− ik·x

=

∫
R3

d3x (−∆)f(x)

∫
R3

d3k

(2π)3
sin(ckt)

ck3
e− ik·x. (24)

This yields a convergent momentum integral,
which can be calculated analytically using formula
(3.741.3) in [12],∫

R3

d3k

(2π)3
sin(ckt)

ck3
e ik·x =

sgn(t)

2π2c r

∫
R3

dk
sin(c k |t|)

k2
sin(k r) =

sgn(t)

4πc

(
1 +

c|t|−r
r

Θ(r−c|t|)
)
, (25)

where r = |x| and R+ = {x ∈ R : x ≥ 0}. This
leads to the final stage of the calculation, where we
have to perform integration by parts for the conver-
gent integral in R3. Omitting details, which will be
presented elsewhere, we give the final result

D[t, f ] =
t

4π

∫
Ω3

dωx f(c|t|x̂), (26)
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where dωx is the hypersurface element on the unit
sphere Ω3 embedded in R3, with its surface area
|Ω3| = 4π and x̂ = x/r being the versor of the po-
sition vector. This formula is the main result of this
work and can be used to study various properties
of the massless Pauli–Jordan function D(t,x) for
arbitrary time t.

First, one finds D[0, f ] = 0 =⇒ D(0,x) = 0 and
d

dt
D[t, f ]

∣∣∣
t=0

=
1

4π

∫
Ω3

dωx f(0) = f(0) =∫
R3

d3x f(x)δ3(x) =⇒ ∂

∂t
D(t,x)

∣∣∣
t=0

= δ3(x).

(27)
The other equations for D[t, f ] require more com-

plicated calculations, but the use of equations pre-
sented in the Appendix can be quite helpful. First,
using (39) in the Appendix, we obtain

∂

∂t
D[t, f ] = D[t, ∂r(r f)] =⇒

=⇒
(
t
∂

∂t
+ r

∂

∂t
+ 2

)
D(t,x) = 0, (28)

which is the manifestation of the covariance at
an infinitesimal dilation transformation. Then, (38)
and (40) in the Appendix allow us to find

1

c

d

dt
D[t, xi f ] = c tD[t, ∂if ] =⇒

=⇒
(
xi

c

∂

∂t
+ c t

∂

∂xi

)
D(t,x) = 0, (29)

which is the manifestation of the invariance at
an infinitesimal Lorentz boost transformation. Fi-
nally (41) and (42) in the Appendix lead to the
d’Alambert equation of motion

d2

dt2
D[t, f ] = D[t,∇2f ] =⇒

=⇒
(

1

c2
∂2

∂t2
−∇2

)
D(t,x) = 0. (30)

All the above implications are valid in the sense of
the distributions S ′(R3).

Finally, we can give the explicit form of the dis-
tribution D(t,x) starting from the functional (26),
for which the Dirac delta distribution can be
introduced according to the equations

f(|a|) =

∫
R+

dr δ(r − |a|)f(r) =

2

∫
R+

dr r δ(r2 − a2)f(r), (31)

which are valid for a 6= 0. Thus for t 6= 0, we find
two equivalent functionals∫
Ω3

dωx f(c|t|x̂) =

∫
Ω3

dωx

∫
R+

dr δ(r−c|t|) f(rx̂) =

∫
R3

d3x
δ(r − c|t|)

r2
f(x), (32)

∫
Ω3

dωx f(c|t|x̂)=2

∫
Ω3

dωx

∫
R+

dr δ(r2−c2t2) f(x̂) =

2

∫
R3

d3x
δ(r2 − c2t2)

r
f(x). (33)

This leads to two equivalent expressions for

D(t,x) =
t

4π

δ(r−c |t|)
r2

=
t

2π

δ(r2−c2t2)

r
, (34)

and we can check that they satisfy the differen-
tial equations (28), (29), and (30), in the sense of
distributions S ′(R3). We must be aware that as
long as t 6= 0 these distributions are well defined,
but for t = 0 they would contain either δ(r) or
δ(r2) that are not well-defined distributions on R+.
This caveat applies equally to formula (7), which
agrees with the second expression in (34). Unfortu-
nately, this caveat is usually omitted or even un-
known, and therefore there are attempts to calcu-
late ∂tD(t,x) exactly at t = 0, as in [13], which
cannot lead to the correct result. Moreover, the
Poisson brackets for the sharp RS vectors at dif-
ferent instants of time, given by (6), do not have
a simple limit for equal times if we use (7) for the
distribution, which implies the appearance of incon-
sistency. On the contrary, if we take the Poisson
bracket for the smeared RS vectors, then from (11)
and (18) we obtain the relation that is smooth at the
limit τ → 0, i.e.,

{
V ∗i [t0, g], Vj [t, f ]

}
PB

= − i
(
g, uij cos(ωτ)f

)
+
(
g, uik ukj sin(ωτ)ω−1f

)
=

− i

∫
R3

d3x g(x)uij
(

cos(ωτ)f
)
(x) +

∫
R3

d3x uik ukj
(

sin(ωτ)ω−1f
)
(x). (35)

5. Conclusions

The smeared RS vectors correctly describe classi-
cal free electromagnetic fields, with no ill-defined
mathematical expressions at any stage of the

calculations; instead, tempered distributions appear
naturally. We have explicitly calculated the dis-
tributions appearing in Poisson brackets and in
the time evolution formula. Such analysis can be
extended to both quantum electromagnetic field
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theory and massive fields. In particular, for massive
fields we can determine the Pauli–Jordan function
as a tempered distribution using an improved
scheme to the one presented in [13]. While the mass-
less part carries the most singular contribution, the
remaining part can be calculated quite easily.
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Appendix:
Some useful integral equations

By performing direct integration over the unit
sphere embedded in R3, the following integral re-
lations can be proved∫

Ω3

dωx ∂if(x) =
1

r2

∫
Ω3

dωx
∂

∂r

[
r xif(rx̂)

]
,

(36)∫
Ω3

dωx ∇2f(rx) =
1

r

∫
Ω3

dωx
∂2

∂r2

[
r f(rx̂)

]
.

(37)
Then, (36) applied to (26) gives D[t, ∂if ]

D[t, ∂if ] =
1

4πc2t

∫
Ω3

dωx

[
∂

∂r

(
rxif(rx̂)

)]
r=c|t|

.

(38)
The temporal derivative of (26) is

d

dt
D[t, f ] =

1

4π

∫
Ω3

dωx

[
∂

∂r

(
rf(rx̂)

)]
r=c|t|

,

(39)
which for a test function xif(x) ∈ S(R3) takes the
form

d

dt
D[t, xif ] =

1

4π

∫
Ω3

dωx

[
∂

∂r

(
rxif(rx̂)

)]
r=c|t|

.

(40)
The second order temporal derivative of (26) is
∂2

∂t2
D[t, f ] =

c sgn(t)

4π

∫
Ω3

dωx

[
∂2

∂r2

(
rf(rx̂)

)]
r=c|t|

.

(41)
If one inserts (37) into (26), then one finds

D[t,∇2f ] =
t

4π c|t|

∫
Ω3

dωx

[
∂2

∂r2

(
rf(rx̂)

)]
r=c|t|

.

(42)
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We propose a method to factor numbers based on two interacting bosonic atoms in a central potential,
where the single-particle spectrum depends logarithmically on the radial quantum numbers of states
corresponding to zero angular momentum. Bosons initially prepared in the ground state are excited
by a sinusoidally time-dependent interaction into a state characterized by quantum numbers, which
represent the factors of the number encoded in the frequency of the perturbation. We also discuss the
complete single-particle spectrum as well as the limitations of our method caused by decoherence.

topics: factorization, logarithmic energy spectrum, central potential, cold atoms

1. Introduction

It is well-known that the decomposition of a pos-
itive composite integer into a product of prime
factors is a difficult problem in number theory
since it requires non-polynomial time on a classi-
cal computer, which makes it attractive for crypto-
logical applications [1]. Indeed, decoding a message
encoded by the famous Rivest–Shamir–Adleman
(RSA) protocol [2] requires the decomposition of
a large semiprime, i.e., an integer composed by two
primes, in a reasonable time. Such a decomposi-
tion can be easily prevented by choosing larger and
larger semiprimes. The topic of prime factorization
is intimately connected to Peter Shor because on
an ideal quantum computer Shor’s factorizing algo-
rithm [3] takes only polynomial time and is therefore
expected to break the RSA scheme in the future.

1.1. Factorization based on a central potential
with logarithmic spectrum

As an alternative method, we have studied [4–6]
the factorization of integers using bosonic atoms
in one- and two-dimensional potentials, both with
a logarithmic energy spectrum. Our present

theoretical study represents an extension of these
thoughts and is motivated by two features: (i) it is
possible [7] to create and control almost any kind
of potential for the center-of-mass motion of the
atom using adiabatic potentials, and (ii) bosons in
a spherically symmetric parabolic potential as well
as in a spherical box provide textbook examples
for the thermodynamics of the Bose–Einstein con-
densation [8, 9]. For this reason, in this article, we
numerically construct a central potential with a log-
arithmic energy spectrum and propose a factoriza-
tion algorithm.

The two bosons originally trapped in the ground
state of this potential are excited by a periodic
perturbation with a frequency governed by the
semiprime we want to factor. At a later time, the
bosons are found with a probability of about one-
half in a state where the energies of the individual
bosons contain the factors of the semiprime. Thus
a measurement of these energies provides us with
the factors we are looking for.

Many ways to experimentally implement our
scheme are offered. The most promising one takes
advantage of the fact that the interaction of an atom
with an electromagnetic wave, which is far de-
tuned from the atom’s resonance, experiences [10]
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a potential for its center-of-mass motion determined
by the spatial dependence of the light intensity.
Hence, by tailoring the intensity distribution to the
predetermined shape of the potential, one creates
the desired spectrum. In this way, it was possible
to create [11], for example, a potential whose en-
ergy eigenvalues are given by prime numbers. Obvi-
ously, in the context of factorization, the potential
with an energy spectrum given by the logarithm of
primes is of interest and was proposed in [5].

Malcolm G. Boshier at Los Alamos National
Laboratory has kindly informed us [12] that he is
presently pursuing our approach to factor numbers.
By shaking the one-dimensional potential associ-
ated with a logarithmic energy spectrum, he and his
team could already excite individual energy states
as well as their coherent superposition. Energy mea-
surement is achieved by imaging the atoms and
counting the number of nodes and anti-nodes of the
energy wave functions.

We emphasize that the spherical symmetry of
the unperturbed potential is crucial for the pro-
tocol proposed in this article. Among the neces-
sities to experimentally obtain symmetry of this
kind is microgravity [13]. Hence, a drop tower,
for example, the one in Bremen [14], a sounding
rocket in space [15], or the International Space Sta-
tion [16, 17] could provide such an environment.

Moreover, central to our considerations are
s-states, i.e., the states of vanishing angular mo-
mentum. It is worthwhile mentioning that such
states have also played a major role in the stud-
ies [18–20] of the unusual dynamics of free wave
packets. Indeed, they display focusing or defocus-
ing effects even in the absence of external poten-
tials or position-dependent phase factors, and are
the result of the dependence of the Laplacian in
the Schrödinger equation on the number of space
dimensions. This manifestation of the dimension-
ality of space in quantum mechanics [21] is the
analogue of the violation of Huygens’s principle in
electrodynamics.

1.2. Overview

This article is organized as follows. In Sect. 2
we introduce the logarithmic energy spectrum and
discuss the distribution of a given energy onto two
single-particle states. Moreover, we recall a one-
dimensional potential giving rise to such a spec-
trum. We then solve in Sect. 3 the Schrödinger
equation in three dimensions and show that the
s-states, i.e., states corresponding to the zero az-
imuthal quantum number, suffice to determine the
central potential with a logarithmic energy spec-
trum. Moreover, we take into account the bound-
ary condition at the origin and demonstrate that
the single-particle s-states exhibit an energy spec-
trum identical to the one introduced in Sect. 2. In
Sect. 4, we define the corresponding two-particle
states using the bra–ket notation.

Section 5 constitutes the main part of our arti-
cle. Here we discuss the realization of our factor-
izing scheme by two bosonic atoms moving in the
central potential determined in Sect. 3, and being
excited by a time-dependent interaction into the
factor state. We derive the solution of the corre-
sponding Schrödinger equation within the rotat-
ing wave approximation and demonstrate that after
measuring the single-particle energies at random
times the factor state is found with a probability
of about 1/2. A brief discussion of the limitations
of our method completes this section. We conclude
with a short summary in Sect. 6.

Central to our proposal is the fact that the en-
ergy spectrum of our central potential does not
display any accidental degeneracies. For an el-
ementary discussion of this point, we refer to
Appendix.

2. Logarithmic spectrum and potential
in one dimension

In the present section, we first introduce the loga-
rithmic energy spectrum and discuss its special role
in finding factors of an integer. We then turn to
the distribution of the given energy onto two sub-
systems. This discussion constitutes the foundation
for our factorization protocol. We conclude by re-
calling [4, 22] the potential in one space dimension
that gives rise to such a spectrum.

2.1. Central idea for factorization

Our scheme is based on the logarithmic energy
spectrum

Ek(L) ≡ ~ω0 ln

(
k

L
+ 1

)
(1)

with k = 0, 1, 2, . . . and E0(L) = 0. Here, the con-
stant L plays the role of a scaling parameter and
~ω0 is the unit of energy.

In order to find the factors of a given semiprime
N ≡ p q, we distribute the total energy

Etotal(N ;L) ≡ ~ω0 ln

(
N

L2

)
(2)

onto two subsystems, each with the spectrum de-
fined by (1) according to the relation

Etotal(N ;L) = ~ω0 ln
( p
L

)
+ ~ω0 ln

( q
L

)
(3)

that is
Etotal(N ;L) = Ep−L(L) + Eq−L(L). (4)

Since L appears in the indices of the energies in (4),
it has to be an integer. No negative indices are
present in (1), therefore N cannot contain the fac-
tors q < L and p < L.

Moreover, the factor q = L or p = L causes the
unwanted case that the total energy given by (3)
may be transferred to one of the two subsystems
while the other one remains in the ground state
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Fig. 1. The one-dimensional potential V = V (ξ; 3)
(dotted line) creating a logarithmic energy spec-
trum for the scaling parameter L = 3 as a func-
tion of the dimensionless coordinate ξ ≡ αx with
α2 ≡ µω0/~. This potential is determined [22] nu-
merically by an iteration algorithm based on a per-
turbation theory using the Hellmann–Feynman the-
orem, and is designed to obtain a logarithmic depen-
dence of the energy eigenvalues Ek(L = 3) on the
quantum number k as given by (1). In the neighbor-
hood of the origin, the potential is approximately
harmonic whereas for large values of ξ it is loga-
rithmic. The solid lines depict the numerically de-
termined energy wave functions uk = uk(ξ, 3) of
the first seven states in their dependence on the
dimensionless position. Both, the energies Ek(3),
k = 0, 1, . . . 6 (dashed lines) as well as the poten-
tial V = V (ξ; 3) are expressed in units of ~ω0.

and no factorization takes place. Hence, we have to
remove the factors 2, 3, . . . , L, which can be done
by the division before we start our factorization
protocols.

However, if L is chosen to be unity the trivial
factorization N = 1×N cannot be excluded. More-
over, in Sect. 3 we shall see that L has to be odd.
Therefore, throughout our article, we consider the
case L ≥ 3.

The question of the uniqueness of the distribution
according to (3) is easily answered because the fun-
damental theorem of arithmetics guarantees that
the decomposition of the integer N is unique if both
factors, p and q, are prime.

For our factorization protocol, the two subsys-
tems have to be brought into a state of total en-
ergy (3), followed by a measurement of their indi-
vidual energies which allows us to determine the
factors p and q, as described in Sect. 5. In the re-
mainder of our article, we shall concentrate on the
factorization of semiprimes.

2.2. The inverse problem

Next, we briefly address the problem of creat-
ing such a logarithmic energy spectrum by deter-
mining the appropriate potential V in one space
dimension denoted by the coordinate x. For the
sake of simplicity, we assume a symmetric poten-
tial V (x) = V (−x) with −∞ < x < ∞, where the
time-independent Schrödinger equation for a parti-
cle of mass µ reads[
− ~2

2µ

d2

dx2
+ V (x;L)− Ek(L)

]
uk(x;L) = 0.

(5)
Since the eigenvalues Ek(L) depend on the scaling

parameter L, the potential V = V (x;L) and the
eigenfunctions uk = uk(x;L) must also display the
same dependence.

Under standard circumstances, the potential V =
V (x;L) is given and the eigenvalues must be found.
However, now the energy spectrum is prescribed,
and we have to determine the potential V = V (x;L)
from the Hellmann–Feynman theorem and the it-
eration algorithm described in the previous arti-
cle [22]. In Fig. 1 we show the so-obtained poten-
tial V = V (x;L = 3) together with the eigenfunc-
tions uk = uk(x;L = 3) and energy eigenvalues
Ek(L = 3) for 0 ≤ k ≤ 6.

We conclude by noting that in [22], we con-
structed this potential with a logarithmic energy
spectrum to obtain wave packets whose auto-
correlation function yields the Dirichlet represen-
tation of the Riemann zeta function [23]. How-
ever, it has also become crucial for our factor-
ization proposals [4–6] in one and two dimen-
sions and plays a crucial role in the present ar-
ticle when we propose an algorithm for three
dimensions.

3. Logarithmic energy spectrum
in three dimensions

In the present section, we realize the logarithmic
spectrum (1) for a particle of mass µmoving in three
space dimensions in a central potential V = V (r)
that we shall determine. For this purpose, we start
from the time-independent Schrödinger equation in
three dimensions and concentrate on the radial wave
functions. Due to the vanishing boundary condi-
tion at the origin, the corresponding eigenfunctions
are the odd ones of the symmetric one-dimensional
problem in Sect. 2. We conclude by discussing the
resulting energy spectrum.

3.1. From three dimensions to one dimension

We start from the Schrödinger equation[
− ~2

2µ
∆ + V (r)− E

]
ψ(r, θ, ϕ) = 0 , (6)
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in spherical coordinates r, θ and ϕ and employ the
ansatz

ψj,`,m(r, θ, ϕ) ≡ Rj,`(r)Y
m
` (θ, ϕ) (7)

for the energy eigenfunctions ψj,l,m that are simul-
taneous eigenfunctions of the Hamiltonian Ĥ, the
square of the angular momentum L̂2 and its z-
component L̂z forming a complete set of commut-
ing operators with the eigenvalues Ej,`, ~2 `(` + 1)
and ~m, respectively. The radial quantum num-
ber j, as well as the azimuthal quantum number `,
takes value 0, 1, 2, . . . while the magnetic quantum
number m assumes 2` + 1 values given by −` . . . `.
The functions Y m

` = Y m
` (θ, ϕ) are the spherical

harmonics.
Since the solution of (6) can be found in standard

textbooks on quantum mechanics, we jump directly
to the radial equation[
− ~2

2µ

1

r

d2

dr2
r+

~2 `(`+1)

2µr2
+V (r)−Ej,`

]
Rj,`(r)=0

(8)
valid in the region r ≥ 0 with the condition that
Rj,` = Rj,`(r) has to be square integrable and finite
at the origin r = 0.

We consider s-states defined by ` = 0 and set

Rj,0(r) ≡ vj,0(r)

r
(9)

with the boundary condition
vj,0(0) = 0 (10)

at the origin.

3.2. Potential

For the sake of simplicity in the notation, we now
suppress the index ` = 0 for the time being. In
Sect. 2, we obtained the potential V = V (x, L) and
the functions uk = uk(x, L) for one space dimension
associated with a logarithmic energy spectrum. The
three-dimensional potential V (3d) = V (3d)(r;L) as
well as the eigenfunctions vj(r;L) follow by replac-
ing the coordinate x by r in both, where now only
the region r ≥ 0 is considered that is

V (3d)(r, L) ≡ V (x = r, L). (11)
However, only odd solutions uk = uk(x;L) of (5)
with k ≡ 2j + 1 can satisfy the boundary condition
(10). Therefore, the energies Ek(L) as well as the
eigenfunctions uk(x;L) with even index k, which
are present in one dimension in (5), do not appear
anymore in three dimensions.

Figure 2 shows the potential V (3d) = V (3d)(r;L)
for the position vector r in the x–y plane. We em-
phasize that states with quantum numbers ` > 0
are not needed to determine V .

3.3. Energy eigenvalues and wave functions
of s-states

We now show that the remaining spectrum
E2j+1(L) does indeed have the form of (1) and
therefore guarantees the validity of the results from

Fig. 2. Three-dimensional potential V (3d) =
V (3d)(r;L = 3) in units of ~ω0 creating the loga-
rithmic energy spectrum (13) with the scaling pa-
rameter K = 2 as a function of the dimensionless
coordinates ξ ≡ αx and η ≡ αy, represented in the
plane z = 0.

Sect. 2 which are essential for our factorization pro-
cedure. For this purpose, we shift the energies

E2j+1(L) = ~ω0 ln

(
2j + 1

L
+ 1

)
(12)

with j = 0, 1, 2, 3 . . . by a constant amount δE ≡
−~ω0 ln(1/L+ 1) leading us to new spectrum

E
(3d)
j (K) = ~ω0 ln

(
j

K
+ 1

)
, (13)

which is identical to the single-particle spectrum (1)
except that L has to be replaced by the new scaling
parameter

K ≡ L+ 1

2
. (14)

For K to be a positive integer, L has to be odd.
All the statements made in Sect. 2 referring to the
scaling length L remain valid here provided L is
replaced by K.

The eigenfunctions vj = vj(r;K) corresponding
to E(3d)

j (K) read
vj(r;K) ≡ u2j+1(r;L). (15)

Figure 3 shows the radial wave functions

Rj(r) ≡
vj(r;K)

r
(16)

for indices j = 0, . . . 5 together with the poten-
tial V (3d) = V (3d)(r;K = 2) and the energy levels
E

(3d)
j (K = 2) given by (13).

4. Two-particle bosonic states

So far we have concentrated on a single particle
exposed to a central potential giving rise to the log-
arithmic energy spectrum of (1). We now address
the two-particle situation which is central to our
factorization scheme.
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To simplify the notation we turn to the bra–ket
formalism and the time-independent single-particle
Schrödinger equation for s-states takes the form
(j = 0, 1, 2, . . . )

Ĥ(K) |j〉 = E
(3d)
j (K) |j〉 , (17)

where we have suppressed again the quantum num-
bers ` = m = 0. The Hamiltonian Ĥ(K) is charac-
terized by the parameter K defined by (14).

The corresponding Schrödinger equation for the
two non-interacting bosons denoted by 1 and 2
reads(

Ĥ1,2(K)− Em,n(K)
)
|m,n〉B = 0, (18)

where
Ĥ1,2(K) ≡ Ĥ1(K) + Ĥ2(K) (19)

is the Hamiltonian of both bosons with total energy
Em,n(K) ≡ E(3d)

m (K) + E(3d)
n (K), (20)

in accordance with (13) and (14).
We note that bosonic two-particle states are de-

fined by

|m,n〉B ≡
1√
2

(
|m,n〉+ |n,m〉

)
, (21)

where |m,m〉B ≡ |m,m〉.
If two identical non-interacting bosons are in

a state with energy

~ω0 ln

(
N

K2

)
= E

(3d)
p−K + E

(3d)
q−K , (22)

where N ≡ p q is semi-prime, then according to
(4) and (13) the bosons are in the factor state
|p−K, q−K〉B . A measurement of the energy of one
of the bosons can only result in ~ω0 ln(p/K) or
~ω0 ln(q/K) and immediately yields the prime fac-
tors p and q, respectively.

5. Factorization algorithm

The present section contains the main results of
our article. Here we propose and analyze the realiza-
tion of the factorization protocol of Sect. 2 by two
interacting identical bosons placed in the central
potential shown in Fig. 2, with the single-particle
spectrum given by (13).

Starting from the corresponding Schrödinger
equation, we first derive the equations of motion
for the probability amplitudes of the ground state
and the relevant excited states. Here we keep all
three quantum numbers and denote them by k =
(j, `,m). To simplify the notation further, in the
remainder of the article, we suppress the scaling
parameter K as well as the subscript B and the
superscript 3d.

We then derive an explicit expression for the ma-
trix element of the Fermi point interaction [24, 25]
and simplify the equations of motion for the re-
sulting probability amplitude with the help of the
rotating wave approximation (RWA) [26, 27]. The
approximation reduces the equations of motion to

Fig. 3. Central potential V (3d) = V (3d)(ρ;K = 2)
represented by a dotted line creating the logarith-
mic energy spectrum E

(3d)
j (K = 2) of (13) in units

of ~ω0 as a function of the dimensionless radius
ρ ≡ α r together with the corresponding radial func-
tions Rj = Rj(ρ) defined by (16) of the first six
states in their dependence on ρ. We shifted the en-
ergies to ensure that the ground state has vanishing
energy.

a two-level Rabi problem involving the ground state
and the factor state. This insight allows us to esti-
mate the probability of success of our factorization
scheme. Moreover, we briefly discuss the limitations
of our method.

5.1. Coupled set of equations

We prepare two bosons in the ground state |0,0〉
and expose them at t = 0 to the perturbation

δV (r1, r2; t) ≡ γ sin(ωextt)w(r1, r2) (23)

where γ is a constant and the frequency ωext is cho-
sen later in a way suitable for the factorization pro-
cedure. Moreover, the interaction term w contains
the coordinates r1 and r2 of both particles.

The time evolution of the two-particle state
|Ψ(t)〉 is now governed by the Schrödinger equa-
tion

i~
d

dt
|Ψ(t)〉 =

(
Ĥ1,2 + δV (t)

)
|Ψ(t)〉 (24)

in three dimensions with the unperturbed station-
ary states

Ĥ1,2 |k1,k2〉 = Ek1,k2 |k1,k2〉 . (25)

When we substitute the expansion

|Ψ(t)〉 =
∑
k1,k2

bk1,k2(t) e− iEk1,k2
t/~ |k1,k2〉

(26)
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of |Ψ(t)〉 by the two-particle eigenstates |k1,k2〉 of the unperturbed Hamiltonian Ĥ1,2 into (24), we arrive
at the coupled system

i~ ḃk1,k2
(t) = γ sin(ωextt)

∑
k′1,k

′
2

e
i (Ek1,k2

−Ek′
1
,k′

2
)t/~

Wk1,k2;k′1,k
′
2
bk′1,k′2(t) (27)

with the initial conditions bk1,k2
(0) = 1 for j1 +j2 +

`1 + `2 = 0, and bk1,k2
(0) = 0 otherwise, which has

to be solved for the probability amplitudes bk1,k2
(t).

We conclude by emphasizing that the eigenstates
|k1,k2〉 of Ĥ1,2, the amplitudes bk1,k2

(t), and the
matrix elements

Wk1,k2;k′1,k
′
2
≡ 〈k1,k2|w(r̂1, r̂2) |k′1,k′2〉 (28)

are “bosonic” ones in the sense of (21) and are built
out of the eigenstates |k1,k2〉 of Ĥ1,2 and the spa-
cial part w of the perturbation δV̂ defined by (23).
Moreover, in the summation in (26) and (27), the
same states must not be counted twice.

5.2. Matrix elements for the contact interaction

Next we derive an explicit expression for the ma-
trix elementWk1,k2;k′1,k

′
2
(28), assuming the contact

interaction
w(r1, r2) ≡ δ(3)(r1 − r2). (29)

between two particles, providing us with the selec-
tion rules of the transitions from the ground state.

Needless to say, we are well aware that we should
use the regularized delta function [24, 25] rather
than the delta function of (29) for the zero-range po-
tential. However, in order to bring out most clearly
the central points of our factorization algorithm, we
resort to the elementary version of (29) of the con-
tact potential and postpone the complete analysis
to a future publication.

Due to the delta function in w, the matrix ele-
ment (28) reduces in position space to

Wk1,k2;k′1,k
′
2
≡
∫

d3r ψ∗k1
(r)ψ∗k2

(r)ψk′1
(r)ψk′2

(r).

(30)

Having in mind that we start our algorithm at
time t=0 with the two particles in the ground state
|0,0〉, we consider the matrix elements W0,0;k1,k2

for a transition into the excited state |k1,k2〉. With
the product ansatz (7) for ψk, we therefore arrive
at the expression

W0,0;k1,k2 =
1

4π

∞∫
0

dr r2R0,0(r)2Rj1,`1(r)

×Rj2,`2(r) δ`1,`2δm1+m2,0. (31)

Here we have applied the well-known orthonor-
mality relation∫

dΩ Y m1∗
`1

(θ, ϕ)Y m2

`2
(θ, ϕ) = δ`1,`2 δm1,m2

(32)
of the spherical harmonics and the identity

Y m∗
` (θ, ϕ) = Y −m` (θ, ϕ) (33)

for their complex conjugate together with
Y 0

0 ≡ 1/
√

4π.

5.3. Encoding the number to be factored
and rotating wave approximation

We now employ the expression (31) for the ma-
trix element W0,0;k1,k2

to simplify the system of
coupled equations (27) considerably. For this pur-
pose, we set the two magnetic quantum numbers
m1 = m2 = 0 and omit them henceforth. This as-
sumption will be justified by the calculation below.
The single-particle state is now only characterized
by two quantum numbers j and `.

Thus we study the set of equations

i~ ḃ0,0;0,0(t) = γ sin(ωextt)
∑

j1,j2,`

e− i (Ej1,`+Ej2,`)t/~W0,0;0,0;j1,`,j2,` bj1,`;j2,`(t) (34)

with the matrix element (31) and vanishing energy
of the ground state of the two bosons.

The external frequency ωext is chosen such that
the energy ~ωext is identical to the sum

Ep−K,0;q−k,0=Ep−K,0+Eq−K,0=~ω0 ln
( N
K2

)
(35)

of the energies of the factor states, and is deter-
mined by the number N = p q to be factored.

Next, we address the product

E(t) ≡ 1

2i

(
e i (Ep−K,0+Eq−K,0)t/~ − e− i (Ep−K,0+Eq−K,0)t/~

)
e− i (Ej1,`+Ej2,`)t/~ (36)

S117



F. Gleisberg et al.

of time-dependent factors, which appears on the
right-hand side of (34) when we decompose the sine
function into the difference of two phase factors.

The essence of RWA, when applied to (34), is to
retain only terms with constant coefficients on the
right-hand side and to neglect all oscillating terms.
Indeed, when we assume that p ≥ q, only the term
with j1 ≡ p−K, j2 ≡ q−K, and ` = 0 survives,
providing us with the contribution (2i)−1.

The Appendix discusses the possibility of acci-
dental degeneracy in the logarithmic single-particle
spectrum Ej,` given by (1), the absence of which is
confirmed therein. None of the terms with ` ≥ 1 can
therefore lead to additional constant terms in (36).

Within RWA, (34) reduces to the equation

i~ ḃ0,0(t) =
γ

2i
W0,0;p−K,q−K bp−K,q−K(t),

(37)
where the index ` = 0 is present in the matrix ele-
ment, and in the probability amplitudes it is omit-
ted here for convenience.

We derive a second equation by selecting the term
with j1 ≡ p−K and j2 ≡ q−K from (27) and pro-
ceeding as before we arrive at the equation of mo-
tion

i~ ḃp−K,q−K(t) = − γ

2i
Wp−K,q−K;0,0 b0,0(t).

(38)
of the unperturbed s-states.

5.4. Factor state and its probability

We note that (37) and (38) characterize the dy-
namics of a two-boson system driven by the periodic
perturbation (23) with energy (35). Together with
the initial conditions b0,0(0) ≡ 1 and bp−K,q−K(0) ≡
0 as well as the symmetry relation

Wm,n;0,0 = W0,0;m,n, (39)
the resulting probability amplitude for the ground
state reads

b0,0(t) = cos(Ωt), (40)
whereas for the factor state we find

bp−K,q−K(t) = sin(Ωt). (41)

The Rabi frequency

Ω ≡ γ

2~
W0,0;p−K,q−K (42)

is proportional to the interaction matrix element
of (31).

In Sects. 2 and 4 we have shown that if the bosons
are in the factor state |p−K, q−K〉 they have a two-
particle energy ~ω0 ln(N/K2) given by (22) with
N = p q. As mentioned there, the factors p or q
are determined by a measurement of the single-
particle energies (3), and the factorization protocol
has ended successfully.

At the time t, the system can be found with prob-
ability |bp−K,q−K(t)|2 in the factor state, and at
the time equal to an odd multiple of π/(2Ω), it is
there with 100% certainty. Unfortunately, the Rabi

frequency Ω is not known. Instead, we content our-
selves with measuring at a time chosen randomly
from a time interval [0, T ] much larger than π/Ω .
According to (41), the probability to find the fac-
tor state is about one-half. Then the measurement
of the single-particle energy gives one of the factors
while the other one follows from division.

An estimate for a time of measurement by making
a guess for the factors p and q and so determining
the Rabi frequency (42) was presented in a previous
article [4].

5.5. Limitations

In the present section, we briefly address the ob-
stacles that prevent our protocol from factoring
larger and larger semiprimes, and in particular, we
derive the condition for the largest number N we
can factor. Here we address especially limitations
due to decoherence.

According to [26], there is a high probability for
a periodic transition into the factor state as long
as the difference between the energies of this state
and of the next off-resonant state is larger than the
energy ~Ω of the Rabi oscillation. This condition
translates into the requirement

~ω0

∣∣∣∣ln(N ± 1

K2

)
− ln

(
N

K2

)∣∣∣∣ ≈ ~ω0

N
� ~Ω .

(43)
Since the Rabi frequency Ω defined by (42) is pro-
portional to the strength γ of the perturbation (23),
the inequality (43) can easily be satisfied by choos-
ing γ as small as needed.

Unfortunately, the second condition arises from
the fact that we randomly choose the time of mea-
suring the energies of the two bosons from the inter-
val [0, T ]. To find the factor state with a probability
of approximately 1/2, the interval length T has to
fulfill the condition Ω T � 1.

On the other hand, the system has to be free of
decoherence during the time interval T < Tdec lead-
ing to the two inequalities for the Rabi frequency

Ω � 1

Tdec
(44)

and
Ω � ω0

N
. (45)

Our aim is now to find an upper limit for the
number N to be factored. In [4] and [6] for different
experimental situations and models for the spatial
part of the interaction, we have found an approxi-
mate N -dependence

W0,0;p−K,q−K ∝ N−1/2 (46)
of the transition matrix element.

Due to (42) the same scaling holds true, of course,
for the Rabi frequency Ω , and the semiprime N to
be factored therefore has the upper limit

N < min

([
γ Tdec

~

]2

,

[
~ω0

γ

]2
)
. (47)
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Assuming that according to (23) the interaction
strength γ can be chosen at will, this relation shows
that the crucial limiting factor for the magnitude of
N is the decoherence time Tdec.

6. Conclusions

In the present article, we have proposed a method
to find the factors of a semiprime N based on
the quantum dynamics of two identical bosonic
atoms moving in a spherically symmetric trap
whose s-states exhibit a logarithmic single-particle
spectrum.

In the first part of our work, we have de-
termined the central potential, which displays
such an unusual spectrum. We started by nu-
merically calculating the one-dimensional potential
from a logarithmic single-particle spectrum. Tak-
ing advantage of the close relationship between
three-dimensional spherically symmetric and one-
dimensional problems, the central potential was eas-
ily found. As expected, it has an energy spectrum
with the logarithmic s-wave part, but with a scaling
length different from the one in the one-dimensional
spectrum.

In the second part, we have attacked the prob-
lem of how to force the bosons into the factor state.
For this purpose, we excite them from their ground
state by a periodic time-dependent contact interac-
tion with a frequency determined by the number N
to be factored. To exclude transitions between non-
s states, we have discussed in extenso the absence
of degeneracies.

Then we showed within the framework of the ro-
tating wave approximation that the bosons perform
a Rabi oscillation between the ground state and the
factor state. The latter emerges with a probability
of about one-half when the energies of the bosons
are measured at a randomly chosen time. These en-
ergies provide us with the factors of N , and our
factorization protocol has ended successfully.

Since holographic methods allow us to create al-
most arbitrary potentials for the center-of-mass mo-
tion of atoms and detect them by their fluorescence,
an experimental implementation of our factoriza-
tion scheme is within reach. Indeed, the group of
Donatella Cassettari has already used this tech-
nique to experimentally realize a potential whose
energy eigenvalues are given by the lowest prime
numbers. Moreover, the team of Malcolm Boshier
even implemented a one-dimensional potential for
the logarithmic energy spectrum and observed well-
defined excitations of atoms from the ground state
to individual energy eigenstates of this potential.
Unfortunately, the demonstration of our factoriza-
tion scheme is still awaiting.

Hence, today’s technology already allows us to
factor small numbers using this technique. How-
ever, three phenomena make the straight-forward
application to large composite integers impossible:

(i) decoherence during Rabi oscillations, (ii) scal-
ing of separation between neighboring energy levels
with an inverse of the quantum number n requir-
ing increasing accuracy in determining the levels,
and (iii) the non-vanishing time for the transition
of the two atoms from the ground state to the fac-
tor states given by the inverse of the Rabi frequency,
which grows with the square root of the number N
to be factored.

It is interesting that the same scaling appears in
the naive approach towards factoring just trying out
all the primes below to the square root of N . Hence,
it appears that the RSA scheme is saved by the fact
that quantum transitions are not quantum jumps,
but rather follow the continuous dynamics given by
the Rabi oscillation as dictated by the Schrödinger
equation.
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Appendix A: Absence of accidental
degeneracy in the logarithmic spectrum

The energy spectrum of any central potential ex-
hibits the familiar (2`+1)-fold essential degeneracy
as the energy levels Ej,` do not depend on the mag-
netic quantum number m. It has been proven long
ago [28] that the only potentials that show acci-
dental degeneracy are the Coulomb potential and
the harmonic oscillator. This fact is a consequence
of the existence of a conserved quantity [29], which
does not commute with any member of the com-
plete system of commuting operators of the prob-
lem. In the Coulomb case, this constant of the mo-
tion is the well-known Runge–Lenz vector [30, 31],
whereas, for the harmonic oscillator, we shall dis-
cuss it below. Since our central potential leading
to the logarithmic energy spectrum is none of the
above, accidental degeneracy must be absent. We
shall now study this problem in more detail.

A.1: Non-closed trajectory of a classical particle

We recall that the trajectories of a classical par-
ticle in the harmonic oscillator as well as in the
Coulomb potential are closed, the latter only for
negative energies. Following the textbook [32], we
calculate the trajectory of a mass µ, energy E, and
angular momentum J oscillating in the effective po-
tential

Fig. 4. Scaled effective potential Veff (solid line)
formed by the angular momentum barrier (dotted
curve) and the potential V (3d) = V (3d)(r;K = 2)
(dashed line) which in the quantum case creates the
logarithmic energy spectrum given by (13) for the
scaling parameter K = 2 defined by (14), as a func-
tion of the dimensionless radius ρ ≡ αcl r with
αcl ≡ (µV0/J

2)1/2. The horizontal line denotes the
energy E = 0.86V0 of the radial coordinate r = r(t)
of a classical particle moving periodically between
the left and right turning point. The angle θ = θ(t)
is not periodic, as is the orbit r = r(θ) shown
in Fig. 5.

Veff(r) ≡ J2

2µr2
+ V (3d)(r,K) (48)

with energy E = 0.86V0 periodically between the
two turning points depicted in Fig. 4.

In Fig. 5 we display five periods of the trajectory
r = r(θ). It is evident that the orbit of the par-
ticle precesses around the center of force and does
not close, thus indicating the absence of accidental
degeneracy.

A.2: Energy spectrum

The most direct way to check for degeneracy is to
calculate the energies Ej,` for the potential under
consideration with radial and azimuthal quantum
numbers j and `, respectively. If two or more of
energies with different indices are equal, degeneracy
is present.

Before we get to our potential, we recall the situ-
ation for a three-dimensional isotropic harmonic os-
cillator where the lowest energy levels are displayed
in Fig. 6. Indeed, here the energies Ej,` depend on
the combination of both indices j and ` on the prin-
cipal quantum number n = 2j + ` leading to the
degeneracy [33] of levels En = ~ω(n+ 3/2) demon-
strated by the levels with n = 2, 3, 4. If the x- and
y-axis are oriented along the symmetry axes of the
elliptic orbit of the oscillator, then the additional in-
tegral of the motion reduces [34] to the scalar func-
tion Ex−Ey, i.e., a difference between the energies
of the motion projections onto the x- and y-axis,
respectively.

For our central potential V (3d) = V (3d)(r,K),
defined by (11), leading to the logarithmic energy
spectrum Ej,`(K) given by (13), we numerically

Fig. 5. Trajectory r = r(θ) of a classical particle
with mass µ and energy E = 0.86V0 moving in
the effective potential shown in Fig. 4. The motion
starts from an inner turning point at the angle θ =
0. After having covered five periods it reaches again
the inner turning point, but now at the angle θ ≈
11π/8.
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Fig. 6. Lowest dimensionless energies εj,` ≡
Ej,`/(~ω) of an isotropic three-dimensional har-
monic oscillator. The levels with the energies En =
~ω(n+3/2) show degeneracy as the principal quan-
tum number n = 2j + ` depends on both the ra-
dial quantum number j and the azimuthal quantum
number `. For example, the level n = 2 is doubly de-
generate for pairs of quantum numbers j = 1, ` = 0
and j = 0, ` = 2 leading to the same energy.

Fig. 7. Scaled energies of a particle with mass µ
moving in a three-dimensional potential, leading to
a spectrum where the s-state part is given by (13)
and the scaling parameter K = 2 by (14). Each
energy level is characterized by two quantum num-
bers j and `. No principal quantum number can be
identified and evidently, no accidental degeneracy is
taking place.

solved the radial wave equation (8) and display the
lowest energy levels in Fig. 7. At first sight, the
scheme resembles that of the harmonic oscillator.
However, closer inspection reveals that the levels,
which for the harmonic oscillator were degenerate,
now differ slightly. We conjecture that higher en-
ergy levels behave similarly and that no accidental

degeneracy occurs. We emphasize once more that
the (2` + 1)-fold essential degeneracy with respect
to the magnetic quantum number m is caused by
the central potential.
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A geometric construction of the arrival time in conventional quantum mechanics is presented. It is
based on a careful mathematical analysis of different quantization procedures for classical observables
as functions of positions and momenta. A class of observables is selected that possess a unique (if any)
quantized version. A simple criterion for the existence of such a quantized version is formulated. These
mathematical results are then applied to the classical “arrival time” observable.
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1. Introduction

At the turn of the 1960s and 1970s, many pa-
pers were published on the “time problem” in quan-
tum mechanics (see [1]). Numerous authors have
complained that in quantum mechanics only three
(among four) spacetime coordinates have quantum
counterparts in the form of position operators, while
the fourth — time — always remains the clas-
sical parameter of evolution. This was, according
to many, a flagrant violation of the relativistic in-
variance that should characterize any reasonable
physical theory. On the other hand, a comment by
Wolfgang Pauli in 1958 [2] (see also paper [3] by
G.R. Allcock) clearly indicated that treating en-
ergy (the fourth component of “four-momentum”)
as momentum canonically conjugate to time and
requiring these quantities to satisfy the canonical
commutation rules (in order to obtain the energy–
time uncertainty principle as a by-product) leads to
a contradiction with the positivity of the self-adjoint
energy operator.

However, it is obvious that “x” tout court is
not an observable. By measuring this quantity
at different instants of time, we obtain different,
time-dependent results. What can be measured
is “x(t)”, i.e., “the position taken by our particle
at time t”. Similarly, the arrival time “t(x)”, i.e.,
“the time it takes for a particle to hit the plane
{(x, y, z)|x = const}”, is a well-defined observable

which, at least classically, can be uniquely defined
and measured. For a free particle of mass m whose
initial position at time t = 0 is (x, y, z), this quan-
tity is equal to

t(x) = − x

vx
= −mx

p
, (1)

where vx denotes the particle’s velocity in direction
of the x-axis, whereas p = mvx is the corresponding
component of the momentum vector. Indeed, solv-
ing the equation of motion

0 = x(t) = x+ t vx (2)

with respect to time, we obtain (1).
According to the naive “quantization procedure”,

the quantum version f̂ of this observable should be
obtained by replacing the classical position x and
the classical momentum p by the position operator
x̂ and the momentum operator p̂

t̂(x) = −m x̂

p̂
, (3)

or

t̂(x) = −m
2

{
x̂

1

p̂
+

1

p̂
x̂
}
, (4)

which looks at first glance more “hermitian”. Un-
fortunately, these formulas don’t make any sense.
There is no self-adjoint operator that agrees with
the above combinations of position and momentum
operators, even if restricted to a small (but dense)
subspace of quantum states.
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The whole “quantization procedure”, i.e., repre-
senting classical observables by self-adjoint opera-
tors, goes wrong here. This is not surprising because
from a physical point of view, classical physics is
the limit of quantum physics (in situations where
Planck’s constant is so relatively small to what we
can measure that it can be considered equal to
zero), and not vice versa. That is, the quantum
theory unambiguously implies classical theory as
an approximation. The universal validity of some
“quantization procedure” would mean the opposite,
i.e., knowing the classical theory, we would auto-
matically know its quantum version. Such an as-
sumption is nonsense.

However, in this article, it will be proved that
there is a class of observables that admit unambigu-
ous quantization. Using these techniques, it will be
shown that there is a unique way of constructing
a quantum version of the arrival time, i.e., the “ar-
rival time operator”.

This operator was first proposed in the paper [4]
(see also [5] and [6]). The present author is much in-
debted to I. Białynicki-Birula and S.L. Woronowicz
for regular discussions concerning the fundamental
structures of quantum mechanics that we had at
the beginning of ’70s. These discussions were a true
inspiration of the author’s analysis of the problem.
The construction of the operator presented in [4]
was axiomatic, based on the requirement to sat-
isfy several physically well-founded properties. In
the present paper, an entirely different construc-
tion is presented, based on a mathematical analysis
of the uniqueness property of possible quantization
procedures. Following the great Baruch Spinoza and
his fundamental philosophical treatise Ethica ordine
geometrico demonstrata [7], we can say that this pa-
per describes the time of arrival “demonstrated in
geometrical order”.

The construction proposed in [4] was later com-
mented on and criticized by many authors (see,
e.g., [8–11]), but none of them was able to pro-
pose another, mathematically self-consistent con-
struction. Nevertheless, the criticism formulated by
Bogdan Mielnik and Gabino Torres-Vega in [11] is
well motivated from a physical point of view. It is
based on the observation that the probability that
a particle hits a plane,

Px :=
{(
t; x, y, z

)∣∣x = const
}
, (5)

exactly at the spacetime point (t; y, z) behaves
in a “strange way” as a function of x. This
strange behaviour is analogous to the phenomenon
known as “probability back-flow”, i.e., even if the
wave function ψt(x) contains only positive mo-
menta, there might be regions where the prob-
ability density |ψt(x)|2 travels in negative direc-
tion as time increases. But that’s what quantum
mechanics is! The phenomenon of superposition,
which does not exist in classical mechanics, leads
inevitably to such behaviour of the probability
density.

Recently, the “time problem” has also been in-
tensively discussed (see, e.g., [12–14]). In the au-
thor’s opinion, these works do not add anything
new to this discussion because they are either
mathematically inconsistent†1, or they propose new
(even interesting) physical schemes, but going be-
yond standard quantum mechanics.

The paper is organized as follows. In Sect. 2 we
show how to quantize uniquely physical observables
belonging to a certain, geometrically well-defined
class. Finally, in Sect. 3, we apply these techniques
to the analysis of the observable (1) and discuss
possible ways to quantize it.

2. Schrödinger versus Heisenberg

The equivalence between Heisenberg’s quantum
mechanics and Schrödinger’s wave mechanics is ob-
vious if we substitute the self-adjoint operators x̂
and p̂ := i~ ∂

∂x , acting in the Hilbert space of
square-integrable Schrödinger wave functions, for
the Heisenberg q-numbers x̂ and p̂. However, con-
trary to the Heisenberg’s intuition, these objects
are neither finite-dimensional matrices nor continu-
ous (bounded) operators in the infinite-dimensional
Hilbert space. Consequently, even the definition of
their commutator[

x̂, p̂
]
:= x̂ p̂− p̂ x̂, (6)

is, a priori, meaningless. The necessary sophisti-
cated mathematics was then elaborated by John
von Neumann and his followers. In particular,
the discussion of “weak” versus “strong” commuta-
tion is necessary for the uniqueness of the above
Schrödinger representation of the Heisenberg q-
numbers (i.e., the uniqueness of the canonical com-
mutation relations). Therefore, when dealing with
quantum mechanics, we must remember that the al-
gebra of unbounded operators (e.g., their product)
is an extremely subtle topic and — if done without
a proper mathematical background — can lead to
painful paradoxes.

But physically, without going deeply into this ex-
tremely difficult mathematics, the unique represen-
tation of position and momentum as self-adjoint op-
erators follows directly from the Schrödinger equa-
tion and from the probabilistic interpretation of
the wave function. The latter obviously implies the
shape of the position operator

(x̂ψ) (ξ) := ξψ(ξ). (7)

†1Treating a spectral measure over a continuous spec-
trum as a sum over a discrete spectrum, or using “delta-
normalized” wave functions, was a nice heuristic way Dirac
used in 1928 to illustrate the basic concepts of quantum
physics. Applying the same “techniques” in 2020 (i.e., disre-
garding the 90 years of progress made here in understanding
the basic structures of quantum mechanics) to explain “how
do we measure time in quantum theory” is unacceptable.
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But, what is much less known, also the momen-
tum operator is uniquely implied in wave mechanics,
without any reference to Heisenberg’s “axiomatics of
q-numbers”. To prove this statement, let us first con-
sider the statistical ensemble of classical free parti-
cles, whose state is described by the probability den-
sity ϕ(t;x,p) in the phase space P = {(x,p)}. The
corresponding densities ρ in configuration space and
µ in momentum space are given as the correspond-
ing “marginals”

ρ(t;x) :=

∫
d3p ϕ(t;x,p);

µ(t;p) :=

∫
d3x ϕ(t;x,p) = µ(p),

(8)
(the momentum distribution is obviously time-
independent for free particles). Knowing the dy-
namics of the particles (their free motion)

x(t) = x(0) +
t

m
p(0),

p(t) = p(0) = const,
(9)

we know the time dependence of the density

ϕ(t;x,p) = ϕ
(
0;x− t

m
p,p

)
. (10)

It is easy to check that the momentum probability
density µ can be uniquely determined via position
measurements. Indeed, we have

µ(p) = µ(0,p) =

∫
R3

dy ϕ(0;y,p) =

lim
t→∞

∫
R3

dy ϕ
(
0;y,p− m

t

(
y−x0

))
, (11)

where x0 is a fixed arbitrary point in configuration
space. Using a new variable

q := p− m

t

(
y−x0

)
⇔ y := x0 +

t

m

(
p− q

)
;

d3y =

(
t

m

)3

d3q,

(12)
we obtain

µ(p) = lim
t→∞

t3

m3

∫
R3

d3q ϕ
(
0;x0 +

t

m

(
p−q

)
, q
)
=

lim
t→∞

t3

m3

∫
R3

d3q ϕ
(
t;x0 +

t

m
p, q

)
=

lim
t→∞

t3

m3
ρ
(
t,x0 +

t

m
p
)
. (13)

Thus, by measuring the probability density ρ of
a particle in configuration space during its time evo-
lution, we also obtain its probability density µ in
momentum space as a result.

According to the Born probabilistic interpreta-
tion of the wave function, the quantum analog of
the configuration probability density is equal to

ρ(t,x) =
∣∣∣∣∣∣ψ(t,x)∣∣∣∣∣∣2. (14)

Taking (13) as the definition of the momentum
probability density and using the free Schrödinger
equation for the evolution of the wave function over
time, a simple calculation is enough to prove that
the above definition (14) implies the following text-
book formula

µ(p) := lim
t→∞

t3

m3

∣∣∣∣∣∣∣∣ψ(t,x0+
t

m
p
)∣∣∣∣∣∣∣∣2 =||ψ̃(t,p)||2,

(15)
where ψ̃ denotes the Fourier transformation of ψ

ψ̃(t,p) :=

∫
R3

d3x

(2π~)
3
2

ψ(t,x) exp

(
− i p · x

~

)
.

(16)
Now, (15) immediately implies the form of the mo-
mentum operator in the momentum representation
and, consequently, also in the position representa-
tion(

p̂ψ̃
)
(p) := pψ̃(p)⇐⇒ (p̂ψ) (x) :=

~
i

∂

∂x
ψ(x),

(17)
without resorting to an extremely sophisticated ver-
sion of Heisenberg’s axiomatics, where completely
non-intuitive “strong commutation relations” be-
tween positions and momenta must be assumed
a priori. To the author’s knowledge, the only text-
book on quantum mechanics that derives the mo-
mentum operator in this way (physically the most
intuitive) and does not postulate it a priori is the ex-
cellent book by Białynicki–Cieplak–Kamiński [15].

The advantage of the geometric description of
quantum physics based on Schrödinger’s wave ap-
proach over Heisenberg’s algebraic formulation is
particularly evident when we try to “quantize” more
complex observables of the form f(x, p). In particu-
lar, let us consider observables that are linear with
respect to momentum

f(x,p) := Xk(x)pk, (18)
where Xk(x) is an arbitrary vector field on the
configuration space. Even if the quantum operators
X̂k := Xk(x̂) and p̂k are already explicitly defined,
their product depends on the order of multiplica-
tion. Unfortunately, even the symmetric order

f̂ =
1

2

{
X̂k p̂k + p̂k X̂

k
}
, (19)

although formally “hermitian”, does not guarantee
the self-adjointness of the resulting operator.

We are going to propose in the sequel a simple, ge-
ometric construction of the self-adjoint operator f̂ ,
together with a simple criterion for its existence. For
this purpose, let us observe that the vector field X
generates a one-parameter group Gt of local diffeo-
morphisms of the configuration space. These diffeo-
morphisms can be used to transport (drag) locally
any (square-integrable) wave function. Such a trans-
port Ĝt is a unitary transformation (i.e., it does not
“lose” any piece “ dx ||ψ||2” of the particle’s proba-
bility) if and only if the transformations are global,
i.e., the field X is complete. But a group of unitary
transformations is always of the form
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Ĝt = exp

(
it

~
f̂

)
, (20)

and, whence, its self-adjoint generator f̂ is uniquely
defined. Mathematically, the generator of the classi-
cal transport group is called the Lie derivative with
respect to the vector field X and is denoted by £X .
We have, therefore, the following, unique formula

f̂ :=
~
i

£X =
~
i

(
d

dt
Ĝt
)

t=0

, (21)

which is automatically self-adjoint if the diffeomor-
phisms Gt are global. In the very special case of
a constant field X = ∂

∂xk the Lie derivative reduces
to a partial derivative and, therefore, (21) repro-
duces the textbook formula (17) for the momentum
operator.

In this way we get a nice and practical quantiza-
tion rule for the observable f together with an easy
criterion for its self-adjointness, i.e., for the reason-
ableness of the whole procedure. Moreover, this cri-
terion is of a topological nature, namely it imposes
the existence of global solutions of the dynamical
system

dxk(t)

dt
= Xk

(
x(t)

)
, (22)

and has nothing to do with the algebraic complexity
of the function X(x).

We will illustrate this method of “quantization”
by taking as an example a 1-dimensional problem

f(x, p) := X(x)p. (23)
In the simplest case, when X(x)=1 = const, the

group Gt is simply the translation group Gt(x) =
x+ t. But, locally, we can always find a coordinate
s = s(x) such that the field X(x) is constant when
expressed in terms of this coordinate, i.e., that the
following identity holds

X(x)
∂

∂x
=

∂

∂s
. (24)

To find such a new coordinate, we therefore need to
solve the following differential equation

ds

dx
=

1

X
(
x
) . (25)

If the solution is global, then f̂ is uniquely defined
as the generator of the group of translations

f̂ :=
~
i

d

ds
, (26)

acting on the wave functions in the s-representation.
To express this operator in the original
x-representation, we must remember that the
wave function is not a scalar but a “half density”.
The correct transformation formula between the
two representations is implied by the following
identity∫

dx ||ψ(x)||2 =

∫
dx

ds
ds
∣∣∣∣ψ(x(s))∣∣∣∣2 =∫

ds
∣∣∣∣ψ(x(s))∣∣∣∣2X(x(s)). (27)

This means that the following transformation
U : L2(R) 7→ L2(R) between the two representa-
tions is unitary

(Uψ)(s) = ψ
(
x(s)

)√
X
(
x(s)

)
. (28)

The existence of the unitary operator U , i.e., the
global character of the group Gt, is essential here.
It enables us to re-calculate the Lie derivative with
respect to X(x) from the x-representation to the
s-representation and vice versa.

Geometrically, a substantial simplification of the
formulae used below is obtained if we represent the
quantum state by the half-density, Ψ := ψ

√
dx,

instead of the scalar function ψ. To transport
such a quantity along the vector field X, we must
transport not only the scalar factor ψ, but also the
half-density factor

√
dx. We — physicists, we know

perfectly how to transport a density, like “ dx”, but
are not used to half-densities. For this reason, we
decided to use in this paper the standard textbook
notation.

In this notation we have

£XΨ = U−1 ◦ d

ds
◦ (UΨ), (29)

and, whence

(£Xψ)(x) = U−1
d

ds

(
ψ
(
x(s)

)√
X
(
x(s)

))
= U−1X

d

dx

(
ψ(x)

√
X(x)

)
=

U−1
{(

X
3
2 ψ′ +

1

2
ψX ′

√
X

)(
x(s)

)}
=

(
X

d

dx
+

1

2
X ′
)
ψ(x) =

1

2

(
X

d

dx
ψ +

d

dx
(Xψ)

)
(x). (30)

This formula for the Lie derivative, together with
(21), reproduces formally the naive quantization
formula (19). Note, however, that (19) does not
capture the definition of the operator f̂ ; indeed,
this formula makes a priori no sense if the trans-
port group Gt, generated by X, is not global,
or in other words, if the global unitary trans-
formation U does not exist. We conclude that

a purely algebraic approach to quantization is com-
pletely inadequate, since the problem depends en-
tirely on the analytic and topological properties
of X.

Example 1. For X(x) = x the transport group
generated by X is the global homothety group
Gt(x) = exp(t)x, (31)
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in the 3D case, which reduces to
Gt(x) = exp(t)x, (32)

in the 1D case. Hence, the operator f̂ :=
1
2 (x̂

k p̂k+p̂k x̂
k) and its 1D analog f̂ := 1

2 (x̂ p̂+ p̂ x̂)
are essentially self-adjoint. They are entirely de-
scribed by (21) as generators of the quantum ho-
mothety group.

In the 1D case, the same result can be obtained
using the variable s, which trivializes the field X(x)
according to (24). For this purpose we solve (25), so

ds

dx
=

1

x
⇒ s = ln |x|, (33)

and observe that the translations in the s vari-
able are homotheties (32) in the variable x. Note
that the Hilbert space L2(R) of the x-dependent
wave functions naturally splits into the direct sum
of two subspaces: L2(R+) and L2(R−), describ-
ing particles localized entirely within the positive
(R+) and the negative (R−) half-axis, respectively.
Each of them is isomorphic with L2(R)-space of
s-dependent wave functions. A homothety (31) is
equivalent with a simultaneous shift in the variable
s (i.e., Gt(s) := s+ t) in both subspaces.

A 3D analog of the above construction is obtained
if we use the spherical coordinates (r, ϑ, ϕ) and put
s = ln(r).

Example 2. Let us consider X(x) = x2. To find
the transport group Gt, we must solve the differen-
tial equation

dx(t)

dt
= x2(t)⇒ dx

x2
= dt ⇒

⇒ t+ c = − 1

x
⇒ x(t) = − 1

t+ c
, (34)

which describes all trajectories of the field, starting
from different points. The point Gt(x0) is defined by
the initial condition

G0(x0) = x0 ⇒ c = − 1

x0
. (35)

This implies

Gt(x) = −
1

t− 1
x

=
x

1− t x
. (36)

This is not a global diffeomorphism and, whence,
does not define a unitary transformation of wave
functions. Let us first consider the case t > 0. We
see that Gt(x) is defined for x < 1

t only, because it
escapes to infinity as x approaches the value x = 1

t .
At the same time, a substantial part of the negative
half-axis, namely the half-axis ]−∞,− 1

t [, is not
covered at all, because of the inequality 1−tx>−tx,
which implies immediately

Gt(x) =
x

1− t x
> −1

t
. (37)

Consequently, (21) does not define any self-adjoint
operator, even if purely local considerations lead
to (30). This proves that the algebraically de-
fined operator (19) is not essentially self-adjoint
and, therefore, does not represent any physical
observable.

Physically, the above phenomenon means that:
(i) we lose a part of probability carried by the wave
function ψ(x) for x > 1

t , and (ii) an information
gap is created concerning a part of probability de-
scribed by the transported wave function ψ(x(t))
for x(t) < − 1

t .
Similarly, for t < 0, (i) we lose a part of probabil-

ity carried by the wave function ψ(x) for x < − 1
t ,

and (ii) an information gap is created concerning
a part of probability described by the transported
wave function ψ(x(t)) for x(t) > − 1

t .
Since both parts (i) information loss and (ii) in-

formation gap fit together perfectly, we can use the
first one to plug the second one. Mathematically,
this means that we can treat the transformation
(36) as a global measurable isomorphism of the real
line R. Its singularity at the single point x = 1

t
does not produce any problem (the transformation,
even if non-continuous, is still measurable and in-
vertible). When used to transport wave functions,
it defines a continuous group of unitary transforma-
tions. Its generator (21) is therefore a self-adjoint
extension of naively defined operator (19).

Physically, however, the original disease of (19)
has not been cured, because the above “plugging
procedure” is not unique. Indeed, the informa-
tion loss can be plugged into the information gap
with the arbitrary constant phase change “exp(iϕ)”,
which leads to another self-adjoint extension. This
means that in this case, the operator (19) has many
inequivalent self-adjoint extensions and, physically,
this formula is meaningless.

Example 3. For X(x) = x3, we obtain

Gt(x) =
x√

1− tx2
, (38)

which, when used to transport wave functions,
would imply that there is an information loss for
|x| > 1/

√
t and no information gap to plug it into.

There is no way to repair this disease, and we con-
clude that (19) does not define any physical observ-
able in this case.

To conclude these technical remarks about quan-
tization, we stress that the canonical transformation

(x, p) 7→ (p,−x), (39)

enables us to similarly quantize functions that are
linear in the position variable f(x,p) := Xk(p)x

k.
Indeed, the quantity X defines a vector field on the
space of momenta and can, therefore, be used to
transport wave functions in momentum representa-
tion. Hence, the whole construction presented above
applies here.

3. Arrival time

The arrival time (1) can thus be considered as
a vector field on the space of momenta

X := X(p)
∂

∂p
where X(p) =

m

p
(40)
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(remember that the momentum canonically conju-
gate to p is equal to −x, not x). This vector field
can be used to transport wave functions in the mo-
mentum representation. To find the result of such
a transport let us “straighten” this field similarly as
in (41), i.e., find a new variable s = s(p) such that
the field is a constant with respect to this variable

X(p)
∂

∂p
=

∂

∂s
. (41)

To find such a new coordinate, we therefore need to
solve the following differential equation

ds

dp
=

1

X(p)
=

p

m
=⇒ s(p) =

p2

2m
= Ekinetic,

(42)
(the possible additive constant is irrelevant here).
Unfortunately, it is not a global coordinate on the
real axis representing all possible values of momen-
tum p. The two half-axes R+ and R− in the mo-
mentum representation are covered by two identi-
cal copies of the positive half-axis R+ in the “en-
ergy representation” (or the s-representation). The
field (41) acts independently on both half-axes and
is not complete on both of them. There is no way
to cure this disease. The corresponding “momentum
operator on a half-line” defined as ~

i
∂
∂s has no self-

adjoint extension. In other words, the algebraic for-
mulae (3) and (4) do not define anything, which
could define a reasonable physical observable. This
statement can be treated as an independent proof
of W. Pauli’s statement [2] that there is no quan-
tum observable corresponding to the classical ar-
rival time (1).

In the paper [4], the present author have proposed
to replace t with another observable, namely

T = −mx

|p|
= sgn(p) t, (43)

where the symbol “sgn(p)” represents the “sign func-
tion”, which takes value +1 for p > 0 and −1 for
p < 0. This observable can be called the “oriented
arrival time”; it reproduces arrival time for “right
movers” and “minus arrival time” for “left movers”.
The corresponding vector field to quantize is now

X := X(p)
∂

∂p
, where X(p) =

m

|p|
. (44)

Consequently, (44) is replaced by
ds

dp
=
|p|
m
, (45)

and the corresponding variable s(p)

s = sgn(p)Ekinetic =


p2

2m for p > 0,

− p2

2m for p < 0,
(46)

is global. Hence, the unitary operator (28) does
exist. Consequently, the field X = ∂

∂s is per-
fectly complete and uniquely defines the self-adjoint
operator T̂ as the generator (21) of the transla-
tion group in the variable s. The formula (29)
enables for the transition from the “oriented en-
ergy” or s-representation to the momentum or
p-representation.

According to (28), quantum states are described
in s-representation by the following wave functions

φ̃(s) := (Uψ̃)(s) =

ψ̃
(
sgn(s)

√
2m|s|

)√ m√
2m|s|

=

ψ̃
(
sgn(s)

√
2m|s|

)
4

√
m

2|s|
, (47)

where ψ̃(p) is the standard wave function in the
momentum representation. Moreover, according
to (46), the variable p was replaced by

p = sgn(s)
√

2m|s|. (48)
The transformation ψ̃ 7→ φ̃ is indeed unitary
because we have∣∣φ̃(s)∣∣2ds = ∣∣ψ̃(p)∣∣2√ m

2|s|
ds =

∣∣ψ̃(p)∣∣2√m2

p2
ds =

∣∣ψ̃(p)∣∣2 dp. (49)

According to (26), the T̂ operator in the
s-representation is defined as

T̂ :=
~
i

d

ds
. (50)

This means that the (inverse) Fourier transforma-
tion φ(T ) of the function φ̃,

φ(t, T ) :=
1

(2π~) 3
2

∫
R3

ds φ̃(t, s) e i s T/~, (51)

describes the spectral resolution of this operator.
Physically, this means that the probability that the
measurement of the observable T̂ gives a result
T ∈ [a, b] ⊂ R is equal to

P (T ∈ [a, b]) =

b∫
a

dT |φ(T )|2 . (52)

If the particle beam contains a priori only “right-
movers”, without any contribution from “left-
movers”, then both arrival times (oriented and non-
oriented) can be identified (T = t). Hence, the
above probability density correctly describes the ar-
rival time and properly implements Allcock’s idea
regarding time measurements in quantum mechan-
ics. Moreover, the Schödinger evolution of the wave
function is especially simple in this representation
because it is given by the time translation T →
T + t.

Also for a beam containing “left movers” exclu-
sively, the value of (52) has a clear physical inter-
pretation, i.e., the probability that the measured ar-
rival time will belong to the interval [−b,−a], and
so the physical arrival time coincides with −T .

For an arbitrary wave function, we can always
decompose the quantum state ψ into the superpo-
sition ψ = ψ+ + ψ−, where ψ+ represents the right
moving component and ψ− represents the left mov-
ing component. In the momentum representation,
this decomposition is obvious
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ψ̃+(p) =

{
ψ̃(p) for p > 0,

0 for p < 0,
(53)

ψ̃−(p) =

{
0 for p > 0,

ψ̃(p) for p < 0,
(54)

Consequently, we have the corresponding decompo-
sition in s-representation

φ̃(s) = φ̃+(s) + φ̃−(s). (55)
Now, the densities |φ+(T )|2 dT and |φ−(T )|2 dT

represent the probability density of arrival time for
right-movers and left-movers, separately.

Under Schödinger evolution, the component φ̃+
travels forward in time, whereas φ̃− travels back-
ward in time, and so do both probability densi-
ties |φ+|2 and |φ+|2. Unfortunately, there is no “su-
perselection rule” between both components (right
movers and right movers) of the particle beam and,
whence, the total density
|φ(T )|2 = |φ+(T )|2 + |φ−(T )|2

+2Re
[
φ+(T )φ−(T )

]
(56)

contains also the last term describing the quantum
interaction between the two beams. In other words,
the total probability that the particle hits the sur-
face x = const from the left and the total probabil-
ity that the particle hits the surface x = const from
the right do not sum up to one

+∞∫
−∞

dT |φ+(T )|2 +
+∞∫
−∞

dT |φ−(T )|2 6=

+∞∫
−∞

dT |φ(T )|2 = 1. (57)

This is because, when measuring time of arrival,
there are events that do not belong to either the
first category (right-movers) or the second category
(left-movers).

A complete 3D description of the arrival time re-
quires also the remaining 2 coordinates, (y, z), as
independent variables of the function ψ. This way
both ψ+ and ψ− are functions of the four vari-
ables (x; t, y, z). However, the quantum interpreta-
tion applies only to the last three variables, whereas
x remains a purely classical parameter numbering
different 3D hypersurfaces {(t;x, y, z)|x = const} in
4D spacetime (similarly, as t remains a purely classi-
cal parameter of the wave function ψ = ψ(t;x, y, z)
in position representation).

4. Conclusions

The result presented in paper [4], and then sim-
plified slightly in [5], was obtained in an axiomatic
way. The probability density (52) was derived as
a unique quantity satisfying several physically mo-
tivated axioms. Such a derivation is similar to the

construction of the Newton–Wigner position op-
erator (see [16]) in relativistic quantum mechan-
ics, where the “up-movers” (i.e., particles) and the
“down-movers” (i.e., antiparticles) were also treated
separately (see also [17]) and every quantum state
can be understood as a superposition of two com-
ponents.

The author emphasizes that the techniques used
here are based on the geometrical interpretation of
the wave function as a half-density defined in the
configuration space of the particle. Such an inter-
pretation follows directly from Schrödinger’s formu-
lation of “wave mechanics”. This formulation also
contains the possibility of giving meaning to Heisen-
berg’s purely algebraic formulation, which, contrary
to popular creeds, is not equivalent to the for-
mer. Indeed, in order to make sense of Heisenberg’s
formulation, one must first answer two questions:
(1) What are those “q-numbers”? (correct answer:
“non-bounded operators in a Hilbert space”), and
then (2) How the commutator of non-bounded op-
erators is defined? (correct answer: “in the so-called
strong sense”). Without these two steps — highly
non-intuitive from the point of view of physics —
the entire Heisenberg axiomatics does not make
sense, and its computational possibilities do not ex-
tend beyond the (linear!) harmonic oscillator.

As a mathematical curiosity, it is worthwhile to
notice that the observables “at most linear in p” and
“at most linear in x” span (in a certain, mathemati-
cally well-defined sense) the space of all observables
f(x, p). Quantization of f based on its approxima-
tion by functions belonging to those two categories
for which the quantization rule is unique implies
the unique quantization rule for f . It turns out that
this rule coincides with the classical Weyl rule (see,
e.g., [18]).
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We study the evolution of a quantum particle in a harmonic potential whose position and momentum
are repeatedly monitored. A back-action of measuring devices is accounted for. Our model utilizes
a generalized measurement corresponding to the positive operator-valued measure. We assume that
upon measurement, the particle’s wavefunction is projected onto one of the possible detector states
depending on the observed result. We chose these post-measurement states to be moving Gaussian
wavepackets. The wavefunction quantum Monte Carlo formalism is used to simulate single quantum
trajectories of the particle. We show how classical trajectories emerge in the course of observation and
study in detail the dispersion of position and momentum of the particle.

topics: open quantum systems, repeated measurement, wavefunction quantum Monte Carlo

1. Introduction

Position and momentum are fundamental quan-
tities characterizing the dynamics of a classical par-
ticle. The time-dependent position of a particle is
directly related to what an observer sees while moni-
toring its motion. The concept is thus very intuitive.
According to classical mechanics, measurements, in
principle, do not affect the system, and their pre-
cision can be arbitrarily high. In contrast, quan-
tum mechanical measurements always somehow af-
fect the system, and moreover, the relation between
a wavefunction (or density operator) describing the
state of a system with what is actually being ob-
served is not so obvious.

The first approach to resolving these issues is
known as the Copenhagen interpretation [1–4],
which, until today, forms the basis for the textbook
version of quantum mechanics. A central role is
played by the Born rule, which gives probabilities of
positive answers to yes/no questions related to mea-
surement outcomes. When a measurement is com-
pleted, an answer is obtained, and the wavefunc-
tion changes discontinuously, in accordance with the
result and the von Neumann (and Lüders) postu-
late of wavepacket reduction [3, 5]. P. Langevin ex-
pressed this rule in the introduction to the textbook
“La theorie de l’observation en mecanique quan-
tique” [6]) by F. London and E. Bauer, in the fol-
lowing words: “The wave function it [the quantum
theory] uses to describe the object no longer depends
solely on the object, as was the case in the classi-
cal representation, but, above all, states what the

observer knows and what, in consequence, are his
possibilities for predictions about the evolution of
the object. For a given object, this function, con-
sequently, is modified in accordance to the informa-
tion possessed by the observer.”

The Copenhagen interpretation gives a well-
defined prescription on how to use the theory in
practice. However, it is not the only existing in-
terpretation of concepts such as wavefunction and
measurements. After decades, the issue of collapse,
nonlocality, and measurement still remains a sub-
ject of scientific discussion [7–12].

Iwo Białynicki-Birula and Zofia Białynicka-Birula
(Z-IBB) identify in their textbook “Quantum elec-
trodynamics” [13] the fundamental postulates of
quantum theory pertaining to the relation between
the density operator and measurement. The postu-
lates are very formally combined into four axioms
which can be, under some simplifications, summa-
rized as follows: (i) the elementary questions, i.e.,
the yes/no questions, are represented by projec-
tors, P ; (ii) the state of a system is represented
by a non-negative, self-adjoint, and trace-one den-
sity operator ρ; (iii) the density operator determines
probabilities p of affirmative answers to elemen-
tary questions in accordance with the Born rule
p = Tr{Pρ}; (iv) every dynamical variable A is
represented by a self-adjoint operator A, and can
be assigned a spectral family of projectors, E(A)

λ ,
symbolizing questions whether the value of a dy-
namical variable A is not larger than λ. As men-
tioned by Z-IBB, “Since the set of probabilities p
is the only information in quantum theory available
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about the state of the system, from the operational
point of view the concept of the state of the system
should be identified with the function p(P) defined
on the set of all questions.”

The collapse postulate is missing from the Z-IBB
axioms. One might possibly find it in the statement
quoted above, equating the state of the system to
the function p(P). The answer to any question ap-
parently modifies it. On the other hand, the issue
might have seemed purely academic at the time,
since realistic measurements in quantum mechan-
ics were generally believed to be destructive. This
excludes the possibility of repeated measurement
on the same quantum system and limits the rele-
vance of the collapse postulate. E. Shrödinger [14],
one of the founding fathers of quantum mechan-
ics, wrote: “We never experiment with just one elec-
tron, or atom, or (small) molecule, we sometimes
assume that we do; this inevitably entails ridiculous
consequences. . .. In the first place, it is fair to say
that we are not experimenting with single particles,
any more than we can raise ichtyhysauria in the
zoo.” Nowadays, such measurements are not only
theoretically considered, but also performed in labs.

Modern variations of the Copenhagen inter-
pretation, such as QBism — quantum Bayesian-
ism [15–18], postulate that an agent (e.g., a physi-
cist) observing a system abruptly modifies their
knowledge (the set of probabilities) once a mea-
surement outcome becomes available. The wave-
function expresses the individual agent’s state of
knowledge. “. . .There is no real state of a physical
system. What one chooses to regard as the physi-
cal system and what state one chooses to assign to
it depend on the judgment of the particular physi-
cist who questions the system and who uses quan-
tum mechanics to calculate the probabilities of the
answers,” as stated by N. David Mermin [19]. Ac-
cording to Qbists, since there is no objective wave-
function of the system, there is no collapse either.

Other points of view assume that the wave-
function, the state of the system, has attributes
of reality, being independent of an observer. The
issue of an apparent collapse, disliked by many
physicists, is resolved in various ways. Everett’s
many-world interpretation (MWI) is one such ap-
proach [20]. Non-local hidden variable theories, of
which Bohmian mechanics is the best-known exam-
ple, are another possibility [21]. The MWI postu-
lates that upon measurement, the system, which
finds itself entangled with the measuring appara-
tus, does not collapse to some observed state, but
rather that all components of the wavefunction as-
sociated with possible measurement outcomes con-
tinue to evolve according to the Schrödinger equa-
tion of the composite system. Because of the lin-
earity of the Schrödinger equation, these compo-
nents do not interact and form separate “branches”
or “worlds.” One must accept uncountable copies
of themselves and the world living different lives.
Bohmian mechanics introduces additional hidden

variables — coordinates (e.g., particle positions) as-
sociated with a configuration of the system under
consideration. The particles move guided by a “pi-
lot wave”, which is equivalent to the wavefunction
of orthodox quantum mechanics (QM) and evolves
according to the Schrödinger equation. It is thus
the hidden variables that are actually observed in
a measurement. Each of the varying interpretations
of QM— of which we only mentioned a few— forces
us to accept some non-intuitive, seemingly problem-
atic postulate about reality. If none of them is found
satisfactory, one must accept the view that collapse
— an abrupt, discontinuous change of the system,
triggered by measurement — is a “real and wild”
thing.

None of the interpretations presented above may
be falsified on the grounds of present knowledge.
The problems, at this stage of understanding, seem
to be of a philosophical nature, and their experi-
mental verification is elusive. However, the various
interpretations may imply measurable effects in fu-
ture experiments and lead to different generaliza-
tions of quantum theory.

The first studies of repeated measurement of con-
tinuous variables can be found in the works of
Mensky [22] and Davies [23, 24]. Great experimen-
tal progress in cooling and trapping single ions
opened many possibilities for repeated measure-
ment of a single quantum system. The first spectac-
ular example is an observation of quantum jumps,
i.e., dark periods in the fluorescence spectrum of
an optically driven trapped ion [25–28]. The exper-
iments fueled the interest in the theory of repeated
quantum measurements. The proper description of
a system under repeated measurements calls for the
inclusion of information gained — the back-action
of the meters — as part of the dynamics. Different
methods were developed [29–35].

The theoretical approach utilizes an open system
formalism. It is based on the Gorini–Sudarshan–
Kossakowski–Lindblad (GKSL) equation for the
density operator [36, 37]. This allows for study-
ing all statistical properties of the system. Instead
of solving the GKSL equation directly, for differ-
ent reasons, it may be preferable to look for single
realizations of wavefunction dynamics. Obviously,
such individual trajectories are stochastic in na-
ture. Averaged over many realizations, they pro-
vide a description equivalent to the time-dependent
density operator. The general theoretical framework
governing wavefunction dynamics of this kind in-
volves the introduction of the so-called stochastic
Schrödinger equation (SSE) [38–42]. It should be
noted that the choice of an SSE is not unique, and in
general, there are many realizations (“unravelings”)
corresponding to one GKSL equation. In fact, the
formalism of SSE need not be invoked at all for the
construction of concrete numerical schemes generat-
ing the stochastical trajectories. One notable exam-
ple [43, 44] is known as the wavefunction quantum
Monte Carlo (WFQMC) method. This formalism is
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often used by atomic physicists since it allows them
to easily generate sequences of events mimicking ex-
periments with atoms and photons.

In this paper, we use WFQMC to analyze sta-
tistical characteristics of trajectories determined by
simultaneous repeated measurement of position and
momentum of a quantum particle. First, we spec-
ify our model, define jump operators, and introduce
the WFQMC approach. Then we present exemplary
trajectories and discuss the time dependence of dis-
persion of the position and momentum for differ-
ent choices of detection parameters. Conclusions are
presented in the final section.

2. Monte Carlo dynamics of a wavefunction

We study a phase space trajectory of a quantum
particle, continuously monitored by an array of de-
tectors. Here we use the theoretical model intro-
duced by us in [45]. We assume that every measure-
ment provides a value of the position and momen-
tum of the particle at this instant. A sequence of
such readouts gives a phase space trajectory. Each
simultaneous measurement of position and momen-
tum satisfies Heisenberg’s uncertainty principle. We
apply an open system formalism — our system is
a quantum particle described by the Hamiltonian
H0, while the detectors form a reservoir. We assume
that the reservoir has no memory.

The problem of simultaneous measurement of po-
sition and momentum for the first time was con-
sidered by E. Arthurs and J.L. Kelly [46]. The re-
cent studies of A.J. Scott and G.J. Milbourn [47]
assumed a different detection model than the one
studied here. They assumed the von Neumann
type of coupling between a particle and a meter
and used a formalism based on an Ito stochastic
Schrödinger equation [31–34]. The main difference
is, thus, in the form of the jump operators assumed
here.

The effect of coupling the system to the reser-
voir of detectors is described by the “jump oper-
ators” Ci,j specified in the following part of the
paper. The general form of a completely positive
and trace-preserving map which describes time-
homogeneous dynamics of the density operator ρ
of a system coupled to the Markovian reservoir via
operators Ci,j is given by the Gorini–Kossakowski–
Sudarshan–Lindblad equation [36, 37]

ρ̇ = i
[
ρ, H0

]
+ Lrelax(ρ), (1)

where H0 is the self-adjoint Hamiltonian of the sys-
tem, and Lrelax is a relaxation operator of the Lind-
blad form, accounting for an effect of the environ-
ment

Lrelax(ρ) = −1

2

∑
α

(
C†i,jCi,j ρ+ ρC†i,jCi,j

)
+
∑
α

Ci,j ρC
†
i,j . (2)

We chose Ci,j to be proportional to projectors onto
detector’s states |αi,j〉,

Ci,j =
√
γ |αi,j〉〈αi,j |, (3)

where γ gives the characteristic clicking rate (prob-
ability per unit time) and |αi,j〉 are complex Gaus-
sian wavepackets, which in position representations
have the form

〈x|αi,j〉 =
1

4
√

2πσ2
e−(x−xi)

2/4σ2

e ikjx. (4)

Spatial points xi and momenta ~kj define the po-
sitions of the detectors in phase space. These loca-
tions are a matter of choice. Here we assume that
they form a rectangular lattice with spacing dx and
dp, respectively.

In what follows, we will use the index α as
a shortcut notation for two indices, α ≡ (i, j)
and Cα ≡ Ci,j . The operators Cα are responsi-
ble for a reduction of the particle’s wavefunction,
a jump, caused by the interaction with the reser-
voir. Note that Cα projects onto non-orthogonal
states, thus CαCβ 6= 0 for α 6= β. Therefore, the
measurement we defined does not belong to the
class of a projective-valued measure (PVM). This
is in accordance with the modern formulation of
a measurement process, which extends the concept
of measurements to account for real observations,
whose results also depend on the characteristics of
the measuring apparatus and procedure. For details
on this positive operator-valued measure (POVM),
see [24]. Projectors are substituted by an arbitrary
number of positive operators — the effects’ Ei —
whose sum gives identity

∑
iEi = I [8, 10, 12, 38].

In the case studied here, the effects are related
to a jump within a time interval dt caused by
Eα = dt C†αCα, or alternatively, a no-jump event,
E0 = 1−

∑
αEα. To assure that all effect operators

are positive, the time step dt must be sufficiently
small. We take care of this fact.

Instead of solving the GKSL equation, in the
following, we use one of its possible unravel-
lings, the quantum Monte Carlo wavefunction
method [43, 44]. The idea of the approach is to gen-
erate an ensemble of individual trajectories. Each
one can be viewed as a single, possible realiza-
tion of the dynamics of the wavefunction. Averaging
over many such trajectories yields the time depen-
dence of the density operator in accordance with
the GKSL equation ρ(t) = |ψ〉〈ψ|. The WFQMC
method simulates stochastic evolution, in which for
each time step, the quantity |φ′(t + δt)〉 is calcu-
lated by evolving the state for an infinitesimal time
δt with the non-unitary Hamiltonian

H = H0 −
i

2

∑
α

C†αCα. (5)

One of two possibilities is then selected, i.e.,
a jump or no-jump event. The jump to the state
|α〉 is selected with the probability

δpα = δt 〈φ′(t)|C†αCα|φ′(t)〉 = γ δt
∣∣〈α|φ′(t)〉∣∣2.

(6)
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The time-step δt has to be sufficiently small to as-
sure that

∑
α δpα is smaller than one. If the jump

takes place, the particle’s wavefunction changes dis-
continuously
|φ(t+ δt)〉 = |α〉. (7)

The probability of no jump is equal to

P0 = 1−
∑
α

δpα. (8)

If the “no-jump” event takes place, the state is es-
sentially replaced with |φ′(t + δt)〉. However, since
the Hamiltonian (5) does not preserve the norm, the
state is first normalized

|φ(t+ δt)〉 =
(1− iH δt) |φ(t)〉∣∣∣∣ (1− iH δt) |φ(t)〉

∣∣∣∣ . (9)

The evolution of the wavepacket corresponds thus
to a random sequence of jump and no-jump events.
In our approach, every jump is interpreted as an act
of measurement. Projection onto states associated
with detectors is reminiscent of the reduction of
a wavepacket. The non-unitary evolution accounts
for the Hamiltonian dynamics of the particle as well
as for interaction with the detectors. The Hermi-
tian part H0 is the sum of kinetic and potential
energy H0 = 1

2mp
2 +V (x). Interaction with the de-

tectors is represented by the non-Hermitian term
i
2C
†
αCα. This term causes a kind of “accumulation”

of the wavefunction around the detector positions
in phase space [45]. In each timestep δt, every de-
tector contributes to the particle wavefunction, φ,
by an amount proportional to ∝ − 1

2γ δt 〈x|α〉〈α|φ〉.
Our choice of jump operators Cα fulfills a num-

ber of basic assumptions about a sensible detector
of position and momentum. First of all, a meter
of position should click if the probability of finding
a particle in its neighborhood is large. In our case,
this probability is proportional to the squared over-
lap of the wavefunction with the state associated
with the detector. Once the meter “fires”, the parti-
cle wavefunction should be reduced according to the
information gained, so the post-measured state is lo-
calized around the position of the detector. Choos-
ing the detector states to be Gaussians stands to
reason. The width σx gives the precision of the mea-
surement.

We would like our detectors to be “gentle” to
the objects under measurement. By this, we do not
mean a weak measurement, but we want the par-
ticle velocity, assumed to be proportional to the
probability density current, to be not significantly
affected due to detection. The post-measurement
state of the particle should preserve some informa-
tion about its pre-measurement momentum at the
detection point. To this end, we equip the detec-
tors at every spatial location with a variety of ki-
netic momenta by assigning to every Gaussian spa-
tial profile plane-waves of momenta ~kn. The mo-
menta can take various values, as discussed above.
The probability of clicking is thus maximal if both
the position and momentum of the particle fit one

of the detector states. This conclusion is obvious if
one considers the detector’s wavefunction not in po-
sition but in momentum space. The Fourier trans-
form of a detector state (see (4)) is

〈k|αmn〉 =
4

√
2σ2

π
e−σ

2(k−kn)2+ixm(k−kn), (10)

a Gaussian superposition of plane-waves of mo-
menta centered around kn. The detector is very sen-
sitive to wavefunctions whose local velocity at xm
is close to kn.

3. Statistical characterization
of particle’s trajectories

In our work, we study the “trajectories” of a par-
ticle resulting from the detection process, i.e.,
sequences of position and momentum measure-
ments of the particle in the harmonic potential
V= 1

2mω
2x2. We use the harmonic oscillator units,

i.e., the unit of length aho=
√

~/(mω), the unit of
momentum q0=~/aho, the unit of time τ0=1/ω, and
the unit of energy ε0=~ω. From now on, all quan-
tities are expressed in these units. The Hermitian
Hamiltonian has the form

H0 =
1

2
x2 +

1

2
p2, (11)

placing position and momentum on equal foot-
ing. We assume that the detectors are character-
ized by a spatial width σ =

√
1/2. Selecting this

value ensures that the detectors formally have the
same width in momentum space. Moreover, as the
detectors project into coherent states, the post-
measurement uncertainty in position and momen-
tum is minimal according to Heisenberg’s principle.
Similarly to the Hermitian part of the Hamiltonian,
the coupling to detectors is symmetric, and position
and momentum are on an equal footing. We choose
the same numerical value for the detector spacing
dx = dp = d.

In our calculations, we impose the initial wave-
function of the particle to be identical to one of
the Gaussian detector states (4), centered at (x0 =
nd, p0 = 0). Here n is a natural number, chosen so
that x0 is close to 20, so for different grid densities
d we get comparable initial conditions. The particle
thus starts with zero velocity at some distance from
the minimum of the potential. This distance defines
the classical amplitude of a harmonic oscillation and
comprises several other detectors (n � 1) so that
subsequent motion can be monitored with sufficient
resolution. In our numerical experiment, we simu-
late a large number of trajectories, where by tra-
jectory we mean a time series of detection events,
“clicks” of meters at phase space locations (xi, pi)
at instants ti. An example of a single realization of
a measurement experiment is shown in Fig. 1. The
particle follows a circular orbit in phase space, as
would be expected for a classical particle. Some ran-
dom departures from this orbit are clearly visible.
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Fig. 1. Sample trajectory in phase space. The
start point is marked by an orange point, while the
end of the simulation is visualized as a green point.
A typical trajectory in our setting is always a cir-
cular motion with a growing radius. Only isolated
phase space positions of a particle are available to
the observer. The line is drawn to guide the eye.
Detector spacing is d = 2.16 and γ = 1.

Fig. 2. Average position and momentum of a par-
ticle in the harmonic potential as a function of time.
The dependence is equivalent to the classical solu-
tion of the harmonic oscillator, giving a sinusoidal
motion with the respective frequency and a phase
shift of π/2 between position and momentum. De-
tector spacing is d = 2.16 and γ = 1.

Moreover, the radius of the orbit grows slowly in
time, i.e., the energy of the observed particle in-
creases.

Individual trajectories, resulting from a stochas-
tic process, differ from one another. Their statisti-
cal properties are the main objects of our interest.
First, we analyze the average phase space trajec-
tory (〈x(t)〉, 〈p(t)〉). Using the WFQMC formalism,
we generate 5000 trajectories for each choice of pa-
rameters. Detection events are random and discrete
points in time, so to get a mean trajectory, we in-

Fig. 3. Dispersion in position (and equivalently,
momentum)

√
δ20(t) as a function of time. The

colours correspond to different values of γ for d =
2.16. The dispersion grows faster for larger γ. The
figure also shows fits of (12) as dashed lines in the
corresponding color, which are barely visible be-
cause of high agreement.

troduce coarse-grained time by dividing the time-
line into small intervals, [t, t + δt], where δt = 0.1,
and calculate the mean position and momentum for
all clicks from the ensemble falling into the interval.
The mean trajectories, both in position and mo-
mentum space, show that, on average, the particle
follows a classical path (cf. Fig. 2). The position
as well as momentum oscillate with the harmonic
oscillator frequency and are phase-shifted by π/2.

Deviations of a single realization from the
average trajectory are characterized by the
second moment of the click distribution, i.e.,
the dispersion δ2x(t) = 〈x(t)2〉 − 〈x(t)〉2 and
δ2p(t) = 〈p(t)2〉 − 〈p(t)〉2. Because of the symmetry
of the Hamiltonian (5) and (11), the dispersion
in position and momentum should be equivalent
to δ2x = δ2p. The simulations essentially confirm
these expectations, which is why in Fig. 3, we
only plot the dispersion function δ(t) ≡

√
δ2x. The

dispersion functions of position and momentum
actually differ by a small modulation due to the
π/2 phase shift of position and momentum of the
particle. This will be discussed later on in this
section.

The time dependence, fitted to the numerical re-
sults, is found to be

δ2(t) ≈ Dt+ δ20 , (12)
where D is a diffusion coefficient and δ20 the ini-
tial dispersion, independent of γ; δ20 is a result of
the initial wavepacket having a finite width even
when identical to the detector wavefunction. In
other words, because of the lack of orthogonality,
immediately after localization at the detector at the
position (x0, p0) = (j0d, k0d), the particle may be
captured by a different detector (x, p) = (jd, kd). In
our model, the probability distribution of a subse-
quent click of the detector αj,k, under the condition
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that such a click occurs within a short time from the
first one, is approximately equal to the discretized
Husimi function Q(j, k) of the initial state [45]

Q(j, k) =
∣∣〈αj,k∣∣αj0,k0〉∣∣2 =

e−
1
2d

2[(j−j0)2+(k−k0)2]∑
j,k

∣∣〈αj,k∣∣αj0,k0〉∣∣2 .

(13)
According to the discussion above, the dispersion
squared of the initial spatial position of the moni-
tored particle is δ20 =

∑
j,kQ(j, k)(jd)2. If d � 1,

summation can be substituted by integration, which
yields δ20 ≈ 1. In the case of the numerical re-
sults shown in Fig. 3, this condition is not sat-
isfied (d = 2.16), but surprisingly we find that
this continuous approximation still works quite
well.

For large times, the initial dispersion can be ne-
glected, and (12) indicates that on the top of the
harmonic oscillation, the particle undergoes Brow-
nian motion. Deviations from the mean trajectory
grow as the square root of time, suggesting a dif-
fusion process characterized by the D coefficient.
Moreover, from the dimensional analysis, it seems
that dynamical quantities such as δ2(t) should de-
pend on the dimensionless parameter γt. Indeed, de-
tailed studies confirm this prediction (see Fig. 4a).
This implies that the diffusion coefficient D grows
linearly with γ, which is plausible since this im-
plies more frequent detection of the particle. Sim-
ilarly, the denser the detector grid, the more de-
tectors monitor the particle, which in turn leads to
a higher detection frequency and larger perturba-
tions of the classical trajectory. In Fig. 4b, we show
the dependence of the diffusion coefficient on the
detector spacing d for a fixed value of γ = 1.0. The
results clearly show that D is inversely proportional
to the squared detector spacing. Our numerical ex-
periment allows us to postulate the following depen-
dence of the diffusion coefficient on the parameters
of the observation process

D ≈ 2π
γ

d2
. (14)

The analytical formula (12) shows very good agree-
ment with numerical calculations. This formula may
also be confirmed by approximate analytical consid-
erations. The diffusion coefficient is related to the
squared mean displacement of a walking particle per
unit of time, i.e.,

D = γ
∑
j,k

e−d
2(j2+k2)/2 (dj)2. (15)

Using the continuum approximation, jd = x,
kd = p, and

∑
j,k →

1
d2

∫
dxdp, the diffusion co-

efficient is equal to

D ≈ γ

d2

∫
dx dp x2 e−(x

2+p2)/2 =
2π γ

d2
. (16)

We thus recovered (14), which was obtained by fit-
ting it to numerical data.

A more careful analysis indicates that in ad-
dition to the Brownian diffusion characterized by
a linear growth of the dispersion δ2(t), there are

Fig. 4. Dependence of the diffusion coefficient D
on parameters of detection. (a) Dependence of D
on γ for d = 2.16. Blue points correspond to simu-
lations while the orange curve is a fit of the linear
function, D ∝ γ. (b) Dependence of D on distance
d between detectors for a fixed value of γ = 1. The
blue points are the simulation results, while the or-
ange line is the fit of D ≈ ( 5

2
)2 1

d2
function.

small-amplitude oscillations with the frequency 2ω.
These oscillations can be explained assuming small
dephasings of individual trajectories x=x0 cos(t +
δϕ) with respect to the average x=x0 cos(t). De-
phasing gives an oscillatory contribution to the dis-
persion 〈x2〉 − 〈x〉2 ≈ δϕ2 sin2(t). A similar oscil-
latory character of the dispersion of position and
momentum was observed in [47], where the phase
space dynamics of a continuously monitored particle
in an anharmonic potential is studied. In that work,
however, the dispersion is bounded, contrary to the
result presented here. This is because the authors
of [47] have studied the limit of very frequent and
very weak measurements, whereas the present work
treats a series of strong measurements at discrete
points in time. Each measurement is performed at
the “Heisenberg limit”, i.e., it minimizes the uncer-
tainty relation

σxσp =
1

2
. (17)

Such a measurement necessarily introduces growing
fluctuations. Our studies indicate that the disper-
sion of trajectories is model/system sensitive. This
fact was also noticed by us in [45], where different
types of diffusion were found for alternative POVMs
of measurement operators.
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Fluctuations in the position and momentum of
a particle lead to an increase in its energy. It is
because of this that when we observe the sample
trajectory in phase space, it tends to be a circular
motion spiraling outwards (see Fig. 1). The radius
of a circle in phase space increases with time, r(t) =√

2〈E(t)〉. It follows directly from (12) that the av-
erage energy of the particle, 〈E〉 = 1

2 〈x
2〉 + 1

2 〈p
2〉,

grows linearly with time,
〈E(t)〉 = δ2(t) + E0 = D t+

(
δ20 + E0

)
, (18)

where E0 = 1
2 (x20+p20) is the initial energy of a clas-

sical particle at initial position x0 with initial mo-
mentum p0.

By dividing the energy scale into small inter-
vals ∆E, we can obtain the energy distribution
pE(t) of the ensemble of trajectories as a function
of time. This distribution around t = 0, as obtained
from our simulations, is shown in Fig. 5. This is
a relatively narrow function centered around E0.
Again, as in the case of position dispersion, the
initial distribution of energy can be approximately
obtained from analytic calculations. As previously,
we use the continuum approximation: j(j0)d →
x(x0), k(k0)d → p(p0), and Qi,j → P(x, p) =
1
2π e−

1
2 (x−x0)

2

e−
1
2 (p−p0)

2

. If the particle is initially
placed at phase space location (x0, p0), then the ini-
tial energy distribution is

pE =

∫
dxdp P(x, p) δ

(
E − 1

2 (x2 + p2)
)
. (19)

Using that 2E0 = x20 + p20, we get

pE = e−(E+E0) I0(
√

2E0

√
2E), (20)

where I0(z) is the modified Bessel function of the
first kind.

The energy distribution, as given by (20), is plot-
ted in Fig. 5a. Again, the continuous approximation
works quite well even for the parameters that do not
fully legitimate the use of the formula. We stress
that to get the energy histogram, we accumulated
data from the time interval 0 < t < 2π, so strictly
speaking, the histogram does not give the energy
distribution exactly at t = 0, but the distribution
averaged over the first period of the oscillation. For
large times t, this initial energy distribution evolves
into a thermal distribution

pE(t) =
1

ε(t)
e−E/ε(t). (21)

The width and mean of this ε(t) distribution de-
pend on time. Setting ε = kBT allows us to for-
mally define a temperature for the system, identi-
fying the repeated measurement process with the
type of “heating.” The distribution pE in the ther-
mal regime is shown in Fig. 5b. The temperature of
the ensemble grows with time, and for large times, it
becomes kBT (t) = 〈E〉 = δ2(t) ≈ Dt. This analyti-
cal prediction again agrees well with the numerical
results.

In summary, we studied a quantum particle in
an external harmonic potential that is repeatedly
monitored by an array of detectors regularly dis-

Fig. 5. Energy distribution for two different times.
Panel (a) shows a distribution shortly after the be-
ginning of the simulation, and panel (b) shows the
distribution at a “late time” (after many oscilla-
tions). The blue histograms correspond to numer-
ical data, while the orange curves are the func-
tion (20) (a) and an exponential (b) fit. Note
that the labels t = 0 and t = 200 are approx-
imate in the sense that in order to gather suffi-
cient numerical data for the histogram, we consider
clicks from a time interval corresponding to one full
oscillation.

tributed in phase space. We employed an open sys-
tem formalism, treating the detectors as an exter-
nal reservoir. Coupling of the particle to the me-
ters is given by jump operators whose action is
to project the particle’s wavefunction onto coher-
ent states characterizing the detectors. We use the
wavefunction quantum Monte Carlo method to gen-
erate ensembles of time-dependent wavefunctions.
We interpret every generated wavefunction as a sin-
gle realization of the particle’s dynamics, which in
addition to continuous evolution, experiences quan-
tum jumps related to observations. We show that,
on average, the trajectories follow the classical path.
This result is similar to the one in [47], where a von
Neumann type of coupling between the system —
being a nonlinear oscillator — and the meters were
considered. Random quantum jumps in position
and momentum space introduce fluctuations on top
of harmonic motion. We have shown that these fluc-
tuations have the character of Brownian motion, as
the diffusive process with the dispersion of position
and momentum grows linearly with time. We nu-
merically found the diffusion coefficient and its de-
pendence on the detector clicking rate γ and the de-
tector spacing d. Going back to dimensional units,
we see that the diffusion coefficient Dx in position
space is proportional to the Planck constant
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Dx = 4πγ
~

dxdp
σ2, (22)

signifying the quantum character of this process.
Again, this is due to the fact that our measurements
are performed at the limit set by the Heisenberg un-
certainty limit (see (17)). Here, dxdp is the action
equal to the area of an elementary cell in the phase
space, determined by the detector spacing.

Finally, we found that repeated observation in-
troduces heating of the particle, the energy distri-
bution of the trajectory ensemble at large times be-
comes thermal, and the effective temperature grows
linearly in time.

Our studies of the system under continuous mon-
itoring and comparison to similar studies [45, 47]
show that the observed mean trajectories corre-
spond to the classical trajectories, however, the de-
viation from the mean (the dispersion) significantly
depends on the system studied and details of the
detection process, in particular on a choice of the
positive operator-valued measure.

We do not know whether the particular measure-
ment schemes considered here can ever be realized
in practice. However, the model we formulate is fully
admissible in view of the present understanding of
the quantum measurement theory. As such, it is le-
gitimate to study its consequences. Paraphrasing
the words of Professor Iwo Białynicki [48]: “As to
the usefulness of our results, we have no opinion
at all. Perhaps someone else could see whether they
are good for anything.”†1
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We discuss the possibility of localizing an electron in a highly excited Rydberg state. The second-order
correlation of emitted photons is the tool for the determination of electron position. This second-order
correlation of emitted radiation and, therefore, the correlation of operators describing the acceleration
of the electron allows for a partial localization of the electron in its orbit. The correlation function is
found by approximating the transition matrix elements by their values in the classical limit. It is shown
that the second-order correlation, depending on two times, is a function of the time difference and is
a periodic function of this argument with the period equal to the period of the corresponding classical
motion. The function has sharp maxima corresponding to large electron acceleration in the vicinity of
the “perihelion.” This allows the localization of the electron in its consecutive approach to the perihelion
point.

topics: Rydberg state, radiation, second order correlation, localization

1. Introduction

The measurement process, since the early days
of quantum physics, has been one of the central is-
sues in many attempts to understand the relation
between the classical and quantum description of
physical systems [1] (for a more recent analysis,
see, e.g., [2]). The most common theory of quan-
tum measurement [3–5] assumes that the quantum
system is coupled to a meter. The interaction be-
tween them entangles the two systems. The mea-
surement, described as a projection onto the state
of the meter, provides information on the state of
the system. Continuous measurements of quantum
systems treated as stochastic processes were first
considered in [6] in the context of photon counting.
The formalism based on path integrals was initiated
in [7] and further developed in [4] (see also [8]).

The classical motion of the electron bound in
a Coulomb field is periodic. The wavefunction de-
scribing the bound electron in a stationary state
does not show any time-dependent features. Time
dependence, and hence classical features of wave-
functions, can be obtained for non-stationary states,
linear combinations of energy eigenstates with dif-
ferent energies. Such a construction is well known
in the case of a harmonic oscillator, and the most

classical states are well-known coherent states [9]
(see also, e.g., [10]). The corresponding time-
dependent states in the case of Rydberg states were
introduced in [11] (see also [12–15]).

Another point of view was presented in [16],
where it is pointed out that when a measurement
breaks the time-translational symmetry of a sta-
tionary state, a periodic motion of the system is
initiated. This approach was further elaborated
in [17, 18].

The classical limit of quantum mechanics is still
a vivid subject of investigation (see, e.g., [19]). One
of the recently discussed problems in this area re-
lates to the successive measurements of particle po-
sition and detection of the trajectory. Most of the
interest has been limited to free particles, and not
much has been done in the case of bound states.

Quantum description of the hydrogen atom is
well known. All energies and wavefunctions of sta-
tionary states are well known. The classical limit
is approached in the limit of large quantum num-
bers — the wavefunction should be related to classi-
cal trajectories. This relation has been discussed in
many papers. Both time-dependent states, analogs
of harmonic oscillator coherent states, and station-
ary states in the limit of high excitation were shown
to exhibit classical features.
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In this paper, we will present yet another aspect
of the classical limit in the case of Rydberg states.
Namely, we will use the radiation emitted from the
highly exited state to determine the electron posi-
tion as a function of time. Detection of radiation at
a given time breaks the time-translational symme-
try and allows observation of the time dependence of
subsequent evolution. This approach provides a par-
tial but straightforward way of estimating the el-
ements of the time-dependent classical trajectory
hidden in the stationary wavefunction.

Radiation from a quantum system, such as a hy-
drogen atom, is usually studied in the frequency do-
main. The spectrum consists of several lines. Mea-
surement of the spectrum is not the only possibil-
ity — time dependence of radiation can be studied
as well. The time dependence of the spontaneous
emission from a highly excited vibrational state of
a diatomic molecule was used to determine the time-
dependent relative position of the constituents. This
allowed us to demonstrate the time dependence of
various states, such as coherent states and others,
e.g., the Schrödinger cat state [20]. Let us note that
in the case of Rydberg states with the principle
quantum number n ≈ 100, the characteristic fre-
quency of radiation is ν ≈ 1010 Hz, so the time de-
pendence of the radiation for times smaller than 1/ν
is within experimental reach. Radiation observed for
such small times of the order of 1/ν exhibits differ-
ent features as compared to the long-time measure-
ments. This and the relation to the position mea-
surement will be discussed below.

2. A simple case — harmonic oscillator

We will begin the discussion of electromagnetic
radiation in the time domain and its relation to the
measurement of the electron position with a sim-
ple example of a harmonic oscillator. The charged
particle oscillates with the frequency ω along the
x axis; its motion is given by xcl(t) = A cos(ωt).
This electron is a source of electromagnetic radia-
tion. We will find the x component of the electric
field in the far zone along the y axis (to simplify the
geometry). We have, in the dipole approximation,

Ex(R, t) = −
e

4πε0R
ω2xcl(tret), (1)

where tret = t − |R|/c is the retarded time, and
c is the speed of light. We have skipped the R
dependence of the field — it is just like in clas-
sical electrodynamics, namely Ex ∼ R−1. It fol-
lows from (1) that the electric field oscillates with
the frequency ω. This classical treatment does not
take into account radiation damping, thus it is valid
only for a short time, shorter than the characteristic
damping time.

We will now discuss an emission of radiation, tak-
ing into account the quantum nature of the oscilla-
tor. We will concentrate on the highly excited states
of the oscillator and hence on the classical limit.

The position of an oscillating particle is described
by the position operator x. It can be expressed in
terms of the lowering and raising operators a and
a†, respectively, as follows

x = x0
(a+ a†)√

2
, (2)

where x0 =
√

~
Mω , ~ is the Planck constant, and

M denotes the mass of the oscillating particle. The
component Ex of the electric field operator (the ra-
diated part) in the dipole approximation is given by

Ex(R, t) = −
e

4πε0R
ω2x(tret), (3)

just like in the classical case. This time, however,
the electric field is an operator, and we will find
the expectation values of this operator. We assume
that at time t = 0, the oscillator is in the energy
eigenstate |n〉 with energy En = ~ωn. Thus the ex-
pectation value of the x operator, and hence of the
Ex(r, t) operator, is equal to zero. The first-order
correlation function becomes〈

Ex(R, t2)Ex(R, t1)
〉
=

1

2

e2

(4πε0R)2
ω4x20

×
[
n e iω(t2−t1) +

(
n+

1

2

)
e− iω(t2−t1)

]
. (4)

In the case of the highly excited state, i.e., when
n � 1, we can approximate

√
n(n+ 1) ≈ n ≈√

n(n− 1). Then we get〈
Ex(R, t2)Ex(R, t1)

〉
=

e2(
4πε0R

)2 ω4x20 n cos
(
ω(t2−t1)

)
, (5)

just as in the classical case. The average intensity of
radiation given by the first correlation function at
t2 = t1 is a constant. The first correlation function
for t2 > t1 gives the spectrum of radiation and, in
this case, consists of one line only.

The second-order correlation function is more in-
teresting. For n� 1, we get〈

E2
x(R, t2)E

2
x(R, t1)

〉
= n2

[
1 + cos

(
2ω(t2−t1)

)]
.

(6)

The second correlation function oscillates with the
frequency 2ω. This tells us that the maxima of radi-
ation occur every half period of the electron motion.
Thus, the second correlation function can be used
to determine the position of the oscillating particle
in the vicinity of a turning point. The high inten-
sity is due to the large acceleration of the oscillat-
ing charge and this takes place when the electron
is close to one of the turning points. Thus, if high
intensity has been detected at t1, then the elec-
tron will reach another turning point half the pe-
riod later, and the intensity will be high once more.
Thus, the time dependence of the second correlation
function provides information about the motion of
the electron. The information is not complete, as
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the radiation does not distinguish between the two
turning points. It is worth noting that the corre-
lation function allows the detection of the particle
close to the turning point in spite of the dipole ap-
proximation.

3. Classical radiation from Kepler orbit

Before we discuss radiation from the Rydberg
states, we will give a classical description of mo-
tion in the Coulomb field [21]. If the motion is in
the xy plane, the coordinates x and y as functions
of time are given by

x(t) = a
[
cos
(
ξ(t)

)
− ε
]
,

y(t) = a
√
1− ε2 sin

(
ξ(t)

)
,

(7)

where
ωt+ ϕ = ξ(t)− ε sin

(
ξ(t)

)
, (8)

where ϕ is an arbitrary phase. The radial variable
r =

√
x2 + y2 can also be expressed as a function

of time
r = a

[
1− ε cos

(
ξ(t)

)]
. (9)

The parameters a, ω, and ε characterize the tra-
jectory. They can be related to energy and angular
momentum in the standard way [21].

We will also need more general trajectories that
differ by an orientation in the plane of the motion
described by the phase χ and by the phase of the
motion, ϕ. Thus we define

X(t) = x(t) cos(χ) + y(t) sin(χ),

Y (t) = −x(t) sin(χ) + y(t) cos(χ),
(10)

with ωt+ ϕ = ξ(t)− ε sin(ξ(t)).
The classical description of the radiation of

a charge moving along such an orbit is found to be
in complete analogy to the harmonic oscillator case.
We will use the dipole approximation since the size
of the orbit is much smaller than the characteristic
wavelengths of the emitted radiation. The electric
field in the far zone is given by

E(R, t) =
1

R
n×

[
n× a(tret)

]
, (11)

where a is the acceleration, and n = R/|R|. Radi-
ation damping is neglected, as in the previous sec-
tion.

Also, the Fourier decomposition of the trajectory
can be found (see [21]). Here we will give the Fourier
decomposition of the x variable

x(t) =
∑
k

exp(ik(ωt+ ϕ))xk, (12)

where
xk =

a

2k

[
Jk−1(kε)− Jk+1(kε)

]
, k 6= 0. (13)

A similar formula holds for y(t). This will be used
in the next section.

4. Classical limit of matrix elements

From now on, we will use atomic units.
Consider the quantum description of an atom in

a highly excited energy eigenstate. We label the
states by standard quantum numbers: n— principle
quantum number, l— angular momentum quantum
number, and m — magnetic quantum number. The
energy En of this state depends on the principal
quantum number n as En = −1/(2n2). We will be
interested only in states with m = l, thus, we will
skip the magnetic quantum number to avoid confu-
sion. This means that the wavefunctions considered
in this paper are well concentrated in the xy plane,
which is perpendicular to the angular momentum.
This can be seen from the explicit form of the spher-
ical harmonics function |Yl,l(θ, ϕ)|2 ∼ sin2l(θ) that
has a sharp maximum at θ = π

2 for large l. We
will, therefore, not consider the wavefunction de-
pendence along the z axis.

The expectation values of the radiated field de-
pend on the matrix elements of the position op-
erator between the quantum states of the atom,
i.e., 〈ψn,l,l|x |ψn′,l′,l′〉, where x is the coordi-
nate. In spherical coordinates, x = r sin(θ) cos(ϕ),
and a similar expression is valid for the y co-
ordinate, y = r sin(θ) sin(ϕ). The wavefunctions
ψn,l,l(r, θ, ϕ) = Rn,l(r)Yl,l(θ, ϕ) are the standard
states of the hydrogen atom, with Rn,l(r) describ-
ing the radial part of the wavefunction and Yl,l(θ, ϕ)
denotes the spherical harmonics. Because of selec-
tion rules, these matrix elements are different from
zero only if l′ = l ± 1.

The radial part of the matrix element of rk (for
any k), i.e.,∫ ∞

0

dr r2+kRn,l(r)Rn′,l′(r), (14)

can be found explicitly in terms of special func-
tions [22]. In fact, the classical limit of this expres-
sion, valid for n→∞, l→∞ with l/n = const, has
been found in [23]. In this limit, (14) approaches
the Fourier transform of the classical trajectory
rkclassical for the frequency ω = (En−En′)/~. The
classical trajectory r(t) corresponds to the aver-
age energy E = 1

2 (En + En′) and the eccentricity
ε =

√
1− (l/n)2. Thus, for the matrix element of r,

we find for l′ = l ± 1 that

〈n′, l′, l′|r|n, l, l〉 ≈ a0
n2

2(n−n′)

×
[
Jn−n′+1

(
(n−n′)ε

)
− Jn−n′−1

(
(n−n′)ε

)]
,

(15)
where a0 denotes the Bohr radius, and ε corresponds
to the eccentricity of the classical orbit with en-
ergy and angular momentum equal to the average
of the energies of the initial and final state. It should
be noted that (15) is analogous to (5) for the har-
monic oscillator, where

√
n(n+ 1) is replaced by n

for large quantum numbers n.
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Fig. 1. The first correlation function of accelera-
tions (23) (normalized to the average square of ac-
celeration) as a function of ω(t2−t1) for two periods
(ε = 0.8).

The transition elements for x can also be found〈
n′, l+1, l+1

∣∣x|n, l, l〉+ 〈n′, l−1, l−1∣∣x|n, l, l〉
≈ xn−n′ , (16)

where xn−n′ is given by (13). These formulas allow
describing the radiation from the Rydberg states
using classical approximations.

The values of the matrix elements can be modeled
classically by random trajectories. Consider then
the trajectories

X(t) = x(t) cos(χ) + y(t) sin(χ),

Y (t) = −x(t) sin(χ) + y(t) cos(χ), (17)
with ωt + φ = ξ − ε sin(ξ). The quantities φ and χ
are random phases, with uniform distributions be-
tween 0 and 2π. In this case, the expectation values
of the x and y operators are equal to the mean val-
ues of the classical quantities X and Y with the
same values of energy and angular momentum.

5. Radiation from a Rydberg state

In this and subsequent sections, we will use
atomic units in the description of a quantum state.

The electric field E(R, t) in the far field is given
by the same formula as in the classical field, with
the difference that the acceleration a is an operator
acting on the quantum state of the system consist-
ing of an electron and the photon vacuum. In the
quantum case, also the electric field is an operator.
Thus, for the radiated part of the field, we get in
the dipole approximation

E(R, t) =
1

R
n×

[
n× a(tret)

]
, (18)

where n is the unit vector in the direction of the
observation point, n = R

|R| .
In what follows, we will find the expectation val-

ues of the electric field, as well as the first and sec-
ond correlation function. It should be noted that the
radiation is weak, and therefore the measurement of

light intensity in the classical sense is questionable.
The expectation value of the electric field squared
at a given point should be understood as the photon
counting rate.

We assume that at t = 0, the state describes the
photon vacuum and the atom is in the state ψn,l,l.
This requires matrix elements of the operators x
and y and their second derivatives over time.

The first correlation function of the x component
of the field radiated in the y direction is given by

〈Ex(R, t2)Ex(R, t1)〉 =
〈
ax(t2,ret) ax(t1,ret)

〉
(4πε0R)

2 .

(19)

The expectation value of the product of accelera-
tions will be found in the classical limit. First, we
will linearize the energy in the vicinity of the initial
state energy with the principal quantum number n0.
We get

En ≈ −
1

2n20
+
n− n0
n30

. (20)

This allows for the approximation of the expecta-
tion values of the acceleration operator a(t) by the
expectation values of the r operator〈

n′, l − 1, l − 1
∣∣ax(t)∣∣n, l, l〉 ≈

−(n−n′)2ω2
0 exp

(
− i(n−n′)ω0t

)
xn−n′ ,

(21)
with ω0 = 1/n30. Thus, for the two-time correlation
function of acceleration in the state |n, l, l〉, the fol-
lowing can be found

〈ax(t2)ax(t1〉) =
∑
n′l′

〈n, l, l|x|n′l′l′〉〈n′l′l′|x|n, l, l〉

× exp
(
iω(t2 − t1)(n− n′)

)
. (22)

The same can be expressed by the correlation of the
classical trajectories

〈ax(t2)ax(t1)〉 ≈
∫

dφ

2π

∫
dχ

2π

d2X(t2)

dt22

d2X(t1)

dt21
.

(23)

This is a good approximation for large n and l. The
main point is that the matrix elements of the angu-
lar part∫

dθ sin(θ) dφ Yl,l(θ, ϕ) sin(θ)e
iϕ Yl−1,l−1(θ, ϕ),

(24)
hence the matrix element of the position oper-
ator x weakly depends on l for large l. The
correlation function obtained above is shown
in Fig. 1.

From the above considerations, it follows that the
average intensity of radiation is proportional to the
correlation function at t1 = t2 and does not depend
on time. The Fourier transform of the correlation
function∫

dt
〈
ax(t)ax(0)

〉
exp(ikωt) (25)
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determines the radiation spectrum. Thus the spec-
trum of radiation from a Rydberg state can be ap-
proximated by the spectrum of radiation from the
corresponding classical orbit.

6. Second order correlation

In this section, we will discuss the second-order
correlation function of the radiation originating
from a Rydberg state. This is given by

G(t2, t1) =
〈
Ex(t1)Ex(t2)Ex(t2)Ex(t1)

〉
. (26)

The state is, as before, the photon vacuum and the
Rydberg state of the atom. Expressing the electric
field by the acceleration of an electron in the atom,
we get

G(t2, t1) =
1

R4
exp

(
−2i nω(t1 − t2)

)
×
〈
ax(t1)ax(t2)ax(t2)ax(t1)

〉
. (27)

Just as before, we insert a complete set of states
|n, l, l〉 between the a operators and apply the ap-
proximation of l independence of the matrix ele-
ments in the case of large l. This leads to the fol-
lowing representation of the correlation function

G(t2, t1) =
1

R4

∫
dχ

2π

∫
dϕ

2π

× d2X(t2)

dt22

d2X(t2)

dt22

d2X(t1)

dt21

d2X(t1)

dt21
. (28)

Integration over the angle χ can be done explicitly,
whereas integration over the angle ϕ has to be done
numerically.

This is our final result. It gives the second corre-
lation function of radiation emitted by the atom in
a Rydberg state. The formula is approximated and
valid for small time differences t2 − t1 because it
does not take radiation damping into account. It is
valid only in the case of Rydberg states with large
n and large l, with the maximal magnetic quantum
number m = l.

An example of the second-order correlation func-
tion is shown in Fig. 2. One can notice very strong
correlation of radiation for small times — much
smaller than the period of motion — and the pe-
riodic behavior of the correlation.

7. Conclusions

Electromagnetic radiation from an atom in the
Rydberg state can be used to partially localize the
electron on the orbit. According to the classical view
of radiation, the electron moves along an elliptic or-
bit and emits radiation most efficiently when the
acceleration is large. This happens when the elec-
tron is close to the nucleus. The quantum wave-
function ψ(r, θ, ϕ) describing the electron state does
not indicate the time when the electron is close
to the nucleus. Therefore the emitted radiation is

Fig. 2. The second-order correlation function of
accelerations (27) (normalized to the square of the
average square of acceleration) as a function of
ω(t2 − t1) for one period (ε = 0.8). Panel (b) shows
the same for smaller values of time difference.

time-dependent, and its period reflects the period
of motion. The time-averaged intensity, as well as
the spectrum of radiation, is constant in time (for
a relatively short time; radiation damping is not
taken into account). The second correlation func-
tion, G(t2, t1), depends on the time difference t2−t1
and is a periodic function of time, with the fre-
quency of the classical electron motion.

In the quantum language, the atom is in a highly
excited Rydberg state with the principal quantum
number n. The state is stationary, therefore, the
average intensity of emitted radiation is constant
in time. The spectrum is stationary since radiation
damping is neglected, and consists of several nar-
row lines corresponding to the transition to lower
energy states. The second correlation function, how-
ever, breaks the time translation symmetry, and this
unravels the time evolution of radiation. Based on
the measurement of radiation, we can reconstruct
the motion of the electron.

The second correlation function was found in the
classical approximation, however, its meaning is in-
deed purely quantum. The classical approximation
means that transition matrix elements have been
approximated by the corresponding classical expres-
sion. If exact expressions for the matrix elements
had been used, the result would have been very sim-
ilar. The calculations would have been numerically
more complex.
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We have to stress that electron localization is
limited by the uncertainty principle. Thus in the
case of the state with orbital quantum number l,
the angle localization is possible up to 2π/l. While
in the case of large l considered here, this is not
a strong limitation, it does play a significant role in
the case of l of the order of 1, even for states with
large principle quantum numbers n.

Our results show that the correlation function is
strongly time-dependent. This correlation function
clearly shows that if a strong and short impulse
of radiation is detected, the next such pulse will
come after one period of the corresponding classi-
cal motion, or in the quantum language, after time
T = 2π/(En−En−1). This is due to the large accel-
eration of an electron in the vicinity of the nucleus.

The first strong pulse localizes the electron at this
point and breaks the time independence of the ra-
diation. The second pulse comes after one period.
Between the strong pulses, the radiation is much
weaker because of the small acceleration. Thus the
observation of the time dependence of radiation al-
lows the localization of the Rydberg electron in the
vicinity of the nucleus.

This method of localizing an electron on the or-
bit is non-standard. The recent approach to quan-
tum particle localization is based on successive
measurements of a single particle. Measurement
means entangling the particle with another system
— a pointer — and then the measurement of the
pointer state. In the present approach, the electro-
magnetic field serves as the pointer. The electron
position is not measured directly — remember the
dipole approximation — the electron acceleration is
being measured. Obviously, the second-order corre-
lation gives a deeper insight into the dynamics than
the average values of observables. Also, it provides
some insight into the measurement process in quan-
tum mechanics, due to which the difficult process
of position measurement is replaced by a standard
measurement of radiation.

We have to point out that the approach described
in this paper does not discuss the probabilities of
single measurements, but rather it discusses aver-
ages such as a correlation function. Nevertheless, it
is a possible way of detecting the motion of an elec-
tron along a trajectory.
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Fractal structures appearing in solutions of certain quantum problems are investigated. We prove the
previously announced results concerning the existence and properties of fractal states for the Schrödinger
equation in the infinite one-dimensional well. In particular, we show that for this problem, there exist
solutions in the form of fractal quantum carpets: the probability density P (x, t) forms a fractal surface
with dimension Dxy, while its cross-sections Pt(x) and Px(t) typically form fractal graphs with dimen-
sions Dx and Dt respectively, where Dxy = 2 +Dx/2 and Dt = 1 +Dx/2 (almost everywhere).

topics: quantum carpets, quantum fractals, fractal dimension, fractal curves

1. Introduction

Fractals are sets and measures of non-integer
dimension [1, 2]. They are good models of phe-
nomena and objects in various areas of science.
Their ubiquity in dynamical systems theory as
attractors, repellers, and attractor boundaries is
well-known [2, 3]. They are often connected with
non-equilibrium problems of growth [4] and trans-
port [5, 6]. Fractal properties of hydrodynamic
modes have been shown to be connected with
transport coefficients [7, 8]. Fractal dimensions are
used in many nonlinear time series analysis meth-
ods [9, 10].

Fractals have also been found in quantum me-
chanics [11–14]. For instance, quantum models re-
lated to the problem of chaotic scattering often re-
veal fractal structures [15–17] relevant for quantum
transport [18]. Fractal structures play a prominent
role in studies of the quantum dynamics of a re-
duced density operator [19]. Spectroscopic charac-
terization of the electronic wave function inside a
confined structure with fractal geometry was dis-
cussed in [20]. Quantum field theories in fractal
spacetimes were also analyzed [21, 22], and fractal

structures were reported in models of quantum
gravity [23, 24]. Fractional calculus was found useful
to describe the dynamics of quantum particles [25],
while a Bohmian approach to quantum fractals was
presented in [26].

It was also shown that the Schrödinger equa-
tion for the simplest non-chaotic potentials admits
fractal solutions [27]. The resulting probability dis-
tributions P (x, t) as functions of space and time,
called quantum carpets [28–31], reveal fractal fea-
tures [27, 32, 33]. In this paper, we have two objec-
tives. One is to present the rigorous proofs of frac-
tality of quantum states reported in [32]. The other
is to illustrate a convenient method of calculating
the dimensions of graphs of continuous functions in-
troduced by Claude Tricot [34].

2. Methods

2.1. Box-counting dimension

In this section, we recall several equivalent defi-
nitions of box-counting dimension, state a criterion
for finding the dimension of a continuous function
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of one variable, and prove a connection between the
dimension of the graph of a function of n variables
and the dimensions of its sections. All of this is
known, perhaps with the exception of Theorem 2,
which might be new. We concentrate on the theory
of box-counting dimension for graphs of continuous
functions of one variable. More general theory and
a deeper presentation can be found, for instance,
in [2, 34, 35].

Let A ⊂ Rn be bounded. Consider a grid of
n-dimensional boxes of side δ[
m1δ, (m1+1)δ

]
× · · · ×

[
mnδ, (mn+1)δ

]
. (1)

Let N(δ) be the number of these boxes covering the
set A. It is always finite because A is bounded.

Definition 1. Box-counting dimension of the set A
is the limit

dimB(A) := lim
δ→0

ln
[
N(δ)

]
ln
[
1/δ
] . (1)

If the limit does not exist, one considers upper and
lower box-counting dimensions

dimB(A) := lim sup
δ→0

ln
[
N(δ)

]
ln
[
1/δ
] , (3)

dimB(A) := lim inf
δ→0

ln
[
N(δ)

]
ln
[
1/δ
] , (4)

which always exist and satisfy
dimB(A) ≥ dimB(A). (5)

The box-counting dimension exists if the upper and
lower box-counting dimensions are equal.

Several equivalent definitions are in use
(see [1, 2, 34, 35] for a review). The most
convenient definition to study the fractal properties
of graphs of continuous functions is given in terms
of δ-variations [34]. It is essentially a variant of
the Bouligand definition [36]. We shall restrict our
attention to dimensions of curves being subsets of
a plane.

Let Kδ(x) be a closed ball {y ∈ R2 : |x−y| ≤ δ}.

Definition 2. Minkowski sausage or δ-parallel body
of A ⊂ R2 is
Aδ :=

⋃
x∈A

Kδ(x) = {y ∈ R2 : ∃x ∈ A, |x−y| ≤ δ}.

(6)
Thus the Minkowski sausage of A is the set of all the
points located within δ of A.

Proposition 1. The box-counting dimension of a set
A ⊂ R2 satisfies

dimB(A) = lim
δ→0

(
2−

ln
[
V (Aδ)

]
ln[δ]

)
, (7)

where V (δ) = vol2(Aδ) is the area of the Minkowski
sausage of A.

Proof. Every square from the δ-grid containing
x ∈ A is included in K√2δ(x). On the other hand,
every closed ball of radius

√
2δ can be covered by

at most 16 squares from the grid. Therefore,
δ2N(ε) ≤ V

(
A√2δ

)
≤ 16δ2N(ε). (8)

Consider a continuous function on a closed in-
terval f : [a, b] → R. Its graph is a curve in the
plane. To find its box-counting dimension, estimate
the number of boxes N(δ) intersecting the graph.
Choose column {(x, y) :x ∈ [nδ, (n + 1)δ]}. Since
the curve is continuous, the number of the boxes in
this column intersecting the graph of f is at least

1

δ

[
sup

x∈[nδ,(n+1)δ]

f(x)− inf
x∈[nδ,(n+1)δ]

f(x)

]
(9)

and no more than the same plus 2. If f was a record
of a signal, then the difference between the maxi-
mum and minimum value of f on the given interval
quantifies how the signal oscillates on this interval.
That’s why it is called δ-oscillation.

Definition 3. δ-oscillation of f at x is

oscδ(x)(f) := sup
|y−x|≤δ

f(y)− inf
|y−x|≤δ

f(y) =

sup
{
|f(y)−f(z)| : y, z ∈ [a, b] ∩ [x−δ, x+δ]

}
.

(10)

We will skip (f) if it is clear from the context
which function we consider.

From (9) we obtain the following estimate on the
total number of boxes covering the graph of f ,

M∑
m=1

oscδ/2(xm)

δ
≤ N(δ) ≤ 2M +

M∑
m=1

oscδ/2(xm)

δ
,

(11)

where xm = a+(m− 1
2 )δ is the middle of the m-th

column from the cover of the graph andM = d b−aδ e
is the number of columns in the cover (dxe stands
for the smallest integer greater or equal to x). Thus,

N(δ) ≈M oscδ/2/δ. (12)

If the graph of f has the box-counting dimension D,
N(δ) scales as δ−D. This implies the following scal-
ing of the oscillations

oscδ/2 ≈ N(δ) δ/M ∝ δ2−D. (13)
We have thus suggested a connection between the
box-counting dimension of the graph and the scaling
exponent of the average oscillation of the function f .

Definition 4. δ-variation of function f is

Varδ(f) :=
∫ b

a

dx oscδ(x)(f) =: (b−a) oscδ(f).
(14)

Geometrically, variation is the area of the set
scanned by the graph of f moved horizontally ±δ
and truncated at x = a and x = b, thus, it is a kind
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of Minkowski sausage constructed with horizontal
intervals of length 2δ. This observation leads to a
convenient technique for calculating dimensions.

Theorem 1. Let f(x) be a non-constant continuous
function on [a, b], then

dimB graphf = lim
δ→0

(
2−

ln
[
Varδ(f)

]
ln[δ]

)
. (15)

The proof consists of showing equivalence of
Varδ(f) with the Minkowski sausage and follows
from inequality ([34], p. 130–132, 148–149)

Varδ(f) ≤ V (Aδ) ≤ cVarδ(f), (16)
where

A = graphf,
c = c1 + c2/s,

s =
[

sup
x∈[a,b]

f(x)− inf
x∈[a,b]

f(x)
]
.

(17)
This is where the assumption of non-constancy of
f comes in. Derivation of (16) is not difficult but
rather lengthy and will be omitted.

This theorem is the main tool to prove Theorem 3
in Sect. 3. In order to find the dimensions, we will
look for estimates of δ-variation. They will usually
take the following form:
Proposition 2

1. oscδ(x)f(x) ≤ c δ2−s ⇒ dimB graph f ≤ s.

2. W :=
∫ b
a
dx

∣∣f(x+δ)−f(x−δ)∣∣ ≥ c δ2−s ⇒
dimB graph f ≥ s.

Proof. puste pole

1. Varδf =
∫ b
a
dx oscδ(x)(f) ≤ (b−a)c δ2−s .

2. osc2δ(x)f ≥
∣∣f(x+δ)−(x−δ)∣∣ ⇒ Varδf ≥

(b−a)c (δ/2)2−s.

To prove the last point of Theorem 3, we need
to know what is the dimension of the graph of
f : Rn → R, given all the dimensions of its one-
variable restrictions.

Theorem 2. Let f ∈ C0([a1, b1]×· · ·× [an, bn]). For
every point x = (x1, . . . , xn) ∈ [a1, b1]×· · ·× [an, bn]
define x̃i := (x1, . . . , xi−1, xi+1, . . . , xn). Then

fi[x̃
i
0](x

i) := f(x10, . . . , x
i−1
0 , xi, xi+1

0 , . . . , xn0 )

(18)
is a restriction of f to a line parallel to i-th axis going
through x0 and fi[x̃i0] ∈ C0([ai, bi]).
(1) If ∀x : oscδfi[x̃i] ≤ ciδHi , then
dimB graph f(x1, . . ., xn) ≤ n+1−min{H1, . . ., Hn}.

(19)
(2) If Varδfi[x̃i0] ≥ ci δ

Hi for a dense set x̃i0 ∈ A ⊂
A = [a1, b1]× . . .× [ai−1, bi−1]× [ai+1, bi+1]× . . .×
[an, bn], then

dimB graphf(x1, . . ., xn) ≥ n+1−min{H1, . . ., Hn}.
(20)

(3) If all of the above conditions are satisfied, then

dimB graphf(x1, . . ., xn)=n+1−min{H1, . . ., Hn}=

n−1+max{s1, . . ., sn}, (21)

where si = supx̃i dimB graph fi[x̃i](xi).

In other words, the strongest oscillations along
any direction determine the box-counting dimension
of the whole n+1-dimensional graph.

Proof. We will show the theorem for n = 2 for no-
tational simplicity. Generalization to arbitrary n
is immediate. Let f : [a1, b1] × [a2, b2] → R. Di-
vide the domain into squares Xi × Yj of side δ.
This gives rise to K columns Aij of δ-grid in R3,
1 ≤ K δ2

(b1−a1)(b2−a2) ≤ 2.

(1). The number of δ-cubes having a common
point with the graph of f in column Aij is not
greater than 1

δ (supAij f− infAij f)+2. But∣∣f(x1, y1)− f(x2, y2)∣∣ =∣∣f(x1, y1)−f(x1, y2) + f(x1, y2)−f(x2, y2)
∣∣

≤
∣∣f(x1, y1)−f(x1, y2)∣∣+ ∣∣f(x1, y2)−f(x2, y2)∣∣.

(22)
Therefore
sup
Aij

f − inf
Aij

f = sup
(x1,y1),(x2,y2)∈Aij

|f(x1, y1)−f(x2, y2)|

≤ sup
x∈Xi

sup
y∈Yj

f(x, y) + sup
y∈Yj

sup
x∈Xi

f(x, y)

≤ sup
x∈Xi

oscδ/2 f1[x] + sup
y∈Yj

oscδ/2 f2[y]

≤ c δmin{H1,H2}. (23)

Thus
dimB graph f(x1, x2) ≤ lim

δ→0

ln[Kc δmin{H1,H2}/δ]
ln [1/δ]

≤ 3−min{H1, H2}. (24)

(2). Set x ∈ Xi. From (8) and (16) it follows that
the number Ni(δ) of δ-cubes in columns Aij cov-
ering the graph of f2[x](y) and the variation of f2
satisfy

Varδf2[x] ≤ c δ2Ni(δ). (25)
Thus

Ni(δ) ≥ c sup
x∈Xi

Varδf2[x]/δ2 ≥ c δH2−2. (26)

Therefore, the number N(δ) of boxes covering the
whole graph of f satisfies

N(δ) ≥ c
∑M

i=1
sup
x∈Xi

Varδf2[x]/δ2 ≥ c1δH2−3. (27)

The same can be repeated for any direction, thus
N(δ) ≥ c2 δmin{H1,H2}−3. (28)

(3). An immediate corollary.
Generalization to arbitrary n is achieved by ob-

serving that Kδn ≈ const.
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Another definition, which has some conve-
nient technical properties, is the Hausdorff dimen-
sion [37–39], however, it is often too difficult to cal-
culate. For instance, as far as we know, there is still
no proof that the Hausdorff dimension of the Weier-
strass function is equal to its box-counting dimen-
sion. Thus in practice, one usually uses the (upper)
box-counting dimension. This is also our present ap-
proach. It is often assumed that the box-counting
dimension and the Hausdorff dimension are equal.
A general characterization of situations when this
conjecture really holds is also lacking.

2.2. Fractal functions

One of the oldest fractals is a graph of the Weier-
strass function [40, 41]

W (x) =
∑∞

n=0
an cos(bnxπ), (29)

introduced as an example of an everywhere con-
tinuous, nowhere differentiable function by Karl
Weierstrass around 1872. The maximum range of
parameters, for which the above series has required
properties was found by Godfrey Harold Hardy
in 1916 [42], who also showed that

sup
{
|f(x)−f(y)| : |x−y| ≤ δ

}
∼ δH , (30)

where H = ln(1/a)
ln(b) . From this it easily follows

(see below) that the box-counting dimension of the
graph of the Weierstrass function W (x) is

DW = 2+H = 2+
ln(a)

ln(b)
= 2−

∣∣∣∣ ln(a)ln(b)

∣∣∣∣ . (31)

Functions whose graphs have non-integer box-
counting dimension are called fractal functions.
Even though the box-counting dimension of the
Weierstrass function is easy to calculate [34], the
proof that its Hausdorff dimension has the same
value is still lacking, as far as we know. Lower
bounds on the Hausdorff dimension of the graph
were found by Mauldin [43, 44]. Graphs of random
Weierstrass functions were shown to have the same
Hausdorff and box-counting dimensions for almost
every distribution of phases [45].

3. Results

The construction of the Weierstrass function,
(29), can easily be realized in quantum mechanics.
Consider solutions of the Schrödinger equation

i∂tΨ(x, t) = −∇2Ψ(x, t) (32)
for a particle in the one-dimensional infinite po-
tential well. The general solutions satisfying the
boundary conditions Ψ(0, t) = 0 = Ψ(π, t) have
the form

Ψ(x, t) =
∑∞

n=1
an sin(nx)e

− in2t, (33)
where

an =
2

π

∫ π

0

dx sin(nx)Ψ(x, 0). (34)

Weierstrass quantum fractals are wave functions
of the form

ΨM (x, t) = NM
∑M

n=0
qn(s−2) sin(qnx)e− iq2nt,

(35)
where q = 2, 3, . . . , s ∈ (0, 2).

In the physically interesting case of finite M , the
wave function ΨM is a solution of the Schrödinger
equation. The limiting case

Ψ(x, t) := lim
M→∞

ΨM (x, t) =

N
∑∞

n=0
qn(s−2) sin(qnx)e− iq2nt, (36)

with the normalization constant
N=

√
2
π

√
1−q2(s−2), is continuous but nowhere

differentiable. It is a weak solution of the
Schrödinger equation. Note that (36) converges for
(|qs−2| < 1 ≡ s < 2. Since the probability density
of wave function (36) shows fractal features for
s > 0 (see below), the interesting range of s is
(0, 2).

The main results announced in [32], which we
prove here, are that not only the real part of the
wave function Ψ(x, t), but also the physically im-
portant probability density P (x, t) := |Ψ(x, t)|2 ex-
hibit fractal nature. This is not obvious, because
|Ψ(x, t)|2 is the sum of squares of the real and imag-
inary parts having usually equal dimensions. One
can easily show that the dimension of the graph of
a sum of functions whose graphs have the same di-
mensions D can be anything† from 1 to D.

Our main results are given by Theorem 3.

Theorem 3. Let P (x, t) denote the probability den-
sity of a Weierstrass-like wave function (36). Then

1. at the initial time t = 0, the probability density
P0(x) = P (x, 0) forms a fractal graph in the
space variable (i.e., space fractal) of dimension
Dx = max{s, 1};

2. the dimension Dx of graph of Pt(x) = P (x, t =
const) does not change in time;

3. for almost every x inside the well, the probability
density, Px(t) = P (x = const, t), forms a frac-
tal graph in the time variable (i.e., time fractal)
of dimension Dt(x) = Dt := 1+s/2;

4. for a discrete, dense set of points xd, Pxd(t) =
P (xd, t) is smooth, and thus Dt(xd) = 1;

5. for even q, the average velocity d〈x〉
dt (t) is fractal

with the dimension of its graph equal to Dv =
max{(1 + s)/2, 1};

6. the surface P (x, t) has dimension Dxy =
2+s/2.

†1Let f1 and f2 be functions with graphs having dimen-
sions, respectively, 1 ≤ D1 < D2 ≤ 2. Let g1 = f1 + f2,
g2 = f1 − f2. Then the box-counting dimension of both the
graph of g1 and g2 is D2, but the dimension of the graph of
their sum g1 + g2 = 2f1 is D1 ∈ [1, D2].
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The physical meaning of Theorem 3 has been
discussed in [32]. Here we only emphasize that to
generate a fractal wave function with exact mathe-
matically rigorous fractal features with infinite scal-
ing properties, infinite energy is required. However,
even a few terms in the series defining the function
(36) can lead to physically interesting effects.

Our proof of Theorem 3 is based on the power-law
behavior of the average δ-oscillation of the infinite
double sum present in P (x, t) = |Ψ(x, t)|2 (see (122)
in Appendix). Some fundamental concepts and facts
used in the proof are given in Sect. 2.1. Calculations
of probability density and average velocity are pro-
vided in the Appendix. Positive real constants are
denoted by c, c1, c2, . . .

4. Proof of Theorem 3

1. At the initial time t = 0, the probability den-
sity, P0(x) = P (x, 0), forms a fractal graph in
the space variable (i.e., space fractal) of di-
mension Dx = max{s, 1}.

2. The dimension Dx of graph of Pt(x) =
P (x, t = const) does not change in time.

We will show that for every fixed t, the graph of
the probability density |Ψ |2 (see (122) in Appendix)
as a function of x has the box-counting dimension s.

(a) Fix t. Let

Pn(x) :=
∑n
k=0 q

k(s−2)∑k
l=0 sin(q

lx) sin(qk−lx)

× cos
[(
q2l − q2(k−l)

)
t
]
, (37)

q = 2, 3, . . . It is a smooth function whose derivative
at every point satisfies

|P ′n(x)| ≤ 2
n∑
k=0

qk(s−2)
k∑
l=0

ql
∣∣∣ cos (qlx) sin (qk−lx)∣∣∣

≤ 2
n∑
k=0

qk+1

q−1 qk(s−2) ≤ d1(s, q) qn(s−1), (38)

where

d1(s, q) =
2qs

(q − 1)(qs−1 − 1)
. (39)

Let δ = q−n. Then

oscδ(x)Pn ≤ 2δ sup
x∈[0,π]

|P ′n(x)| ≤ 2d1(s, q)δ
2−s.

(40)

On the other hand, for
Rn(x) := P (x)−Pn(x) =

∑∞
k=n+1 q

k(s−2)

×
∑k
l=0 sin(q

lx) sin(qk−lx) cos
[
(q2l−q2(k−l))t

]
,

(41)
we have

oscδ(x)Rn ≤ 2

∞∑
k=n+1

qk(s−2)(k+1) ≤ 4q(n+1)(s−2)n

(1− qs−2)2
.

(42)
Polynomial growth is slower than exponential,
therefore for arbitrarily small ε there is some M
such that ∀n > M :n < (qε)n. This leads to the
following estimate of the oscillation of Rn,

oscδ(x)Rn ≤ d2(s, q) δ2−s−ε, (43)

where

d2(s, q) =
4qs−2

(1− qs−2)2
. (44)

Thus for all x and δ=q−n, where ln(n)
n <ε ln(q), we

have
oscδ(x)P ≤ oscδ(x)Pn+oscδ(x)Rn

≤
(
2d1 + d2

)
δ2−s−ε. (45)

From Proposition 2 it follows that
dimB graphPt(x) ≤ 2− (2−s−ε) = s+ε→ε→0 s.

(b) Fix t. Let f(x)=P (x, t). We want to show that

W :=

∫ b

a

dx
∣∣f(x+δ)− f(x−δ)∣∣ ≥ c δ2−s.

(46)
Take a=0, b=π. Notice that (we skip the normal-
ization constant)

W =

∫ π

0

dx
∣∣f(x+δ)−f(x−δ)∣∣ =∫ π

0

dx
∣∣∣∑∞

k=0
qk(s−2)

∑k

l=0

{
sin
[
ql(x+δ)

]
sin[qk−l(x+δ)]− sin[ql(x−δ)] sin[qk−l(x−δ)]

}
akl

∣∣∣ =∫ π

0

dx

∣∣∣∣∑∞

k=0
qk(s−2)

∑k

l=0

{
cos(qlx) sin(qk−lx) sin(qlδ) cos(qk−lδ)

}
akl

∣∣∣∣ , (47)

where akl = cos[(q2k−q2l)t]. Take |h(x)| ≤ 1. Observe that

b∫
a

dx
∣∣∣∑
i

fi(x)
∣∣∣ ≥ b∫

a

dx |h(x)|
∣∣∣∑
i

fi(x)
∣∣∣ ≥ ∣∣∣ b∫

a

dx
∑
i

h(x)fi(x)
∣∣∣ ≥ ∣∣∣ b∫

a

dx h(x)fk(x)
∣∣∣−∑

i 6=k

∣∣∣ b∫
a

dx h(x)fi(x)
∣∣∣.

(48)
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One can interchange the order of summation and integration because f(x) is absolutely convergent. Let us
take δ=q−N , h(x) = sin(qmx) cos(qnx). After substitution in (47) using (48) we obtain

W ≥
∣∣∣∣ ∞∑
k=0

qk(s−2)
k∑
l=0

sin(ql−N ) sin(qk−l−N )

π∫
0

dx sin(qlx) cos(qk−lx) cos(qmx) cos(qnx) akl

∣∣∣∣ =
π

4
q(m+n)(s−2)

∣∣∣cos(qm−N ) sin(qn−N ) cos
[
(q2(m+n)−q2m)t

]∣∣∣ =:
π

4
W̃ . (49)

We will now prove that ∃c : W̃ = q(m+n)(s−2) ×
| cos(qm−N ) sin(qn−N ) cos[(q2(m+n) − q2m)t]| ≥
cqN(s−2), for arbitrary real t. We will take advan-
tage of the fact that q is an integer.

Let N = m + n. Then W̃ = qN(s−2) ×
| cos(qm−N ) sin(q−m) cos[(q2N−q2m)t]|. It is enough
to consider t ∈ [0, π].

Let us write t/π in q

t

π
=
a1
q

+
a2
q2

+
a3
q3

+ · · · =
∞∑
k=1

ak
qk
, (50)

where ak ∈ {0, 1, . . . , q − 1}, so that t/π can be
written as

t

π
= 0.a1a2 . . . aK

(
aK+1 . . . aK+T

)
. (51)

Therefore,

cos
[
(q2N−q2m)t

]
= cos

[
π(q2N−1a1 + q2N−2a2

+ · · ·+ a2N + q−1a2N+1 + · · ·+ q2m−1a1

+q2m−2a2 + · · ·+ a2m + q−1a2m+1 + . . . )
]
=

cos
[
π
(
a2N+1−a2m+1

q +a2N+2−a2m+2

q2 + . . .
)]
.
(52)

If we could only choose m so that the first two
terms in this series cancel out, we would have a
lower estimate on the cosine, because, in this case,∣∣∣∣a2N+3−a2m+3

q3
+. . .

∣∣∣∣ ≤ (q−1)
(

1

q3
+

1

q4
+. . .

)
=

1

q2
.

(53)
Thus,

cos
[(
q2N−q2m

)
t
]
≥ cos

( π
q2

)
≥ cos

(π
4

)
. (54)

Let A be the set of all the two-element sequences
with elements from the set {0, 1, . . . , q−1}. Thus

A =
{
{0, 0}, {0, 1}, . . . , {0, q−1}, {1, 0}, . . . ,

. . . , {q−1, q−1}
}
, (55)

and we write Ak,l := {k, l}, k, l ∈ {0, 1, . . . , q − 1}.
Consider all the pairs of consecutive q-digits of t/π
of the form{

a2m+1, a2m+2

}
, (56)

i.e., {a1, a2}, {a3, a4} etc. Every such pair is equal
to some Ak,l. Let Nk,l be the first such m, for which

Ak,l =
{
a2m+1, a2m+2

}
. (57)

If Ak,l for given k, l doesn’t appear in the sequence
of all the pairs (56), we set Nk,l = 0. Let

M = sup
k,l

Nk,l. (58)

Thus if n>M , the sequence {a2n+1, a2n+2}
has appeared at least once among the pairs
{a1, a2}, {a3, a4}, . . . , {a2M+1, a2M+2}. Therefore,
for everyN>M we can find such anm ∈ 1, 2, . . . ,M
that∣∣∣∣cos [(q2N−q2m)

t

π
π

]∣∣∣∣≥ cos

(
π

q2

)
≥ cos

(π
4

)
=

√
2

2
.

(59)
Also

sin(q−m) ≥ sin(q−M ),

cos(qm−N ) ≥ cos(qM−N ) ≥ cos(1),
(60)

which leads to

W̃ ≥
√
2

2
qN(s−2) sin(q−M ) cos(1)=const qN(s−2).

(61)
We have thus shown that for every t, for natu-

ral q, and for δ = q−N

W ≥ const δ2−s, (62)
therefore (Proposition 2)

dimB graphPt(x) ≥ 2− (2−s) = s. (63)

3. For almost every x, Dt(x) =
dimB graphPx(t) = Dt := 1+s/2.

We will use the form (123) given in Appendix of
the probability density. It is enough to analyze the
dimension of

P̃ (t) :=

∞∑
c=1

q2c(s−2) sin(qcx)

c∑
d=1

q−d(s−2)

× sin(qc−dx) cos[(q2c−q2(c−d))t]. (64)

(a) Let

Pn(t) :=

n∑
c=1

q2c(s−2) sin(qcx)

c∑
d=1

q−d(s−2)

× sin(qc−dx) cos[(q2c−q2(c−d))t]. (65)
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Then

|P ′n(t)| =

∣∣∣∣∣
n∑
c=1

q2c(s−2) sin(qcx)

c∑
d=1

q−d(s−2) sin(qc−dx)(q2c−q2(c−d)) sin
[
(q2c−q2(c−d))t

]∣∣∣∣∣ ≤
n∑
c=1

q2c(s−2)
c∑

d=1

q−d(s−2)
(
q2c−q2(c−d)

)
=

n∑
c=1

q2c(s−2+1)
c∑

d=1

q−d(s−2)(1− q−2d) =

q2−s

q2−s − 1

[
qs
qns − 1

qs − 1
− q2(s−1) q

2n(s−1) − 1

q2(s−1) − 1

]
− q−s

q−s − 1

[
qs−2

qn(s−2) − 1

qs−2 − 1
− q2(s−1) q

2n(s−1) − 1

q2(s−1) − 1

]
. (66)

Therefore, for n large enough,
|P ′n(t)| ≤ c1 qnmax{s,2(s−1),s−2} = c qns. (67)

Let δ = q−αn. Then qn = δ−1/α and
oscδ(t)Pn ≤ 2c1 δq

ns = 2c1 δ
1−s/α. (68)

Let
Rn(t) := P̃ (t)− Pn(t). (69)

Then

oscδ(t)Rn ≤ 2

∞∑
c=n+1

q2c(s−2)
c∑

d=1

q−d(s−2)

≤ 2q2−s

q2−s−1

∞∑
c=n+1

q2c(s−2)+c(2−s)=c2 δ
(s−2)/α.

(70)

To obtain a consistent estimate we must set

1− s

α
=

2

α
− s

α
, (71)

which gives α = 2. Thus
oscδ(t)P̃ ≤ (2c1+c2) δ

1−s/2. (72)

(b) Now we want to show that

W =

∫ b

a

dt
∣∣∣P̃ (t+δ)− P̃ (t−δ)∣∣∣ ≥ c δ1−s/2. (73)

Set a = 0, b = 2π for convenience. Then

W =

2π∫
0

dt

∣∣∣∣∣
∞∑
c=1

q2c(s−2) sin(qcx)

c∑
d=1

q−d(s−2) sin(qc−dx)
{
cos[(q2c−q2(c−d))(t+δ)]− cos[(q2c−q2(c−d))(t−δ)]

}∣∣∣∣∣=
2π∫
0

dt

∣∣∣∣∣
∞∑
c=1

q2c(s−2) sin(qcx)

c∑
d=1

q−d(s−2) sin(qc−dx)
{
−2 sin[(q2c−q2(c−d))t] sin[(q2c−q2(c−d))δ]

}∣∣∣∣∣ . (74)

Using our standard arguments, we multiply the in-
tegrand by a suitable function smaller or equal to 1,

W ≥
2π∫
0

dt |h(t)|
∣∣P̃ (t+δ)− P̃ (t−δ)∣∣ ≥

∣∣∣ 2π∫
0

dt h(t)
[
P̃ (t+δ)− P̃ (t−δ)

]∣∣∣. (75)

We choose h(t) = sin[(q2c−q2(c−d))t] and set
δ = q−2N . It follows that

W ≥ 2πq(2c−d)(s−2)

×
∣∣∣sin(qcx) sin(qc−dx) sin(q2c−q2(c−d)) q−2N ∣∣∣ .

(76)
We now want to show that for almost all x

W ≥ c3 δ1−s/2 = c3 q
N(s−2). (77)

Set 2c−d = N . Then
W ≥ 2π qN(s−2)

×
∣∣∣sin(qcx) sin(qN−cx) sin(q2(c−N)−q−2c

)∣∣∣ .
(78)

Thus it is enough to bound∣∣∣sin(qcx) sin(qN−cx) sin[q2(c−N) − q−2c]
∣∣∣ (79)

from below.
Choose rational x/π. All the rational numbers in

a given basis q have finite or periodic expansion. In
the first case (x/π = k/ql), we cannot find the lower
bound on (79). We cannot succeed, because at these
points the function Px(t) is smooth (cf. the proof of
Theorem 3.4).

The other case means that x/π can be written as
x

π
= 0.a1a2 . . . aK

(
aK+1 . . . aK+T

)
, (80)
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where again (aK+1 . . . aK+T ) denotes the pe-
riodic part. Therefore, for every N>K, qnx
mod π can take only one of T values: qK+1x
mod π, . . . , qK+Tx mod π. Let us take c = 1,
N>K. Then | sin(qcx)| = | sin(qx)| > 0 and is a
constant. Note that | sin(qN−1x)| takes one of T
values, none of which is 0, therefore it is always
bounded from below by

inf
l=1,2,...,T

| sin(qK+lx)| > 0. (81)

Also, the last term can be bounded∣∣∣sin (q−2(N−c)−q−2c)∣∣∣ ≥ sin
(
q−2−q−2(N−1)

)
≥

sin(q−3) (82)

for N ≥ 3. Thus for rational x/π with periodic
expansion in q

W ≥ 2π c3 q
N(s−2), (83)

where c3=| sin(qx) sin( xq3 )| inf l=1,2,...,T | sin(qK+lx)|.
Consider now irrational x/π. Inequality (78) for

c = N takes the form
W ≥ 2πqN(s−2) ∣∣sin(qNx) sin(x) sin (1−q−2N)∣∣
≥ c qN(s−2) ∣∣sin(qNx)∣∣ , (84)

for N ≥ 2. Instead of showing it can be bounded
from below, we will use it to prove that for almost
every x

dimB graphPx(t) ≥ 1 + s/2. (85)

Let
xn := qn (x/π) mod 1. (86)

Let
FαN :=

{
x : ∃n≥N

(
xn≤ 1

qNα

)
∨
(
1−xn≤ 1

qNα

)}
,

(87)
where α ∈ [0, 1]. Let

Fα∞ :=

∞⋂
N=1

FαN . (88)

Clearly,
FαN ⊃ FαN+1 ⊃ FαN+2 . . . (89)

Since the Renyi map (86) preserves the Lebesgue
measure, we have

µ(FαN ) ≤ 2

(
1

qNα
+

1

q(N+1)α
+

1

q(N+2)α
+ . . .

)
=

2q

q − 1

1

qNα
. (90)

Therefore
0 ≤ µ(Fα∞) ≤ inf

N
µ(FαN ) = 0. (91)

It follows that for almost every {xn}

lim
n→∞

ln | sinxn|
n

≥ lim
n→∞

ln(q−nα)

n
≥

lim
n→∞

q−nα

2n
≥ −α ln(q). (92)

Thus for every α>0 and for almost every
x/π ∈ [0, 1] we have

dimB graphPx(t) = lim

[
2− ln (VarδPx(t))

ln(q−2N )

]
≥ 2 + lim

ln (VarδPx(t))
2N ln(q)

. (93)

But
VarδPx(t) ≥W, (94)

therefore from (84)
dimB graphPx(t) ≥

2 + lim
ln(c)+N(s−2) ln(q)+ ln

∣∣ sin(xnπ)∣∣
2N ln(q)

=

1 +
s

2
+ lim

ln | sin(xnπ)|
2N ln(q)

≥ 1 +
s

2
− α. (95)

But α is arbitrary, thus
dimB graphPx(t) ≥ 1 + s/2. (96)

4. For a discrete, dense set of points xd,
Dt(xd) = dimB graphPxd(t) = 1.

Let xk,m = mπ
qk

, where k ∈ N,m = 0, 1, . . . , qk−1.
The set {xk,m} is dense in [0, 1]. At these points,
Ψ(xk,m, t) is a sum of a finite number of terms

Ψ

(
mπ

qk
, t

)
=

√
2(1−q−2(2−s))

π

k−1∑
n=0

q(s−2)n

× sin(qn−kmπ) e− iq2nt. (97)
Therefore,

dimB graph
∣∣∣∣Ψ (mπqk , t

)∣∣∣∣2 = 1. (98)

5. For even q the average velocity d〈x(t)〉
dt is frac-

tal with the dimension of its graph equal to
Dv = max{(1 + s)/2, 1}.

Heuristically, this is rather obvious, because
d〈x(t)〉

dt
≈
∑∞

k=1

qk(s−1)

q2k
sin(q2kt) =∑∞

k=1
q2k(s−3)/2 sin(q2kt). (99)

Thus the average velocity is essentially a
Weierstrass-like function and the dimension of
its graph should be

2− (3− s)/2 = (1 + s)/2. (100)

It is enough to consider

W (t) :=
∑∞

k=1

qk(s−1)

q2k − 1
sin[(q2k − 1)t]. (101)

(a) Let

Wn(t) :=
∑n

k=1

qk(s−1)

q2k − 1
sin
[
(q2k−1)t

]
. (102)
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Set δ = q−αn. Then

|W ′n(t)| =
∣∣∣∑n

k=1
qk(s−1) cos

[
(q2k−1)t

]∣∣∣
≤
∑n

k=1
qk(s−1) ≤ c1 δ(1−s)/α, (103)

where

c1 =
qs−1

qs−1 − 1
. (104)

Therefore,
oscδ(t)Wn ≤ 2c1 δ

(1−s)/αδ = 2c1 δ
1+(1−s)/α.

(105)
Now, for

Pn(t) :=W (t)−Wn(t), (106)

we have

|Pn(t)| =

∣∣∣∣∣
∞∑

k=n+1

qk(s−1)

q2k − 1
sin
[
(q2k−1)t

]∣∣∣∣∣
≤

∞∑
k=n+1

qk(s−1)

q2k − 1
≤

∞∑
k=n+1

2qk(s−1)

q2k
= c2 δ

−(s−3)/α,

(107)
where

c2 =
2qs−3

1− qs−3
. (108)

Thus
oscδ(t)Pn ≤ 2c2 δ

(3−s)/α. (109)
To obtain consistent estimates for both Pn and Wn

we must set
1 + (1− s)/α = (3− s)/α, (110)

thus α = 2 and δ = q−2N . Therefore,
oscδ(t)W ≤ oscδ(t)Wn + oscδ(t)Pn

≤ 2(c1+c2) δ
2−(s+1)/2. (111)

(b) Consider∫ b

a

dt |W (t+δ)−W (t−δ)| =

∫ b

a

dt

∣∣∣∣ ∞∑
k=1

qk(s−1) cos
[
(q2k−1)t

]
sin[(q2k−1)δ]

q2k − 1

∣∣∣∣
≥
∣∣∣∣ ∫ b

a

dt h(t)fN (t)

∣∣∣∣−∑
k 6=N

∣∣∣∣ ∫ b

a

dt h(t)fk(t)

∣∣∣∣,
(112)

where

fk(t) =
qk(s−1)

q2k − 1
cos
[
(q2k−1)t

]
sin
[
(q2k−1)δ

]
.

(113)

Let h(t) = cos[(q2N − 1)t], δ = q−2N . Then∣∣∣∣∣∣
b∫
a

dt h(t)fN (t)

∣∣∣∣∣∣ = qN(s−1)

q2N − 1
sin
(
1−q−2N

) b∫
a

dt cos2[(q2N−1)t] ≥ qN(s−1)

q2N
sin
(π
6

) b∫
a

dt cos2[(q2N−1)t]

≥ 1

2
qN(s−3)

[
b− a
2

+
sin[2b(q2N−1)]− sin[2a(q2N−1)]

4(q2N − 1)

]
≥ 1

2
δ(3−s)/2

[
b− a
2
− 2 · 2

4q2N

]
=

1

2
δ(3−s)/2

[
1

2
(b− a)− δ

]
≥ 1

8
δ(3−s)/2(b− a). (114)

On the other hand,∣∣∣∣∣∣
b∫
a

dt h(t)fk(t)

∣∣∣∣∣∣ = qk(s−1)

q2k − 1
sin
[
(q2k−1)q−2N

] b∫
a

dt cos[(q2k−1)t] cos[(q2N−1)t]

≤ qk(s−1)

q2k − 1

∣∣∣∣ sin[b(q2N−q2k)]− sin[a(q2N−q2k)]
2(q2N − q2k)

+
sin[b(q2N + q2k)]− sin[a(q2N + q2k)]

2(q2N + q2k)

∣∣∣∣
≤ 2qk(s−3)

[
1

|q2N − q2k|
+

1

q2N + q2k

]
≤ 2qk(s−3)

[
1

q2N − q2(N−1)
+

1

q2N

]
≤ 5qk(s−3)δ. (115)

Therefore,

W ≥ 1

8
δ(3−s)/2(b−a)−

∑
k

5qk(s−3) δ ≥ 1

8
δ(3−s)/2(b−a)− 5qs−3

qs−3 − 1
δ. (116)
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But 1
2 (3−s) < 1, thus for large enough N (small

enough δ) the first term dominates the other, there-
fore

W ≥ c δ2−(1+s)/2, (117)

with c = (b− a)/16, for example.
From Theorem 1 it follows that

Dv =
1 + s

2
. (118)

6. The surface P (x, t) has dimension Dxy =
2+ 1

2s.

Setting x or t constant, we have shown that
oscillations are bounded by cδH , where exponent H
is one of 1, s, s/2. We also showed the lower bound
of variation is always c δH , again with H being one
of 1, s, s/2. What is more, there is a dense set of
points x, for which VarδPx(t) ≥ c δs/2. One can
take, for instance, all rational x/π with periodic
q-expansion. Thus from Theorem 2 we have

Dxt = 1 +max{Dx, Dt} = 2 +
s

2
. (119)

Proof.

5. Conclusions

In this article, we proved a theorem announced
in [32] that a simple textbook problem of quan-
tum theory — the Schröedinger equation describ-
ing a point particle in an infinite potential wall —
admits continuous but nowhere differentiable so-
lutions with fractal structure. The proposed solu-
tions Ψ = Ψ(x, t) display properties of a frac-
tal quantum carpet, i.e., the probability density,
P (x, t) = |Ψ(t, x)|2, forms a fractal surface and its
dimension Dxy is determined by the fractal dimen-
sion Dx of the cross-section Pt(x).
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Appendix: Auxiliary calculations

A1. Probability density

Take the fractal wave function (36),

Ψ(x, t)=

√
2(1−q2(s−2))√

π

∞∑
n=0

qn(s−2) sin(qnx)e− iq2nt.

(120)

Let us calculate two useful forms of the probability
density P (x, t)

P (x, t)=|Ψ(x, t)|2=2(1−q2(s−2))
π

∞∑
m,n=0

q(m+n)(s−2)

× sin(qnx) sin(qmx) e− i (q2n−q2m)t. (121)

Taking k = m+ n, l = n we obtain

P (x, t) = 2
π

(
1− q2(s−2)

) ∞∑
k=0

qk(s−2)

×
k∑
l=0

sin(qlx) sin(qk−lx) e− i (q2l−q2(k−l))t =

2
π

(
1− q2(s−2)

) ∞∑
k=0

qk(s−2)

×
k∑
l=0

sin(qlx) sin(qk−lx) cos[(q2l−q2(k−l))t].

(122)

Substitute c = m, d = m− n to arrive at

P (x, t) =
2(1−q2(s−2))

π

∞∑
m=0

{
q2m(s−2) sin2(qmx) + 2

∑
n<m

q(m+n)(s−2) sin(qnx) sin(qmx) cos[(q2m−q2n)t]
}

=

2(1−q2(s−2))
π

{ ∞∑
m=0

q2m(s−2) sin2(qmx) + 2
∞∑
c=1

c∑
d=1

q(2c−d)(s−2) sin(qcx) sin(qc−dx) cos[(q2c − q2(c−d))t]
}

=

2(1−q2(s−2))
π

{ ∞∑
m=0

q2m(s−2) sin2(qmx) + 2
∞∑
c=1

q2c(s−2) sin(qcx)
c∑

d=1

q−d(s−2) sin(qc−dx)

× cos

[
(q2−1) q2(c−d)

d−1∑
a=0

q2at

]}
=

2(1−q2(s−2))
π

∞∑
m=0

q2m(s−2) sin2(qmx) +
4(1−q2(s−2))

π

∞∑
c=1

q2c(s−2) sin(qcx)

×
c∑

d=1

q−d(s−2) sin(qc−dx) cos[(q2 − 1)(q2(c−1) + · · ·+ q2(c−d))t] =: Px(x) + Pxt(x, t). (123)
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Note that the time-independent part
Px(x) =

2
(
1−q2(s−2)

)
π

∞∑
m=0

q2m(s−2)(1− cos(qm2x))

2
=

1

π
−
(
1−q2(s−2)

)
π

∞∑
m=0

qm(2s−4) cos(qm2x),

1

π
− (1−q2(s−2))

π

∞∑
m=0

qm(2s−4) cos(qm2x), (124)

is a Weierstrass-like function with the dimension
s′ = max{2s−2, 1} ∈ [1, 2) (i.e., for s ∈ [1, 3/2],
s′ = 1). From the equation (123) one immediately
gets the spectrum of P (x, t) — all the frequencies
governing the time evolution are

ωc,d = (q2 − 1)
(
q2(c−1) + · · ·+ q2(c−d)

)
, (125)

where c = 1, 2, . . . , d = 1, 2, . . . , c. Thus all the fre-
quencies divide by q2 − 1 which is also the smallest
frequency, so the fundamental period of P (x, t) is
2π/(q2 − 1).

A2. Average velocity

Let us study the behavior of 〈x〉.

〈x〉 =
∫ π

0

dx x |Ψ |2 =
π

2
− 16

π

(
1− q2(s−2)

)
×
∑∞

k=1

qk(s−1)

(q2k − 1)2
cos[(q2k−1)t]. (126)

The above expression is valid only for even q. For
odd q we have just the first term, which is π/2.

The average x(t) is of class C1, because its
derivative is given by an absolutely convergent
series∣∣∣∣ d〈x〉dt

∣∣∣∣=
∣∣∣∣∣16

(
1−q2(s−2)

)
π

∞∑
k=1

qk(s−1) sin[(q2k−1)t]
q2k − 1

∣∣∣∣∣
≤ 2c

∞∑
k=1

qk(s−1)

q2k
= 2c

qs−3

1− qs−3
. (127)

In Sect. 4 we show that (127) is fractal, while for
odd q the average velocity |d〈x〉/dt|, of course, is
not. This seemingly strange behavior is caused by
the fact that

π∫
0

dx sin(nx) sin(mx) (128)

is non-zero only for m,n of different parity. How-
ever, if one slightly disturbs our function, for in-
stance, by changing an arbitrary number of terms
to the next higher or lower eigenstates, the dimen-
sions Dx and Dt will not be altered, but the average
velocity will become fractal. In other words, with
probability one, independently of the parity of q,
the average velocity of the wave function

Φ0(x, t) =M0

∞∑
n=1

qn(s−2) sin
[
(qn±1)x

]
×e− i (qn±1)2t. (129)

is fractal characterized by the same dimensions Dx

and Dt as the function currently studied.
An explicit example of a similar function for odd q

it is
Φ1(x, t) =M1

[
2s−2 sin(2x)e− i 22t

+

∞∑
n=1

qn(s−2) sin(qnx)e− iq2nt
]
. (130)

One can see the only difference between this exam-
ple and the original one (36) is in the first term. This
difference accounts for the smoothness or roughness
of the average velocity. It is very interesting because
normally one expects that it is the asymptotic be-
havior that determines the fractal dimension. Here
we have an exactly opposite case: a change in the
first term (varying most slowly) of a series changes
the dimension of a complicated function 〈v〉.

The average velocity of the wave packet (130) is
smooth for even q and fractal for odd q. A function,
which gives fractal average velocity for both even
and odd q, is

Φ2(x, t) =M2

[
2s−2 sin(2x)e− i 22t

+

∞∑
n=0

qn(s−2) sin(qnx)e− iq2nt
]
=

M2

[
2s−2 sin(2x)e− i 22t +

1

N
Ψ(x, t)

]
, (131)

where M2 is the normalization constant. On the
other hand,

Φ3(x, t) =M3

∞∑
n=1

qn(s−2) sin(qnx)e− iq2nt

(132)

gives smooth average velocity for both even and
odd q.
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Bell’s theorem is a conflict of mathematical predictions formulated within an infinite hierarchy of
mathematical models. Inequalities formulated at level k ∈ Z are violated by probabilities at level k+1.
We are inclined to think that k = 0 corresponds to the classical world, while k = 1 — to the quantum
one. However, as the k = 0 inequalities are violated by k = 1 probabilities, the same relation holds
between k = 1 inequalities violated by k = 2 probabilities, k = −1 inequalities violated by k = 0
probabilities, and so forth. By accepting the logic of the Bell theorem, can we prove by induction that
nothing exists?

topics: Bell’s theorem, black holes, non-Newtonian calculus, quantum cryptography

1. Introduction

Is Bell’s theorem a mathematical theorem? If we
treat Bell’s theorem [1] as a theorem about the ad-
ditivity of Lebesgue measures, then yes — this is a
mathematical theorem. However, Bell’s theorem is
more ambitious. It tells us about reality per se, the
security of communication channels, the structure
of space and time, and even the freedom of experi-
mental physicists.

Although mathematical theorems cannot have
counterexamples, this is not necessarily true for the-
orems about physical reality. The whole history of
science is a series of exceptions to various well-
established truths.

One such famous truth about reality was known
as Euclid’s fifth axiom, which essentially states that
angles in any triangle add up to 180◦. It was so self-
evident to 19th-century mathematicians that even
Gauss himself was not eager to publish his thoughts
on the subject.

Bell’s theorem is technically based on an-
other apparently self-evident truth about additivity,
namely∫

Λ

dλ (f ± g)(λ) =

∫
Λ

dλ f(λ)±
∫
Λ

dλ g(λ).
(1)

In proofs of Bell-type inequalities, one often re-
places (1) with a more elementary rule,

n±m
N

=
n

N
± m

N
. (2)

Thus, (1) occurs in contexts of probability mea-
sures, while (2) is typical of frequentist approaches.

However, neither (1) nor (2) are universally true;
(1) fails for fuzzy or fractal functions; (2) fails if
n, m, represent velocities and N is the velocity of
light. In the latter case, what we get is rather

n⊕m = N tanh

(
tanh−1

( n
N

)
+ tanh−1

(m
N

))
=

f−1
(
f(n) + f(m)

)
. (3)

Of course, nothing can prevent us from adding ve-
locities by means of (2), but this is not what Nature
does. The arithmetic of Nature is (3). A relation be-
tween ⊕ and + is here analogous to the one between
a curvature of a general manifold and the flatness
of its local chart of coordinates (charts in atlases
are flat). Arithmetic in special relativity becomes
as physical as geometry in general relativity.

A similar situation occurs with (1). In fuzzy and
fractal applications, one often encounters [2–12]∫

Λ

dλ f(λ)⊕
∫
Λ

dλ g(λ) =

∫
Λ

dλ (f ⊕ g)(λ).
(4)
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The exact meaning of ⊕ depends on the way fuzzy
sets are constructed [13] or which fractals one is
dealing with [14]. A particular example of (4) oc-
curs in Maslov’s idempotent analysis [15, 16]. Here,
certain optimization problems that are nonlinear in
the usual framework become linear with respect to
generalized arithmetic operations [17], even though
the generalized arithmetic is not isomorphic to the
one of R [18].

The goal of the paper is to show that quantum
probabilities typical of a two-particle singlet state
(that is, those used by Bell in his argumentation),
despite all the wisdom of theoretical physicists, can
result from a local theory where Einstein–Podolsky–
Rosen-type (EPR) elements of reality exist [19–21],
with probabilities given by local realistic Clauser–
Horne formulas [22], where observers have free will,
and their detectors are 100% efficient. The only dif-
ference is in the form of the integral, whose linearity
is with respect to ⊕, 	, �, and � appropriately de-
fined.

Violation of Bell-type inequalities is then no more
paradoxical than c+c = 2c, which could be claimed
to violate the speed of light limit. Moreover, there
is no problem with circumventing the Tsirelson
bounds typical of Hilbert-space models of proba-
bility [23], still maintaining Bell locality, EPR ele-
ments of reality, the free will of observers, and 100%
efficient detectors.

I can reassure the readers that the models we
are analyzing are not an alternative to quantum
mechanics. They do not explain why probability
amplitudes interfere, but, nevertheless, shift the
discussion of linearity to new, unexplored areas.
The status of theorems based on algebraic proper-
ties of observables, such as the Greenberger–Horne–
Zeilinger theorem [24, 25] or its single-particle
analogs [26], is still open.

But what the models do show is that quantum
correlations of an EPR type do not necessarily
exclude EPR elements of reality — a conclusion
with potentially dramatic implications for quantum
cryptography. How serious the consequences are, re-
mains to be investigated. Einstein’s views on incom-
pleteness of quantum mechanics receive unexpected
support.

We will begin our discussion with the observation
that principles of relativity are more general and
ubiquitous than Einstein’s relativity of uniform mo-
tion or Copernican relativity of point of observation.
The most fundamental principle occurring in all
natural sciences is the relativity of arithmetic [27].
It implies, in particular, principles of the relativity
of calculus and the relativity of probability. Both
are essential for Bell’s theorem.

2. Relativity of probability

Relativity of probability occurs at several levels.
The most obvious one is illustrated by the following

example. It can be regarded as a particular case of
Einstein’s special relativity.

Assume a source emits particles to the right or
to the left, with certain probability density ρ(v) of
velocities. If N particles have been emitted, let N+

denote the number of particles propagating to the
right. An observer measures N+/N and compares it
with the theoretical prediction, p+ =

∫∞
0

dv ρ(v).
An observer that moves with velocity V with re-

spect to the previous one will measure a different
value of N+/N , even though both of them analyze
the same experiment with the same N .

The example is trivial, but it illustrates an im-
portant fact about probability — different observers
may associate different probabilities with the same
experimental situation and with the same definition
of elementary events. In this concrete example, the
relativity of probability, p+(V ) =

∫∞
0

dv ρ(v + V ),
results from the relativity of motion.

As a less trivial relativistic example, consider the
gravitational collapse of a star. There are two ob-
servers: Alice, who falls with the star, and Bob, who
remains at rest at position r. Alice employs a broken
clock that randomly fails to work (which happens
with probability p0). The motion of the clock’s hand
becomes a Poisson process characterized by proba-
bility p1 = 1− p0 of a forward move.

A single run of experiment lasts a fixed amount
τ of the observer’s proper time. Alice measures
N = bτ/∆τc bits A1, . . . , AN (N1 events Aj=1
when the clock’s hand moves; N0 = N−N1 events
Aj=0 when it gets stuck). The average amount of
proper time measured by the Alice’s damaged clock
is p1τ .

The experimental ratio N1/N observed by Alice
gets translated into Ñ1/Ñ observed by Bob. In gen-
eral, Ñ1 6= N1 and Ñ 6= N because the numbers of
observed events differ for Alice and Bob due to the
relativity of time and the presence of the horizon.
The events observed by Alice after she crosses the
Schwarzschild radius at her proper time τS will be
unavailable to Bob, even though his detectors are
100% efficient.

Bob should cautiously draw conclusions about N1

and N on the basis of Ñ1 and Ñ he observes. For
example, if he concludes that τS is greater than τ
because, from his perspective, Alice cannot reach
the Schwarzschild radius, this inequality can be “vi-
olated” in the world of Alice.

Bob can derive various inequalities about the
data of Alice, provided he knows the map gr that
relates her N1/N with his

Ñ1

Ñ
= gr

(N1

N

)
. (5)

The exact form of gr is irrelevant to our argument,
but it could be derived on the basis of general rela-
tivity if needed.

From our perspective, it is important that gr
connects two real probabilistic processes. Both
N1/N and gr(N1/N) are true, physically significant
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probabilities. The “violation” of Bob’s world τS > τ
by Alice’s world τS < τ is paradoxical only for those
who do not understand Einstein’s theory of gravity.

3. A lemma on relativity of binary
probabilities

For binary events, there exists a simple result
guaranteeing that both N1/N and g(N1/N) are
probabilities.

Lemma 1: g(p) + g(1− p) = 1 for any p ∈ [0, 1], if
and only if

g(p) = 1
2 + h

(
p− 1

2

)
, (6)

where h(−x) = −h(x). Any such g has a fixed point
at p = 1

2 .
So, any antisymmetric h(x) leads to an acceptable

g(p). The proof can be found in [28]. For a discussion
of non-binary probabilities, see [29].

As an example, consider the antisymmetric func-
tion

h(x) =
1

2
sin(πx). (7)

Then g(p) = sin2(π2 p), and indeed

g(p) + g(1−p) = sin2
(π

2
p
)

+ cos2
(π

2
p
)

= 1

(8)
for any p. Now let p = (π− θ)/π be the probability
of finding a point belonging to the overlap of two
half-circles rotated by θ. Then

g(p) = sin2

(
π

2

π − θ
π

)
= cos2

(
θ

2

)
(9)

is the Malus law for spin 1/2 (or Mach–Zehnder in-
terferometers).

Note that g is one-to-one on [0, 1]. Moreover,
g(0) = 0 and g(1) = 1 — a property with impor-
tant implications for the definition of bits: classical,
quantum, and intermediate.

The readers should think of p and p̃ = g(p) in cat-
egories similar to those that have led us to (5). Both
p and p̃ can be physically meaningful. We should be
as cautious as Bob in formulating statements about
the level of p on the basis of the rules that apply to
the level of p̃.

4. Arithmetic elements of reality

Consider some set X and a bijection fX : X→ R.
Cardinality of X must be the same as the one of R.
The inverse map is gX = f−1

X , gX : R→ X. The map
g from the previous section can be an example of gR
restricted to [0, 1]. To put it differently, the bijection
g : [0, 1] → [0, 1] can be extended to a bijection
gR : R → R, satisfying gR(p) = sin2(π2 p) = g(p)
when restricted to p ∈ [0, 1].

We define arithmetic operations in X,
x⊕X y = gX

(
fX(x) + fX(y)

)
, (10)

x	X y = gX
(
fX(x)− fX(y)

)
, (11)

x�X y = gX
(
fX(x) · fX(y)

)
, (12)

x�X y = gX
(
fX(x)

/
fX(y)

)
. (13)

The arithmetic given by (10)–(13) is called projec-
tive [12, 30]. Here fX defines an isomorphism of
arithmetics. The neutral elements, 0X = gX(0) (pro-
jective zero in X), 1X = gX(1) (projective one in X)
are to some extent analogous to qubits [29, 31].

Indeed, expressions such as 0X+0Y are, in general,
meaningless if X 6= Y. Just think of X = R and
Y = R2. Even if X = Y and 0X = 0Y = 0, 1X =
1Y = 1, the projective bits can be as incompatible
as eigenvalues of non-commuting projectors.

However, in spite of this incompatibility,
0X = gX(0) and 0Y = gY(0) are images of the same
0 ∈ R. This “ordinary zero” can play the role of
an EPR-type element of reality for 0X and 0Y, i.e.,
incompatible projective bits can be correlated by
means of their elements of reality, in exact anal-
ogy to the formulas postulated by Bell in his classic
analysis.

Note that (3) is an example of (10). The neu-
tral elements are 0X = N tanh(0) = 0, 1X =
N tanh(1) = 0.76N (hence velocity 0.76 c is the neu-
tral element of special relativistic multiplication).
The velocity of light is literally infinite, of course
in the sense of ∞X = N tanh(∞) = N . The case
c⊕c = c is an example of∞X⊕X∞X =∞X. Strictly
speaking, a relativistic unit of velocity is not c but
c tanh(1).

5. Clauser–Horne formulas for
projective bits

We are interested in singlet-state probabilities,
P01

= P11
= P02

= P12
=

〈ψ|P̂01
⊗ I|ψ〉 = 〈ψ|P̂11

⊗ I|ψ〉 =

〈ψ|I ⊗ P̂02
|ψ〉 = 〈ψ|I ⊗ P̂12

|ψ〉 =
1

2
(14)

with joint probabilities,
P0102

=P1112
=〈ψ|P̂01

⊗P̂02
|ψ〉=〈ψ|P̂11

⊗P̂12
|ψ〉=

1

2
sin2

(
α−β

2

)
, (15)

P0112
=P1102

=〈ψ|P̂01
⊗P̂12

|ψ〉=〈ψ|P̂11
⊗P̂02

|ψ〉=

1

2
cos2

(
α−β

2

)
. (16)

We will write them in a Clauser–Horne form [12]

PA1A2
=

∫
Dx χA1

(x)�X χA2
(x)�X ρ(x), (17)

PA =

∫
Dx χA(x)�X ρ(x) =

1

2
, (18)

where the χs are characteristic functions and
ρ(x) ≥ 0 is a non-negative probability density
normalized to 1,∫

Dx ρ(x) = 1. (19)
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Of course, the trick is to work with appropriate
forms of the integral and employ the freedom avail-
able in possible meanings of �X and ⊕X. We will
assume X = R, and gX(0) = 0, gX(1) = 1. The latter
two conditions imply that the values of projective
bits will be given by ordinary 0 and 1.

Formulas (17) and (18) implicitly imply that mea-
surements are modeled in the usual way by the
products of ρ(x) with characteristic functions,

ρ(x) 7→ χA(x)�X ρ(x), (20)

ρ(x) 7→ χA∩B(x)�X ρ(x) =

χA(x)�X χB(x)�X ρ(x), (21)

and so forth. If A′ denotes the set-theoretic comple-
tion of set A, then

χA(x)⊕X χA′(x) = 1, (22)

1	X χA(x) = χA′(x), (23)

χA(x)�X χA′(x) = 0, (24)

χA(x)�X χA(x) = χA(x), (25)

χA′(x)�X χA′(x) = χA′(x). (26)

The probabilities must add up to 1 in an ordinary
way,

P0102
+ P0112

+ P1102
+ P1112

= 1, (27)
because this is how experimentalists will use them.

On the other hand, the integral can be additive in
a more general sense of (4), similarly to fuzzy, frac-
tal, or idempotent integrals. A dual form of normal-
ization will be a consequence of such a generalized
linearity,

P0102
⊕X P0112

⊕X P1102
⊕X P1112

= 1. (28)

Note that (27) and (28) must hold simultaneously
for any PA1A2 , a condition, which is not entirely
trivial, but whose solution exists.

The choice of arithmetic will naturally define the
integral occurring in (17)–(18). Historically the first
construction of calculus based on projective arith-
metic was given by Grossman and Katz in their 1972
book Non-Newtonian Calculus [32]†1.

Bell published his paper in 1964.

†1Grossman and Katz had worked on the problem since
the late 1960s, but their little book, as well as its two se-
quels [33, 34], went practically unnoticed by both mathe-
maticians and physicists. The main idea was rediscovered by
Endre Pap and published in 1993 in a local journal of Novi
Sad University [35]. Over the next two decades, the formal-
ism developed by Pap matured into a whole new branch of
applied mathematics (see [9, 10, 36]). The so-called Fα cal-
culus on fractals [37–39] can be regarded as a special case of
non-Newtonian calculus. The same can be said of Maslov’s
idempotent analysis [15, 16]. In 2014, the ideas of Grossman,
Katz, and Pap were once again rediscovered by myself [27]
and led to nontrivial applications in physics, just to men-
tion wave equations on Koch curves (a long-standing prob-
lem of fractal analysis) [40], elements of Fourier analysis on
arbitrary Cantor sets (circumventing a no-go theorem about
Fourier transforms on the triadic Cantor set) [11], or the
issues of dark energy and matter [41, 42]. The problem of

6. Non-Newtonian Calculus

We need an integral because Clauser–Horne for-
mulas involve integration. In fuzzy or fractal ap-
plications, the usual strategy would be to define
some measure on a fractal or fuzzy set, and only
then start worrying whether the resulting integral
is consistent with derivatives, typically defined by
means of a completely different procedure than the
one that has led to the integral. In effect, the fun-
damental theorem of calculus often becomes prob-
lematic [13].

The approach that starts with arithmetic is much
more systematic. First, one defines a derivative by
means of a formula which is a straightforward gen-
eralization of

dF (x)

dx
= lim
δ→0

F (x+ δ)− F (x)

δ
. (29)

Then one demands that the integral be related to
the derivative by means of the fundamental theo-
rem of calculus. The notion of measure appears au-
tomatically at the very end, once we know how to
integrate. Knowing the measure, we know how to
define probability.

The non-Newtonian derivative of a function
F :X → Y depends on the arithmetics of X and
Y. Denoting δX = gX(δ), δY = gY(δ), one defines

DF (x)

Dx
= lim
δ→0

(
F (x⊕X δX)	Y F (x)

)
�Y δY,

(30)

whose more practical form reads

DF (x)

Dx
= gY

(
dF̃
(
fX(x)

)
dfX(x)

)
. (31)

The argument of gY in (31) is the (Newtonian)
derivative (29) of F̃ defined by the commutative
diagram

X F−→ Y
fX

y xgY
R F̃−→ R

. (32)

Although (31) makes non-Newtonian differentiation
as simple as the Newtonian one, (30) reveals the
logical structure behind the derivative. For exam-
ple, it explains why we find the generalized form of
additivity

D
(
F (x)⊕Y G(x)

)
Dx

=
DF (x)

Dx
⊕Y

DG(x)

Dx
(33)

and the generalized Leibniz rule

Bell’s theorem was reformulated from a non-Newtonian per-
spective in a series of four papers [28, 29, 31, 43]. The version
of non-Newtonian formalism introduced in [27] is based on
the weakest assumptions and thus is the most general and
flexible so far, at least in my opinion. A review of the for-
malism can be found in [12].
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D
(
F (x)�Y G(x)

)
Dx

=

DF (x)

Dx
�Y G(x)⊕Y F (x)�Y

DG(x)

Dx
. (34)

To define a non-Newtonian integral
∫ b
a

Dx F (x), we
demand its consistency with the derivatives (two
fundamental theorems of calculus)

b∫
a

Dx
DF (x)

Dx
= F (b)	Y F (a), (35)

and

D

Dx

x∫
a

Dy F (y) = F (x). (36)

The result is
b∫
a

Dx F (x) = gY

 fX(b)∫
fX(a)

dr F̃ (r)

 . (37)

The argument of gY in (37) is the (Newtonian, hence
Lebesgue, Riemann, etc.) integral of F̃ defined by
the commutative diagram (32). Such an integral in-
herits additivity,
b∫
a

Dx F (x)⊕Y G(x) =

b∫
a

Dx F (x)⊕Y

b∫
a

Dx G(x),

(38)
and one-homogeneity (for a constant F ),

b∫
a

Dx F �Y G(x) = F �Y

b∫
a

Dx G(x), (39)

from the arithmetic that defines the derivative.
It should be now rather clear why non-Newtonian

hidden-variable models lead to Bell-type inequali-
ties of basically the usual form, but with the ordi-
nary plus, minus, times, and divided replaced by ⊕,
	, �, and �.

If one takes this subtlety into account, then quan-
tum mechanical singlet-state probabilities will not
violate the Bell inequality — not the one that can
be derived for the hidden-variable model.

7. Singlet-state probabilities

It remains to construct the projective arithmetic
(10)–(13) that implies (14)–(18) by means of the
corresponding non-Newtonian integral (37). First,
gX will be constructed via an intermediate g, whose
properties are described by the following conse-
quence of Lemma 1.

Lemma 2: Consider four joint probabilities p0102
,

p1112
, p0112

, p1102
, satisfying∑

AB

pAB = 1, (40)∑
A

pAA2
=
∑
A

pA1A = 1
2 . (41)

A sufficient condition for∑
AB

G(pAB) = 1, (42)

for any pAB satisfying (40), (41), is given by
G(p) = 1

2g(2p), where g satisfies Lemma 1. Any such
G has a fixed point at p = 1/4.

The proof can be found in [43].
Guided by Lemmas 1 and 2, we take X = R and

define (Fig. 1),

gX(x) =
n

2
+

1

2
sin2

(
πx− πn

2

)
, (43)

fX(x) =
n

2
+

1

π
arcsin

√
2x− n, (44)

for 1
2n ≤ x ≤ 1

2 (n + 1), n ∈ Z (for more de-
tails, see [26]). Function (43) is, up to the rescaling
g(p) 7→ 1

2g(2p) required by Lemma 2, the one we
have used as the illustration of Lemma 1 for spins
1/2, but extended from [0, 1] to the whole of R.
Non-Newtonian integrals (17)–(18) constructed by
means of (43)–(44) reconstruct singlet-state proba-
bilities if we appropriately define the characteristic
functions. For example, βX∫

αX

Dλ

�X gX(2π) =
1

2
sin2

(
β − α

2

)
, (45)

αX = gX(α), βX = gX(β), which is the standard lo-
cal hidden-variable expression postulated by Bell.
It can be rewritten as a particular case of (17) if we
denote

ρ(λ) = 1�X gX(2π) = gX
(
1/(2π)

)
, (46)

and integration is over the circle 0 ≤ λ < gX(2π).
The product of characteristic functions is encoded
in the integration limits.

The rotational invariance of the probability is a
consequence of

βX∫
αX

Dx =

βX⊕XγX∫
αX⊕XγX

Dx (47)

valid for any γX ∈ X and any non-Newtonian inte-
gral defined by means of the arithmetic (10)–(13).

Then, what about the Bell inequality?
Of course, it is not violated by (45) despite the

exact quantum mechanical form of the probability,
and there is nothing paradoxical about this state-
ment. Just try to derive any form of a Bell-type
inequality for such a non-Newtonian local hidden-
variable model. For example, following the steps
of the Clauser–Horne reasoning, one arrives at the
projective-arithmetic generalization of the Clauser–
Horne inequality,

0 ≤ 3�X P1102
(θ)	X P1102

(3θ) ≤ 1. (48)

Inserting singlet-state probabilities into (48), one
finds

3�X P1102
(θ)	X P1102

(3θ) = 1 (49)

for any θ, so there is no contradiction.
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Fig. 1. One-to-one fX : R → R (full line) and its
inverse gX (dotted) defined by (44) and (43), as im-
plied by Lemma 2. Both functions have fixed points
at integer multiples of 1/4. The plots are given in
two scales, (a) −1 ≤ x ≤ 1 and (b) −10 ≤ x ≤ 10,
explaining the origin of the correspondence princi-
ple discussed in Sect. 10.

The inequality that will be indeed violated is
0 ≤ 3P1102

(θ)− P1102
(3θ) ≤ 1, (50)

but it is derived under the wrong assumption of
additivity (1), which does not hold for this con-
crete model of non-Newtonian integration. Stan-
dard Clauser–Horne inequality (50) cannot be
proved for non-Newtonian hidden variables in ques-
tion, so it is no surprise that it is not satisfied in
our model.

The readers should keep in mind that although
(27) and (28) are simultaneously valid, this is no
longer true for arbitrary linear combinations of
probabilities, in particular those occurring in (48)
and (50).

We will now show that the relation between p and
p̃ = gX(p), which is at the core of the Bell inequal-
ity violation, is, in fact, a very special case of an
infinite hierarchy of relations, based on an infinite
hierarchy of arithmetics and calculi. What we in-
tuitively regard as the “normal” or “our” arithmetic
and calculus can correspond to any level of the hi-
erarchy.

This will lead us to the notion of a Copernican
hierarchy of models. We call them Copernican be-
cause they deprive our human point of view of the
aura of uniqueness. Each level of such a hierarchy
can be our level.

The standard Bell theorem describes a relation
between any two neighboring levels of the hierarchy.
A surprising consequence of this relation is that in
the same way that Bell proved the non-existence of
EPR elements of reality, it is possible to prove the
non-existence of ourselves.

Well, at least the author of this paper exists as
an element of reality.

8. Copernican hierarchies

Functions g that satisfy Lemma 1 form an inter-
esting structure, closed under the composition of
maps [43].

Lemma 3: Consider two functions gj : [0, 1] →
[0, 1], j = 1, 2, that satisfy assumptions of Lemma 1,

gj(p) = 1
2 + hj

(
p− 1

2

)
, (51)

where hj(−x) = −hj(x). Then g12 = g1 ◦ g2 also
satisfies Lemma 1 with h12 = h1 ◦ h2,

g12(p) = 1
2 + h12

(
p− 1

2

)
. (52)

Accordingly,
g12(p) + g12(1− p) = 1 (53)

for any p ∈ [0, 1].

Lemma 4: Let gk = g◦· · ·◦g, g−k = g−1 ◦· · ·◦g−1

(k times), g0(x) = x. If g satisfies Lemma 1,
g(p) = 1

2 + h
(
p− 1

2

)
, (54)

then gk also satisfies Lemma 1 for any k ∈ Z,
gk(p) = 1

2 + hk
(
p− 1

2

)
. (55)

Accordingly,
gk(p) + gk(1− p) = 1 (56)

for any p ∈ [0, 1], and any integer k. In particular,
g−1(p) + g−1(1− p) = 1. (57)

The proofs are straightforward [43].
As an illustration, consider again g(p) = sin2(π2 p)

and
g2(p) = sin2

[π
2

sin2
(π

2
p
)]
, (58)

g−1(p) =
2

π
arcsin

√
p. (59)

The cross-check of (56) for (58) is simple but in-
structive
g2(p) + g2(1−p) =

sin2
[π

2
sin2

(π
2
p
)]

+ sin2
[π

2
sin2

(π
2

(1−p)
)]

=

sin2
[π

2
sin2

(π
2
p
)]

+ sin2
[π

2
cos2

(π
2
p
)]

=

sin2
[π

2
sin2

(π
2
p
)]

+ sin2
[π

2

(
1− sin2

(π
2
p
))]

=

sin2
[π

2
sin2

(π
2
p
)]

+ cos2
[π

2
sin2

(π
2
p
)]

= 1.

(60)
An analogous proof for (59) is left as an exercise.
Figure 2 shows the result.
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We are inclined to believe that “our” arithmetic
corresponds to k = 0. So, consider any binary prob-
abilities from level 0,

p0 + p1 = 1, (61)

and those from level k,
gk(p0) + gk(p1) = 1. (62)

Denoting P0 = gk(p0), P1 = gk(p1), we obtain a
symmetric rule,

P0 + P1 = 1, (63)

g−k(P0) + g−k(P1) = 1. (64)

In both cases, k is an arbitrary integer: positive,
negative, or zero.

The question is: How do we know that it is pA
and not PA that defines level-zero probabilities?

We can phrase the same question in arithmetic
terms. To this end, assume g(p) is a restriction to
[0, 1] of some bijection gR : R → R that satisfies
gR(1) = g(1) = 1. We can act on both sides of
(62) with g−k, while on both sides of (65) with gk,
obtaining

g−k
(
gk(p0) + gk(p1)

)
= p0 ⊕k p1 = 1, (65)

and
gk
(
g−k(P0) + g−k(P1)

)
= P0 ⊕−k P1 = 1. (66)

We have no criterion that could tell us which of the
four additions — (61), (63), (65), or (66) — defines
the level of description we employ in everyday life.
Which of these two probabilities, and which of the
several ways of adding them, is our usual way of
processing experimental data?

Which of the three additions, +, ⊕k, or ⊕−k, is
the one we have learned as kids?

Which of the three derivatives, (29), or
DF (x)

Dx
= lim
δ→0

(
F (x⊕k δk)	k F (x)

)
�k δk,

(67)
or
DF (x)

Dx
= lim
δ→0

(
F (x⊕−k δ−k)	−k F (x)

)
�−k δ−k,

(68)
is the one we have mastered during our undergrad-
uate education?

Last but not least, which of the three integrals,∫
Dx F (x), is the one that should define a hidden-

variable theory?
Numerous fundamental answers are possible.
One possibility is that Nature prefers only one

k ∈ Z as the true physical arithmetic with some
fixed form of g, determined by some unknown phys-
ical law. This is the situation we encounter in spe-
cial relativity when we add velocities by means of
g = tanh. In principle, we can detect such a physical
g in an experiment. In [42], it is shown that prob-
lems with dark energy may indicate that time at
cosmological scales involves a nontrivial g ∼ sinh. If
this conclusion were true, dark energy would be as
unreal as the luminiferous aether.

Fig. 2. The results of g−1(p) = 2
π
arcsin

√
p (full

line), g−1(1− p) (dotted), and their sum (dashed).

The second fundamental possibility is that all
these possibilities are simultaneously true. Perhaps
there is no preferred k, like there is no preferred
rest frame or preferred point of observation of the
universe. Only relative k might be observable. Such
an option is intriguing and tempting from a theo-
retical perspective. It could mean, for example, that
the same physical law might have its mathematical
representations at any level of the hierarchy, and
each of these representations might be meaningful.
Violation of Bell-type inequalities would then be a
conflict of predictions derived at level k but tested
at level k + 1.

A similar conflict occurs if Bob concludes that
Alice will never reach the Schwarzschild radius, and
yet she crosses it in a finite time.

It remains to say something about the con-
flicts that occur between non-neighboring levels of
the hierarchy. We will see that other well-known
bounds, such as the Tsirelson inequality characteriz-
ing Hilbert-space models of probability, can be eas-
ily circumvented as well.

9. Beyond Tsirelson’s bounds

The standard Clauser–Horne inequality (50)
0 ≤ 3P1102

(θ)−P1102
(3θ) ≤ 1, (69)

is derived for joint probabilities limited by
0 ≤ P1102

(α) ≤ 0.5. (70)
The absolute bounds for such a linear combination
of probabilities are, therefore,
−0.5 ≤ 3P1102(θ)−P1102(3θ) ≤ 1.5. (71)

Tsirelson bounds are narrower,

−
√

2−1

2
≤ 3P1102(θ)−P1102(3θ) ≤

√
2+1

2
. (72)

In order to understand the influence of k on the
violation of Clauser–Horne k = 0 inequalities, we
have to estimate the expression [43]

X(gk, θ) = 3gk
(
θ

2π

)
− gk

(
3θ

2π

)
, (73)
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where 0 ≤ θ < π/3. The singlet-state example cor-
responds in this range of parameters to g1(p) =
1
2 sin2(πp). For θ = π/4, we find

X(g1,
π

4
) =

3

2
sin2

(
π
π/4

2π

)
− 1

2
sin2

(
π

3π/4

2π

)

−
√

2−1

2
= −0.20711, (74)

that is, the maximal left Tsirelson bound. This is
what is usually called the maximal (left) violation of
the Clauser–Horne inequality by singlet-state quan-
tum probabilities. For other values of k, we find

X
(
g0,

π

4

)
= 0,

X
(
g1,

π

4

)
= −0.20711,

X
(
g2,

π

4

)
= −0.39602,

X
(
g3,

π

4

)
= −0.48669,

X
(
g4,

π

4

)
= −0.49978,

...
X
(
g∞,

π

4

)
= −0.5.

(75)
Of course, as stressed before, the choice of k=0 as

the reference level is arbitrary. Level k=2022 prob-
abilities violate level k=2021 inequalities in exactly
the same way as quantum mechanics violates the
standard Clauser–Horne inequality.

More importantly, k=2 probabilities violate k=1
inequalities in the same way as k=1 probabilities
violate k=0 inequalities. If k=0 elements of reality
do not exist, then k=1 elements of reality do not
exist either. Accepting the logic of Bell’s theorem,
can we prove by induction that nothing exists?

Slightly modifying the experimental configura-
tion, one obtains the maximal right violations. In
our formalism, the function to estimate is

Y (gk, θ) = 3gk
(

3θ

2π

)
− gk

(
θ

2π

)
. (76)

We find
Y
(
g0,

π

4

)
= 1,

Y
(
g1,

π

4

)
=

1

2
(
√

2 + 1) = 1.20711,

Y
(
g2,

π

4

)
= 1.39602,

Y
(
g3,

π

4

)
= 1.48669,

Y
(
g4,

π

4

)
= 1.49978,

...
Y
(
g∞,

π

4

)
= 1.5.

(77)
All these models are local-realistic, observers have
free will, and detectors are ideal. The only modifi-
cation is in the presence of the bijection g that links
arithmetics, calculi, and probabilities at various lev-
els of the hierarchy.

Our gk plays a role analogous to gr that linked
experimental data collected at different neighbor-
hoods of a collapsing star.

Both examples are based on principles of relativ-
ity. We have learned to live with special relativity,
general relativity, and the Copernican principle.

It is time to learn to live with the arithmetic prin-
ciple of relativity.

10. Correspondence principles

Trigonometric functions cosX : X→X, sinX :X→X
are defined by

cosX(x) = gX
(

cos(fX(x))
)
, (78)

sinX(x) = gX
(

sin(fX(x))
)
. (79)

They satisfy all the usual trigonometric relations,
of course with respect to appropriate arithmetic op-
erations. They also satisfy all the usual differen-
tial relations, of course with respect to appropriate
non-Newtonian derivatives. In particular, they de-
fine circles by

θ 7→ (r �X cosX θ, r �X sinX θ). (80)

Let us now take the bijections (43) and (44), which
we have used to reconstruct singlet state probabili-
ties. Figure 3 shows seven circles defined by (80) for
decreasing radii. A picture to the right is a close-up
of its left neigbor. All the circles are given by the
same formula (80), with the same bijection gX —
the greater the radius, the more circular the shape.
Simply put, the larger the x argument, the more dif-
ficult it is to tell gX(x) from x. However, the readers
must bear in mind that all these circles are truly ro-
tationally invariant! They have been generated as
homogeneous spaces of the rotation group in 2D —
the only nonstandard element being the choice of
arithmetic.

The notion of a hidden or internal symmetry,
often used in particle physics, seems especially
adequate here. Each of these circles would have
looked “normal” if we had reprogrammed Wolfram
Mathematica to make the plots in the arithmetic
{R,⊕1,	1,�1,�1}.

The limit r →∞ plays a role of a correspondence
principle with the ordinary, rotational external sym-
metry. The obvious similarity to the classical limit
of quantummechanics is striking. Other examples of
arithmetic correspondence principles can be found
in [27] and [44]. An analogous correspondence prin-
ciple occurs in the idempotent analysis [18].

11. Implications for cryptography

In 1862, more than a century before Bell’s paper,
George Boole submitted to Philosophical Transac-
tions of the Royal Society the article On the theory
of probabilities, where he introduced inequalities im-
posing constraints on our “possible experience” [45].
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Fig. 3. Seven circles of different radii described by (80) with the arithmetic {R,⊕1,	1,�1,�1} defined by
(43) and (44). Despite appearances, all these circles are rotationally invariant. Panels to the right are the
close-ups of those to the left.

Three decades after Bell’s theorem, in 1994, Itamar
Pitowsky noticed that Boole’s inequalities are in-
equalities of a Bell-type [46].

Boole inequalities defined “possible experience”
in common-sense categories appropriate for 1862.
Boole’s scientific paradigm has been falsified by
quantum mechanics.

If someone had asked Boole if he could give an
example of a system that violates his inequalities,
he probably would have answered in the negative.
Treating his negative answer as the ultimate proof
that Nature has to comply with Boole inequalities,
we would prove that quantum mechanics is logically
impossible.

Bell inequalities defined “possible experience”
in common-sense categories appropriate for 1964.
Grossman and Katz’s book appeared in 1972, but
its implications for Bell’s theorem went unnoticed
until very recently.

In light of these results, what is the actual sta-
tus of all the claims about the fundamental secu-
rity of quantum cryptography [47–51]? We typi-
cally base them on the belief that EPR elements
of reality cannot exist. Protocols that are not
based on a hidden-variable argumentation (such
as the Bennett–Brassard–Mermin one [49], essen-
tially based on rotational invariance of singlet-state
probabilities) can be successfully attacked in non-
Newtonian local hidden variable theories — non-
Newtonian hidden variables are rotationally in-
variant because the rotation group works there
by means of the hidden representation depicted
in Fig. 3.

Furthermore, what if the Newtonian paradigm of
contemporary quantum mechanics will one day be
falsified by some new theory?

What if it has already been falsified? What if
our enemies, whoever they may be, are well ahead
of us and know systems that can mimic quantum
probabilities by means of non-Newtonian hidden
variables? Can they hack entangled-state quantum
communication channels?

Can a no-go theorem, based on algebraic rather
than probabilistic properties of quantum mechanics,
cure the arithmetic loophole in quantum proofs of
security?

How to guarantee that we are not in the po-
sition of German cryptographers in the 1930s, so
happy with their Enigma and its security certified
by appropriate theorems, while at the same time,
it was systematically hacked by the Polish Cypher
Bureau?

The list of open questions is longer.

12. Non-Newtonian quantum mechanics

Non-Newtonian hidden variables are not meant
as an alternative to quantum mechanics.

However, non-Newtonian calculus paves the way
to natural generalizations of quantum mechanics
(quantum mechanics on a Cantor set is an exam-
ple [42]). The resulting theory is non-Newtonian
linear but Newtonian nonlinear. Such a form
of nonlinear quantum mechanics [52–55] is iso-
morphic to the standard textbook theory, so it
is free of all the difficulties that have plagued
the formalisms based on nonlinear Schrödinger
equations [56–59].

Yet, “mathematically isomorphic” is not synony-
mous with “physically equivalent”.

The following three examples illustrate the idea.
Assume X = Y = R with projective arithmetics

defined by some fX : R → R and fY : R → R. Let
ψ : X→ Y be a solution of
Hψ(x) = 	Yψ

′′(x)⊕Y U(x)�Y ψ(x)=E �Y ψ(x),

(81)

where ψ′′(x) is the non-Newtonian second deriva-
tive. Normalization of states is assumed in the form

〈ψ|ψ〉 =

∞X∫
(−∞)X

Dx |ψ(x)|2Y = 1Y = gY(1). (82)

S166



Contra Bellum: Bell’s Theorem as a Confusion of Languages

Fig. 4. Probability (88) of finding a particle in
[−a, a] for 0 ≤ a ≤ 3, with ψ̃(r) ∼ exp(−r2/2)
representing the ground state of a quantum har-
monic oscillator Ũ(r) = r2 (in dimensionless units)
for (i) the ordinary arithmetic (full line), and (ii)
projective arithmetics in X = R = Y defined by
fX(x) = x3, fY(x) = x (dashed). The ordinary
arithmetic is experimentally distinguishable from
the projective one because limits of integration are
[−a3, a3] instead of the usual [−a, a].

Fig. 5. The same situation as in the previous fig-
ure, but now with fX(x) = x3 = fY(x).

(For real-valued ψ(x), the modulus in
|ψ(x)|2Y = ψ(x)�Y ψ(x) (83)

is redundant, but we keep it to make the notation
less awkward.) The probability of finding a particle
in [a, b] ⊂ X equals

P (a, b) =

b∫
a

Dx |ψ(x)|2Y . (84)

As usual, ψ = gY ◦ ψ̃ ◦ fX, U = gY ◦ Ũ ◦ fX (com-
pare (32)). Let ψ̃′′

(
fX(x)

)
be the Newtonian second

derivative of ψ̃ with respect to fX(x) so that the
non-Newtonian Schrödinger equation is equivalent
to the usual Newtonian equation, but with redefined
parameters, i.e.,

fY(E)ψ̃(r) = −ψ̃′′(r) + Ũ(r)ψ̃(r), (85)

1 = 〈ψ̃|ψ̃〉 =

∞∫
−∞

dr |ψ̃(r)|2. (86)

Now let us consider fX(x) = x3, fY(x) = x. Then
ψ = ψ̃ ◦ fX, U = Ũ ◦ fX, and the Schrödinger equa-
tion is just

Eψ̃(r) = −ψ̃′′(r) + Ũ(r)ψ̃(r), (87)
so apparently the problem is completely equivalent
to the standard one. However, due to the triviality
of fY and the non-triviality of fX, probability (84)
is now explicitly given by

P (a, b) =

fX(b)∫
fX(a)

dr |ψ̃(r)|2 =

b3∫
a3

dr |ψ̃(r)|2.

(88)

As we can see, despite the mathematical banality of
the problem, the non-Diophantine arithmetic of X
does influence the probability of finding the parti-
cle in the interval [a, b] because the integral is over
[a3, b3]. Figure 4 shows the probability of finding the
particle in [−a, a] as a function of a.

Taking fX(x) = x3 = fY(x), we obtain the prob-
ability depicted in Fig. 5.

As the third example consider fX(x) = x,
fY(x) = x/

√
|x|, and gY(x) = f−1

Y (x) = x3/|x|.
Now,

P (a, b) =
( b∫
a

dr |ψ̃(r)|2
)2

. (89)

The projective addition of probabilities looks
here like a superposition principle from quantum
mechanics,

P (a, c) = P (a, b)⊕Y P (b, c) =(√
P (a, b) +

√
P (b, c)

)2

. (90)

Theories based on non-Newtonian calculi involve
the same physical principles, but their mathemati-
cal forms may differ from one another.

Is there any natural law that determines the form
of arithmetic and calculus?

13. Towards a new paradigm

Paul Benioff, a pioneer of quantum computa-
tion, was among those physicists who believed that
physics and mathematics should be logically formu-
lated at a unified level [60, 61]. According to Be-
nioff, physical or geometric quantities do not pos-
sess numerical values per se, but these values are
introduced through “value maps”. Natural numbers
are elements of any well-ordered set, and in them-
selves do not possess numerical values. A value map
takes a number and turns it into an object with con-
crete numerical properties. This is somewhat similar
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to the idea that “zero”, the neutral element of addi-
tion, can be, in fact, an arbitrary point 0X ∈ X, pro-
vided that X can be bijectively mapped onto R by
means of some fX that fulfills fX(0X) = 0 ∈ R. Be-
nioff considered only linear value maps but allowed
for the possibility of value-map fields. One of his
conclusions was that scalar value maps are in many
respects analogous to the Higgs field [62–64].

A fundamental role of the set of bijections oc-
curs also in Etesi’s recent reformulation of black-
hole entropy [65]. The “arithmetic continuum” R
plays there a role of a gas subject to thermody-
namic laws, while the black hole entropy is a purely
set-theoretic notion, related to Gödel’s first incom-
pleteness theorem.

The approach advocated in our work involves
arithmetics and calculi constructed by means of bi-
jections that can be regarded either as (global) non-
linear Benioff’s maps or as compositions of value
maps with some bijections. More precisely, the
“nonlinear” bijection fX :X → R is always linear
here, but with respect to ⊕X, 	X, �X, and �X. The
non-Newtonian formalism in its most general form
demands only the bijectivity of fX. One does not
impose continuity or topological conditions on ei-
ther fX or X. Note that fX is always smooth in the
topology and calculus it induces from R, even if X
is as weird as Cantor or Sierpiński fractals. Non-
Newtonian derivatives of fX and gX are “trivial”
(equal to 1 and 1X, respectively [12]) because from
the point of view of the projective arithmetic in X,
the map fX behaves as the identity map.

The duality between non-Newtonian linearity and
Newtonian nonlinearity is one of the trademarks of
the new paradigm. This is not the usual lineariza-
tion of a nonlinear problem by a nonlinear change of
variables. The idea can be traced back to Maslov’s
superposition principle and its application to non-
linear optimization problems [15].

The resulting structure is incredibly flexible. It
automatically leads to well-behaved calculi on all
sets whose cardinalities are the same as the car-
dinality of the continuum. The resulting relativity
principle (relativity of arithmetic and calculus) is
much more general than the principle of general co-
variance.

Non-Newtonian calculus has a huge potential for
the unification and systematization of various ideas
scattered over mathematical and physical litera-
ture [29]. It is quite typical, however, that even if
some elements of non-Newtonian thinking can be
identified in those works, their arithmetic aspects
are not exploited in their full generality.

For example, velocities in special relativity are
added and subtracted in a projective way, but
it is difficult to find a paper where repeated
addition would be replaced by multiplication and
its inverse — division. I have found only one
place in relativistic physics where velocity v =
c tanh(1), the “one” in special-relativistic projec-
tive multiplication, plays a distinguished role [66].

Kolmogorov–Nagumo averages [67, 68], the depar-
ture point of Rényi’s studies on generalized en-
tropies [69], are exactly the averages in the sense
of projective arithmetic. However, when Rényi dis-
cussed the additivity of his α-entropies, he did not
think of additivity in the same sense as the one
he implicitly used in Kolmogorov–Nagumo averag-
ing. Various forms of projective arithmetic opera-
tions and derivatives have been studied in the con-
text of generalized statistical physics and thermo-
dynamics by Kaniadakis [70–73], but only some of
the derivatives he invented were non-Newtonian,
whereas the others were neither Newtonian nor non-
Newtonian, a fact explaining why only the non-
Newtonian ones have found applications [29]. The
whole field of psychophysics is implicitly based on
projective addition (see Chapter 7 in [12]). Typi-
cally, we are unaware that decibels and star magni-
tudes correspond to logarithmic scales because our
sensory systems induce projective arithmetic in our
brains, based on approximately logarithmic bijec-
tions (the Weber–Fechner law). However, although
projective subtraction is here essential, the remain-
ing three arithmetic operations are not employed.
Certain elements of non-Newtonian integral calcu-
lus are present in cepstral analysis and homomor-
phic filtering of images [74]. Fractional derivatives
can be regarded as non-Newtonian first derivatives,
but only when formulated in the so-called Fα for-
malism [39]. Fuzzy calculus is non-additive but not
necessarily fully non-Newtonian, and this is why the
fundamental theorem of calculus does not necessar-
ily work. Non-additive probability, somewhat simi-
lar to our non-Newtonian hidden variables (as based
on non-additive Vitali and Choquet integrals), is a
standard element of modern decision theory [5, 8].

Perhaps the most radical view on generalized
arithmetics is due to Mark Burgin, who studied
arithmetics that are not isomorphic to the arith-
metic of natural numbers [75]. One of his goals was
to replace inconsistent arithmetics (e.g., the com-
puter arithmetic based on the notion of “machine
infinity”: ∞M < ∞, ∞M + 1 = ∞M ) with arith-
metics that are consistent but non-Diophantine.

Similarly radical is the approach of Sergeyev [76],
where infinities and infinitesimals are reformu-
lated in a more intuitive and, essentially, non-
Diophantine way. Here the infinity of integers is
twice bigger than the infinity of natural numbers,
while events of zero probability cannot happen (as
opposed to the Kolmogorovian formalism based on
measures) [77]. Such a new arithmetic and proba-
bilistic paradigm often turns out to be more practi-
cal than the usual Kolmogorovian framework, just
to mention Sergeyev’s Infinity Calculator software.

The interference of probabilities is one of the
greatest puzzles of quantum mechanics. Quantum
probabilities sometimes behave as if they were neg-
ative, a situation known from projective arith-
metics based on, say, gX(p) = ln(p). Risk aver-
sion paradoxes in economics can be modeled by

S168



Contra Bellum: Bell’s Theorem as a Confusion of Languages

non-additive integrals [5], but a new tendency ap-
pears where the same effects are modeled by quan-
tum probabilities [78]. Ironically, while here we have
shown that quantum probabilities can be classi-
cal but non-Newtonian, some authors are starting
to replace non-additive integrals from classical eco-
nomics with quantum probabilities [79].

Another aspect of interference is the superposi-
tion principle and the problem of linearity of quan-
tum mechanics. Non-Newtonian linear Schrödinger
equation can be Newtonian nonlinear. In such non-
linear quantum mechanics, the superposition prin-
ciple remains the same as in the linear theory; only
the meaning of “plus” and “times” is different. The
same type of duality was introduced by Maslov to
optimization theory [15], with the key idea that
something very difficult in a nonlinear framework
can become easy if we rewrite the problem in new
arithmetic.

Speaking of a non-Newtonian paradigm, one typ-
ically has in mind a non-Newtonian theory of grav-
ity (hence general relativity) or non-Newtonian
mechanics (hence quantum mechanics). In the new
paradigm that looms on the horizon, the term non-
Newtonian may be understood in a much broader
sense.

14. Conclusions

Bell overlooked the fundamental possibility of
probabilistic theories based on generalized calculi
and arithmetics. Both structures can be formulated
at different levels, leading to a hierarchy of models
related to one another by a new type of relativity
principle. The violation of Bell’s inequality by quan-
tum probabilities has the same status as the para-
doxes from special or general theories of relativity.
They all disappear if we correctly apply appropriate
relativity principles. The new framework of general-
ized arithmetics and calculi creates theoretical pos-
sibilities that are comparable only to those opened
by the discovery of non-Euclidean geometries.
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We study the statistical properties of a gas of interacting bosons trapped in a box potential in two
and three dimensions. Our primary focus is the characteristic temperature Tp, i.e., the temperature at
which the fluctuations of the number of condensed atoms (or, in 2D, the number of motionless atoms)
are maximal. Using the Fock state sampling method, we show that Tp increases due to interaction.
In 3D, this temperature converges to the critical temperature in the thermodynamic limit. In 2D, we
show the general applicability of the method by obtaining a generalized dependence of the characteristic
temperature on the interaction strength. Finally, we discuss the experimental conditions necessary for
the verification of our theoretical predictions.

topics: Bose–Einstein condensate, statistical ensembles, quantum gases

1. Introduction

The statistical properties of interacting ultracold
gases of bosonic atoms and, in particular, of Bose–
Einstein condensates (BEC) remain a considerable
challenge of current interest. While the statisti-
cal properties of non-interacting gases are well de-
scribed by a number of methods, a soluble model
for interacting bosons exists only in one dimen-
sion. In two and three dimensions, reliable results
are only available for weakly interacting gases at
low temperatures within the Bogoliubov approxi-
mation. Hence, the dependence of the critical tem-
perature on interaction remains a challenging issue.

Over the years, a large number of mutually exclu-
sive predictions of the change of the critical temper-
ature due to interactions were made [1–11]. Prac-
tically all of them dealt with a gas trapped in
a three-dimensional cubic box potential. The con-
flicting results are summarized in Table I [2–14].
Note that even the sign of the correction was

uncertain initially. Later the consensus emerged
that in the thermodynamic limit, the shift to the
critical temperature is ∆Tc ≈ 1.3 aρ1/3, where ρ
is the gas density, and a is the s-wave scattering
length.

During the struggle to compute the shift of the
critical temperature, a number of theoretical meth-
ods were used (see the review [11]). The correct re-
sult was eventually obtained by using the classical
field approximation (CFA) [10]. The CFA method
itself suffers from a cut-off problem, which was clev-
erly overcome in [10]. Recently, we proposed yet an-
other method based on a direct quantum descrip-
tion of the system and the definitions of the statis-
tical ensembles. The method, called the Fock state
sampling (FSS) method [15], is presented in Sect. 2.

Most BEC experiments to date are performed
with harmonic traps. However, recently Bose–
Einstein condensates were created in nearly perfect
box potentials [16]. Nonetheless, experimental ver-
ification of the theoretical prediction remains chal-

S171

http://doi.org/10.12693/APhysPolA.143.S171
mailto:pawlowski@cft.edu.pl


M.B. Kruk et al.

TABLE I

Coefficient c of the shift of the critical temperature
∆Tc/Tc = c a ρ1/3 obtained by various analytic and
numerical methods. See also the review by J. Ander-
sen [11]. In [14], four different many-body methods
were used yielding results in the range c ∈ [1, 6.7].

Authors Ref. Coefficient c
Grueter et al. (1997) [2] 0.34± 0.06

Holzmann et al. (1999) [3] 0.7

Holzmann et al. (1999) [4] 2.3± 0.25

Baym et al. (1999) [5] 2.9

Wilkens et al. (2000) [6] −0.93

Arnold et al. (2000) [7] 1.71

Baym et al. (2000) [8] 2.33

Souza Cruz et al. (2001) [9] 3.059

Kashurnikov et al. (2001) [10] 1.29± 0.05

Davis et al. (2003) [12] 1.3± 0.4

Nho et al. (2004) [13] 1.32± 0.14

Watabe et al. (2013) [14] 1 to 6.7

lenging. One of the problems is due to the fact that
experiments are performed with a finite number of
atoms, and for such a system, there is no unique way
of determining the critical temperature. Namely, for
a finite-size system, the number of condensed atoms
is an analytic function of temperature, and thus
there is not a definite value of temperature beyond
which the number of condensed atoms is strictly
zero. The remedy for this difficulty, proposed in [17],
is to study the temperature of maximal variance
of the number of condensed atoms instead of the
critical temperature. The temperature of the max-
imal variance tends to the critical temperature in
the thermodynamic limit [17] and is well-defined
for finite-size systems, which makes it applicable to
gases exhibiting only quasi-condensation.

Experimentally, it is more demanding to measure
the fluctuations of the condensate atom number
than the mean of this number. However, the ex-
perimental difficulties were recently overcome due
to a stabilization technique of the evaporation pro-
cess [18], allowing for a measurement of the fluc-
tuations [19]. Furthermore, it was shown that the
canonical ensemble fails to describe the experi-
mental situation, and one must invoke the micro-
canonical one [20]. These experiments directly mea-
sure the temperature of the maximal fluctuations
rather than the temperature at which the conden-
sate vanishes.

It is the purpose of this paper to discuss the
interaction-induced shifts of the temperature of
maximal fluctuations, which is referred to as the
characteristic temperature Tp. Based on the FSS
method, we provide, to our knowledge for the first
time, results for a bosonic gas in a box potential in
the microcanonical ensemble.

The paper is organized as follows. In Sect. 2,
we briefly review the FSS method. Section 3 ap-
plies the method to a gas trapped in the three-
dimensional box potential in both the canonical
and microcanonical ensembles. In Sect. 4, the case
of the two-dimensional box potential is discussed.
Note that there is no phase transition and no crit-
ical temperature in this case, and nonetheless, the
characteristic temperature can be defined. Section 5
concludes the discussion and provides an outlook on
future experiments.

2. Fock state sampling method

We consider N bosonic atoms trapped in a box
potential with periodic boundary conditions and in-
teracting via short-range interaction potential. The
Hamiltonian of the system is

Ĥ = − ~2

2m

∫
ddr Ψ̂ †(r)∇2Ψ̂(r)

+
gd
2

∫
ddr Ψ̂ †(r)Ψ̂ †(r)Ψ̂(r)Ψ̂(r), (1)

where Ψ̂(r) is a bosonic annihilation operator, m is
a mass, and gd > 0 is a coupling constant related
to short-range interactions. In Sect. 3, we consider
three-dimensional systems, where the coupling con-
stant is gd=3 ≡ g3D = 4π~2a/m and a is the scatter-
ing length. In Sect. 4, devoted to two-dimensional
systems, we use the notation gd=2 ≡ g2D. In the
case of a box potential with periodic boundary con-
ditions, the macroscopically occupied orbital (the
BEC wave function in 3D) is just a constant func-
tion, i.e., a plane wave with momentum 0.

In what follows, we focus on the fluctuations of
the number of atoms in BEC at finite temperature.
We use the canonical and the microcanonical en-
sembles, which were shown to be close to the exper-
imental reality [19, 20].

There are several different ways to describe the
statistical properties of ultra-cold Bose gases theo-
retically. In this paper, we sample many-body states
to generate a set of copies that properly approxi-
mates the canonical ensemble of a gas. Given a suffi-
ciently large set of copies, the expectation values are
defined as the average over the set. By post-selecting
the set, we obtain results in the microcanonical en-
semble. To define the appropriate Metropolis algo-
rithm [21], we need to define “the stage”, which is the
set of available states, and the “Metropolis dynam-
ics” or the specific algorithm defining the Markov
chain generating the approximation to the canoni-
cal ensemble.

2.1. Setting “the stage”

All states of N particles belong to the suitable
Hilbert space. A convenient parametrization is pro-
vided by the basis of single-particle states in the
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Fig. 1. Single step of the FSS method: one draws
two states — one from which an atom might be
taken (index j) and one in which the atom may
land (index j′) with probability distribution pro-
portional to nj(nj′ + 1). The new state is accepted
only if a random number r drawn from a uniform
distribution in [0, 1] is smaller than the Boltzmann
factor b given in (5).

trapping potential. Since we consider box potentials
with periodic boundary conditions, the basis states
are just plane waves

fj(r) := fjx jy jz (x, y, z) =

1√
Lx Ly Lz

e− i 2π(jx x/Lx+jy y/Ly+jz z/Lz),

(2)
where Lx, Ly, and Lz are the lengths of the box
potential and jx, jy, and jz are positive and neg-
ative integers. It is worth stressing that due to
translational invariance, these states remain eigen-
states of the single-particle density matrix also for
the interacting gas. Thus, the constant function
jx = jy = jz = 0 remains the condensate state
also in the presence of interactions.

The space of all N -particle states is spanned by
the Fock states
|n〉 := |n1, n2, . . .〉 , (3)

where nj denotes the number of bosons in the
single-particle state fj(r). In the canonical ensem-
ble, we fix the total number of atomsN and consider
only the Fock states that contain N bosons∑

j

nj = N. (4)

The whole Hilbert space contains all superposi-
tions of all N -particle Fock states. The appropriate
parameters are far too numerous for any efficient
numerics. Instead, we restrict our set of available
states just to the Fock states in (3), not accounting
for their superpositions. This has two consequences.
First, it neglects the phenomenon of quantum deple-
tion. Thus, the method is expected to yield correct

results only for weak interactions. Second, it is not
applicable to weakly interacting bosons confined in
a harmonic trap, since, in this case, the condensate
wave function is a superposition of many oscillator
states.

2.2. Metropolis dynamics

The following algorithm defines our Markov chain
used to generate the elements of our representation
of the canonical ensemble. A single step of this al-
gorithm is also shown in Fig. 1.

Each particle has the same probability of jumping
out of a given single-particle state. The probability
of jumping out is proportional to the number of par-
ticles in that state. The probability of landing in a
given single-particle state is proportional to its oc-
cupation (stimulated process) plus one (to account
for the spontaneous process). The acceptance cri-
terion, usual for the Metropolis algorithm, is based
on comparing a random number 0 < r < 1 drawn
from a uniform distribution versus the Boltzmann
factor b of the initial and the final states
b
(
Ecurrent, Ecandidate

)
= e−β(Ecurrent−Ecandidate),

(5)
where β = 1/(kBT ), kB is the Boltzmann constant
and T is the temperature. The energy Ecurrent is the
expectation value of the Hamiltonian in the current
Fock state. It is the sum of the kinetic energy and
the interaction energy. The kinetic energy is simply

Ekin =
∑
j

nj ej , (6)

where ej is the energy of the j-th level, i.e.,

ej :=
2π2~2

m

[(
jx
L1

)2

+

(
jy
L2

)2

+

(
jz
L3

)2
]
.

(7)
The short-range interaction energy, which in the
general case is a nontrivial quadratic form, reduces
to a single sum in the case of a box potential and is
averaged in a single Fock state

Eint=

〈
n

∣∣∣∣g3D2
∫

d3r Ψ̂ †(r)Ψ̂ †(r)Ψ̂(r)Ψ̂(r)

∣∣∣∣n〉=

g3D
2

(
2N(N−1)−

∑
j
n2j

)
. (8)

Moreover, for comparison of the Boltzmann factors,
only the difference of the energies of the final and
initial state enters (see (5))

Ecurrent−Ecandidate = ej−ej′ + g3D (nj′−nj),

(9)
where j and j′ are the indices of the single-particle
states from which the atom escaped and in which it
lands, respectively. A single step of this algorithm
is presented in Fig. 1.

The algorithm satisfies the detailed balance prin-
ciple and guarantees access to all important N par-
ticle states. When the number of steps goes to infin-
ity, the expectation value of any physical quantity
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Fig. 2. Standard deviation of the number of condensed atoms confined in a 3D box potential with periodic
boundary conditions for N = 300 atoms for a non-interacting (solid lines) and an interacting gas with a gas
parameter aρ1/3 = 0.05 (empty diamonds). Red symbols indicate canonical and blue microcanonical results.
The solid lines are exact, obtained with the help of recurrence relations. The empty diamonds represent
canonical and microcanonical results obtained with the help of the Fock state sampling method. Note similar
shifts of the characteristic temperature in both statistical ensembles. Also, note that the maximal fluctuations
are increased by interactions.

does not depend on the state used to initiate the al-
gorithm. In practice, we perform only a finite num-
ber of steps and discard approximately 10N initials
steps during which the quantities of interest are not
only fluctuating but also drifting.

Importantly, the Fock state sampling method also
offers access to the microcanonical ensemble. This
is accomplished simply by reducing the number of
states to those with energy in the small interval
around the most probable one.

In the following, we present the results obtained
with Fock state sampling method (FSSM) for a gas
in a 3D (Sect. 3) and 2D (Sect. 4) box potential,
including interactions between the atoms.

3. Characteristic temperature for gas
in 3D box potential

We illustrate the results of our method for ul-
tracold gases of bosonic atoms in a 3D box poten-
tial in Fig. 2. The figure shows the temperature
dependence of the standard deviation of the num-
ber of atoms in a Bose–Einstein condensate ∆N0

for both canonical and microcanonical ensembles.
The results for the non-interacting gas are exact
and obtained with the recurrence relations [6], while
the results for the interacting gas are obtained with
the FSS method described in the previous section.
Note that the microcanonical ensemble yields sig-
nificantly lower fluctuations. Moreover, interactions
increase the peak fluctuations in both ensembles,
and similarly, the temperature of the maximal fluc-
tuations is increased.

The related shift of the critical temperature due
to collisions in weakly interacting Bose gas in a 3D
box potential has been the subject of a longstand-
ing debate, as outlined in the introduction. The final
result for the correction was obtained with a sophis-
ticated numerical method [10], based on techniques
developed over the past 20 years. Our method, on
the contrary, although approximate, is simple to im-
plement for as many as 10 000 atoms.

Here, we study the temperature of the maximal
fluctuations Tp instead of looking at the critical
temperature Tc. This characteristic temperature is
well-defined for systems with a finite number of
atoms. Moreover, it has been recently shown that
it can be measured for a Bose gas in a harmonic
trap [19, 20].

Thus, the main quantity of interest is the
interaction-induced relative shift to the character-
istic temperature Tp

δTp(N, a) :=
Tp(N, a)− Tp(N, 0)

Tp(N, 0)
, (10)

where Tp(N, a) is the characteristic temperature for
a gas with N atoms interacting with the s-wave
scattering length a. To find the dependence of δTp
on N and a, we study the system with atom num-
bers ranging from 100 to 10000 and interaction
strengths g corresponding to gas parameters aρ1/3
from 0.005 to 0.02. All temperatures are given in
units of 2π2~2/(mkBL2).

The results are illustrated in Fig. 3, which shows
the relative standard deviation of the number of
condensed atoms as a function of temperature for
different total numbers of atoms and various inter-
action strengths g. Since the main focus is the shift
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Fig. 3. Relative standard deviation of the BEC atom number for an interacting gas (colored points) for
various total numbers of atoms, and interaction strengths. All points are rescaled by the maximal value of the
fluctuations in the non-interacting case. Results for systems with the same gas parameter are marked with
the same color, i.e., aρ1/3 corresponds to 0.005 (blue), 0.01 (red), 0.015 (orange), 0.02 (green). The quantity
Tp,0 is the temperature of maximal fluctuations of the non-interacting gas and the symbol “x” marks the
reference point — the maximal BEC fluctuations of the non-interacting gas. The atom number is in the range
N = 100, 200, . . . , 1000, 2000, . . . , 10000. The inset shows an overview of the entire temperature range with the
results for the non-interacting gas (dashed lines).

of the characteristic temperature Tp, all results for
the non-interacting gas are normalized in terms of
both the maximal value and its temperature. The
same scaling factors are used for the results for the
interacting gas, i.e., the temperature (relative stan-
dard deviation) is divided by the temperature Tp,0
(maximal relative standard deviation) of the non-
interacting gas with the same number of atoms. Af-
ter rescaling, one can easily follow the interaction-
induced shits. The points of a given color show the
maximal variance at the characteristic temperature
for various atom numbers N and scattering lengths
a, but a common gas parameter aρ1/3.

Note that the maximal relative standard devi-
ations are grouped into small regions for a com-
mon gas parameter. For larger gas parameters cor-
responding to larger interactions, the maximal rela-
tive standard deviations are larger and are reached
at higher temperatures as compared to the non-
interacting gas.

We fit the average shift for each characteristic
temperature with a linear dependence on the gas
parameter and obtain

δTp ≈ (2.039± 0.014) aρ
1
3 (11)

in the range of the number of atoms N between
4000 and 10000. Thus the scaling is similar to
the one obtained for the critical temperature of
an infinitely large system, while the prefactor is
larger.

Note that the maximal relative standard devia-
tions for a common gas parameter form elongated
regions, indicating that the maximal variance and
the characteristic temperature may have a further

dependence on the scattering length and density.
The remaining spread of the points indicates the
precision of our method.

Also note that interactions increase the maximal
fluctuations in this case. This point has also been
the subject of a long-standing controversy (see, for
instance, the inset in Fig. 4 in [19]). It was recently
addressed using the FSS method [15], showing that
the size of the fluctuations depends on all system
parameters, and thus it is not possible to general-
ize the effect of interactions on the magnitude of
condensate fluctuations.

Importantly, the characteristic temperature dis-
cussed in this section is also well-defined for systems
that do not exhibit a phase transition in a thermo-
dynamic limit. An example of such a system is a gas
in a 2D box potential, discussed in the next section.

4. Characteristic temperature
in 2D box potential

It is well known that Bose–Einstein condensation
appears as a phase transition for sufficiently high
dimensions. In a box potential, the phase transition
occurs only in three dimensions, while it is absent in
lower dimensionality. Despite the fact that there is
no phase transition and, therefore, no critical tem-
perature in the case of two dimensions, the notion of
the characteristic temperature Tp, marking the tem-
perature of maximal fluctuations, is still applicable.
Of course, in the absence of the phase transition,
interactions still affect the fluctuations.
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Fig. 4. Relative shift of the characteristic temperature for Bose gases in a 2D box potential with periodic
boundary conditions due to interactions. The coupling constant g2D was varied from 0 to 0.01 and the number
of atoms was adjusted from 600 to 1500.

We illustrate this by investigating a two-
dimensional box potential with periodic boundary
conditions. The calculation is analogous to the 3D
box potential, and the condensate wave function
is still a constant one, regardless of interaction.
The algorithm, after omitting all Z-dependent vari-
ables, is identical to the one introduced in the pre-
vious section. The relative shift of the character-
istic temperature due to interactions was calcu-
lated for various atom numbers N and interaction
strengths g2D, as defined in the Hamiltonian (1).
In this section, we do not refer to the gas param-
eter, which would be more complicated than in
the 3D case.

Figure 4 shows this shift as a function of gα2DN
β

with optimally chosen exponents α and β obtained
from a fit to the data, yielding

δT (2D)
p (N, g2D) :=

(0.16± 0.03) N0.642±0.015g0.704±0.0062D . (12)

The stated errors may be reduced at the expense of
the numerical effort. The convergence is very slow,
and errors scale with the square root of the number
of Metropolis steps.

The results presented in this section illustrate
the power and generality of the FSS method. The
method is conceptually very simple, and its success-
ful application merely requires a numerical effort.

5. Conclusions

In conclusion, we have investigated the fluctu-
ations of the ideal and weakly interacting Bose–
Einstein condensates trapped in box potentials with
periodic boundary conditions. The temperature of
maximal BEC atom number fluctuations Tp was an-
alyzed under various conditions. The advantage of

Tp over Tc lies in the fact that it is unambiguously
defined also for a finite system, and it can be studied
also in systems that do not exhibit phase transition.

In our study, we used the Fock state sampling
method, which turns out to be easy to use, exact for
the non-interacting system (see [15]), and applicable
to a wide range of problems. With this method, we
found the shift of the characteristic temperature in
the 3D box potential to be ≈ 2.03 a ρ1/3, where a
is the scattering length, and ρ is the gas density.
This is reasonably close to the expected shift of the
critical temperature in this system ≈ 1.3 a ρ1/3.

We also applied our method to a two-dimensional
system and obtained a generalized dependence of
the characteristic temperature on the interaction
strength and atom number ≈ 0.16N0.642g0.7042D ,
showing the applicability in a system that does not
exhibit a phase transition.

Experimentally, the recent realization of box po-
tentials provides an opportunity to address the pre-
dictions presented above. In particular, combining
box potentials with atomic species that allow for
tunability of the interaction strength will provide
access to a wide variation of gas parameters.

Box potentials are typically created using blue-
detuned light to form the walls of a box, such as,
e.g., a hollow beam with two narrow light sheets as
end caps [22]. To flatten the bottom of the potential,
gravity must be compensated using a magnetic field
gradient. Alternatively, a light field with a linearly
varying intensity produced by an accousto–optic de-
flector can be used [23]. The necessary beam shapes
for box potentials can be generated using spatial
light modulators, digital micromirror devices, or
specialized optical elements such as axicons.

Tunability of the scattering length would be
highly beneficial to isolate the effect of interac-
tions on the characteristic temperature and the
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magnitude of atom number fluctuations. This can
be achieved by adjusting the magnetic field near
a Feshbach resonance [24]. Since a magnetic field
gradient is the most common way to cancel grav-
ity within a box potential, this will typically ne-
cessitate independent control of the magnetic field
gradient and its mean value. The field gradient will
thus introduce a spatial dependence of the scatter-
ing length, and hence atomic species with broad res-
onances such as, e.g., the bosonic isotopes of potas-
sium should be used.

Furthermore, it is important to distinguish be-
tween BEC and the thermal part of partially con-
densed atomic clouds to measure the atom num-
ber fluctuations. Thus, the bimodality of the mo-
mentum distribution is crucial for determining the
BEC number and the number of thermal atoms.
Fortunately, both the bimodality and an appropri-
ate fitting function for the thermal cloud have been
confirmed [16] experimentally.

The most significant outstanding challenge to-
wards the measurement of fluctuations proposed
here is the combination of box potentials with atom
number stabilization. There are two primary tech-
nical sources of variations in the total number of
atoms. The first one is due to the statistical nature
of evaporative cooling, which relates the atom num-
ber to the temperature. This is predictable and can
be accounted for in the evaluation of atom num-
ber fluctuations. The second source of atom num-
ber variation is typically due to various technical
noise sources in the experiment and should be min-
imized since it can distort the measured atom num-
ber fluctuation when different mean values of the
BEC atom number are probed. Thus, to conduct the
experiment, it will be necessary to combine the box
potential with atom number stabilization. However,
it is not yet clear whether it is sufficient to stabilize
the atom number before loading the cloud into the
box potential or if methods for stabilization within
the box potential must be developed.

The combination of the Fock state sampling
method and current experimental developments will
allow for further experiments in the near future. Es-
pecially since the FSSM can provide precise predic-
tions for experimentally relevant atom numbers in
a variety of potentials, the time has now come for
a new generation of experiments on these funda-
mental questions.
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In this work dedicated to Professor Iwo Białynicki-Birula on the occasion of his 90th birthday, I attempts
to show that dynamical quantum phase transitions observed as singularities in the Loschmidt rate
dynamics bear a close resemblance to the standard Rabi oscillations known from the dynamics of two-
level systems. For some many-body systems, this analogy may go even further, and the behaviour
observed for example transverse Ising chain can be directly mapped to such simple dynamics. A simple
link between Loschmidt echo singularities and quantum scars is also suggested.
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1. Introduction

The physics of complex systems may sometimes
be understood (in particular limiting cases) in
a simple, enlightening form. This has been often
demonstrated in quantum optics, one of the many
areas of Iwo Białynicki-Birula outstanding contri-
butions. As a scientific grandson of Iwo Białynicki-
Birula, I had relatively small overlap in scientific
interests with him, our paths crossed for a moment
in the studies of nonspreading wave-packets [1–4].
Still, however, I profited a lot from occasional con-
versations as well as participation, from time to
time, in unusually vivid seminars with his active
participation. Often his aim was to find a sim-
ple picture of the presented effects. In this con-
tribution, I consider briefly two cases from studies
of nonequilibrium dynamics of many-body systems
which may be, in my opinion, understood in sim-
ple terms: dynamical quantum phase transitions
(DQPT) [5, 6] and quantum many-body scars
(QMBS) dynamics [7].

The simplest definition of DQPT consists of
a sudden quench in which the system is prepared
in the ground state |Ψ〉 of a parameter-dependent

Hamiltonian H(λ = 0), and λ is suddenly changed
to other value. It has been observed that often if
a change of λmoves the Hamiltonian into a different
phase, the time dynamics withH(λ) of the now non-
stationary state after quench reveals the so-called
Loschmidt echo singularities. Their appearance is
neither a necessary nor a sufficient condition for
the phase transition between H(0) and H(λ). Still,
a predominantly lack of singularities occurs if no
phase transition is crossed while changing λ and
vice versa.

Dynamical detection [7] of QMBS is in some
sense similar. One prepares an initial nonstationary
state for the many-body system described by H(λ).
When this initial state has a significant overlap with
a few almost equally spaced in energy eigenstates of
H(λ), the time evolution of the observables reveals
oscillations even in a weakly ergodic regime, i.e.,
when the dynamics of a typical generic state will
lead to thermalization.

Both these phenomena, while of current interest,
can be simply explained by identifying a “essen-
tial state model”, i.e., a minimal approximate level
scheme allowing one to simulate the dynamics. Let
us first consider DQPT in the seminal example of
the transverse Ising model.
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2. DQPT in transverse Ising model

The first work on DQPT [5] considers the trans-
verse Ising model with the Hamiltonian of the
form

H = −1

2

∑
i

σz
i σ

z
i+1 −

g

2

∑
i

σx
i , (1)

where g is the strength of the magnetic field point-
ing in the Ox direction. For small g, the inter-
actions favor the ferromagnetic (FM) orientation
(along Oz), with the two degenerate (in the ther-
modynamic limit) ground states given for g → 0 by
|ψ(±)z〉 =

∏
i |±〉

z
i , where |±〉

z
i denotes the eigen-

vectors of σz
i . The phase transition from FM to

paramagnetic order occurs for g = 1, for large g
the unique ground state is well approximated by
|ϕ〉 =

∏
i |+〉

x
i with |±〉xi being the eigenvectors

of σx
i .

Let g serve as the parameter λ and let us start
with the ground state of (1) for small g, say with
|Ψ〉 = |ψ(+)z〉, and abruptly change g to a large,
positive value. In the new Hamiltonian, the term
proportional to g will dominate, while the first term
of the interaction will be a small perturbation. The
initial state can then be decomposed in the basis of
eigenvectors σx

i as

|Ψ(0)〉 =
∏
i

1√
2

(
|+〉xi + |−〉xi

)
. (2)

The initial state after a quench is therefore the prod-
uct of two-state combinations with coefficients of
equal magnitude (the phase does not affect the re-
sult). The subsequent time evolution, still neglect-
ing interactions in the final Hamiltonian, yields

|Ψ(t)〉 =
∏
i

1√
2

(
|+〉xi e igt/2 + |−〉xi e− igt/2

)
.

(3)
By the survival probability (fidelity, return ampli-
tude, or Loschmidt echo), one calls (depending on
the context) the squared overlap of initial and time
evolved state, L(t) ≡ |〈Ψ(0) |Ψ(t)〉 |2. Further one
may define [6] the rate function r(t) via L(t) =
exp (−Lr(t)), where L is the system size (number
of degrees of freedom). Such a measure has a good
thermodynamic limit. Singularities in r(t) time de-
pendence, often referred to as Loschmidt echo sin-
gularities, are the defining features of DQPT.

Let us immediately consider the example above.
The squared overlap L(t) becomes simply L(t) =
cos2L(gt/2), and the size-independent rate r(t) re-
veals singularities whenever the cosine function van-
ishes, i.e., for t∗ = (2k+1)π/g for an integer k. This
example clearly shows that Rabi-type oscillations
are the real origin of rate function singularities in
this case.

One can complain that the situation described
above is too simplified; singularities in the form
of finite cusps appear also for smaller changes
of g, where the approximations made by us would
not work fully. Then, however, one can use the

Jordan–Wigner transformation into a noninteract-
ing fermion system, as in the original DQPT let-
ter [5], and observe similar “two-level” dynamics for
a given k as different k decouple.

3. Other examples

Our model, however, helps to explain also other
situations. In fact, as reviewed in [6], 2-band topo-
logical noninteracting models lead to exactly the
same dynamics. Again here, due to the lack of inter-
actions, different k values can be treated indepen-
dently, leading to a similar estimate of critical times
at which singularities appear. Let us stress that
while these singularities are essential for the phase-
transition language application, they just seem to
be due to the vanishing overlaps between the initial
and time-evolved wavepacket.

Consider now a situation in which we make an
abrupt quench within the same phase, then by def-
inition the ground state changes slowly and contin-
uously with the change of the parameter for a finite
system. So it is quite justified to assume that the
ground state at say λ = 0 expands in eigenstates
{|ψk〉} of H(λ) as

|Ψ〉 = α0 |ψ0〉+
∑
k

αk |ψk〉 , (4)

with |α0| � |αk| for k > 0. Then the survival prob-
ability (Loschmidt echo) is dominated by the large
therm |α0|2. The situation is more subtle in the
thermodynamic limit due to the Anderson catas-
trophe. Still then, one may expect that many eigen-
states at the final parameter value contribute to the
initial wavepacket, leading to many superimposed
oscillations at different frequencies. In such a sit-
uation, the rate function should not reveal strong
maxima (not speaking of singularities).

Note that the situation is markedly different when
the phase transition is crossed in λ because then, for
the Ising system, via symmetry as described above,
two eigenstates contribute significantly to the sum,
leading to Rabi oscillations at half of their energy
difference (per site).

The discussion up till now was concentrated on
spin-1/2 models leading to simple Rabi oscillations.
This might be a transverse Ising chain but also, e.g.
a quantum dot dynamics [8]. As known from quan-
tum optics, Rabi oscillations generalize to quantum
revivals appearing when several equally spaced lev-
els are populated [9]. Here again one may expect
that between consecutive revivals, minima of the
survival probability lead to maxima (and possibly
cusps) of the Loschmidt rate functions. In a many-
body system, an even more general situation was
experimentally realized many years ago for inter-
acting bosons in an optical lattice [10]. Initially, the
bosons were kept in a shallow lattice, then abruptly
the height of the lattice was increased dramatically,
separating different lattice sites. Within each site,
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the initial almost coherent state was a superposi-
tion of states with different site occupations, sepa-
rated by a quadratic progression in the interaction
strength U (within the tight binding Bose–Hubbard
description), and the revivals were observed. The
corresponding Loschmidt rates reveal singularities
(or maxima), as discussed in detail recently [11] in
the DQPT language, at times when the overlap be-
tween initial and time evolved state is minimal, i.e.,
roughly in the middle between two consecutive re-
vivals.

4. Quantum scars

Recently, an interesting manifestation of ergod-
icity breaking as persistent oscillations for certain
initial states was discovered experimentally with ul-
tracold Rydberg atoms [7]. This feature is due to
the presence of few atypical, almost equally spaced
eigenstates — so-called quantum many-body scars
(QMBS) [12, 13], which are embedded in the oth-
erwise thermal spectrum of a quantum many-body
system. For initial states with a high overlap with
a few QMBS, one observes long-lived oscillations of
observables, whereas for generic initial conditions
the system quickly approaches thermal equilibrium
state. The same oscillations should be present in
the survival probability leading, in turn, to maxima
of the Loschmidt echo rate function if the data are
interpreted in that way.

QMBS borrowed their name from the single-
particle quantum chaos studies, where “quantum
scar” described the enhanced probability of eigen-
states or wavepackets in regions of space occupied
by unstable periodic orbits [14] — in close rela-
tion to the semiclassical periodic orbits quantiza-
tion [15, 16]. Then also the concept of scarring
by symmetries was developed in the contex of hy-
drogen atom in magnetic field studies [17]. Simi-
lar symmetry concepts were used for the construc-
tion of nonergodic states in many-body case see,
e.g. [18, 19].

Such QMBS may be easily imagined as having the
origin in the approximate decoupling of a (not al-
ways apparent) single degree of freedom from other
degrees of freedom. If this single degree is locally
described by a harmonic oscillator (or an angular
momentum), then the corresponding eigenstates are
equidistant — their weak coupling to the remaining
states preserves the energy structure. Now, if by ac-
cident (or cleverness) the initial state is prepared as
a linear combination of those selected states (or if
it has sufficiently large overlap on at least a few of
them), one may naturally expect a persistent oscil-
lation in the time dynamics. Let us mention also
that quench dynamics and Rabi oscillations result-
ing from the excitations of two or more localized
integrals of motion in the context of many-body
localization have recently been studied [20, 21].
The localized, almost decoupled family of states
may not be easy to identify, one may try to identify

it e.g., by adiabatic following from some analytic
limit [22] or via purely numerical approaches includ-
ing artificial intelligence [23].

5. Conclusions

DQPT forms a very intriguing interpretation of
rapid quantum quenches. On the other hand, sig-
natures of DQPT in the form of singularities of the
Loschmidt echo rate functions appear to a large ex-
tent due to the very definition of this rate. Survival
probability (Loschmidt echo) itself reveals no singu-
larities but rather smooth oscillations (or revivals in
more complicated cases).

Let us stress that the mechanism presented above
considers rather simple examples. For more compli-
cated cases one may consider the Loschmidt echo as
coming back not to a single ground state, but to the
degenerate manifold, if it exists [6]. After the first
draft of this note was completed, a related work ap-
peared, giving a more general picture of DQPT [24].
It has been brought also to our attention that sim-
ilar to DQPT cusp structures may appear in single
particle dynamics [25, 26].
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1. Introduction

In 1938, Anatoly Vlasov wrote a seminal pa-
per [1] in which he argued that in the description
of a many-body system with long-range interparti-
cle interactions, the conventional kinetic Boltzmann
equation is inadequate and should be replaced by
the continuity equation for the one-particle distri-
bution function f(r,p, t) in the one-particle phase
space, where r denotes the particle position and
p its momentum. The adequate equation in ques-
tion is
∂f(r,p, t)

∂t
+
p

m
· ∇f(r,p, t) + F · ∂f(r,p, t)

∂p
= 0.

(1)
Here, F is the total force acting on the parti-
cle, resulting from interactions with all particles
in the system. Therefore, the force F depends
on f(r,p, t). When the interparticle interactions
are given by the potential forces, then F (r, t) =
−
∫

dp′dr′ ∇V (r, r′)f(r′,p′, t), and thus (1) be-
comes a self-consistent, nonlinear equation of one
particle distribution function.

Vlasow pointed out that the collision term —
the conventional right-hand side of the Boltzmann
equation — is divergent for long-range Coulomb
interactions between charged particles. A replace-
ment of the collision term for a charged particle
was suggested by Landau, and its formal deriva-
tion was proposed by Rosenbluth [2] in the first
glory years of thermonuclear reaction physics. In
fact, (1) with the Landau collision term becomes a

formidable nonlinear equation, which plays a fun-
damental role in plasma physics [3].

Forty years later, the posthumously published
book by Vlasov [4] contained several, mostly failed,
attempts to generalize his original ideas, includ-
ing those for relativistic statistical mechanics. The
Vlasov equation has been also used in many
condensed matter applications far from classical
plasma physics, for example, to describe quark–
gluon plasma and some problems in heavy ion col-
lisions [5] and in the development of late stages of
phase separation in the first-order phase transfor-
mations [6].

Almost twenty years later, Braun and Hepp [7]
showed that the Vlasov equation describes an
asymptotically exact, equal time evolution for the
N -particle Born, Bogoliubov, Green, Kirkwood,
and Yvon (BBBKY) hierarchy with interactions of
the form 1

N

∑
V (r, r′). The eigenfunctions of the

linearized (1) appear as approximate eigenfunctions
of the classical Liouville equation in the Zwanzig
variational principle for fluids [8].

Independently from Vlasov, and years later,
Yu.L. Klimontovich [9, 10] observed that for the
N -particle system the “phase space operator”

f̂(r,p, t) =
∑N

i=1
δ(r − ri) δ(p− pi) (2)

obeys the equation
∂f̂(r,p, t)

∂t
+
p

m
· ∇f̂(r,p, t)+F {f̂} · ∂f̂(r,p, t)

∂p
=0,

(3)

S183

http://doi.org/10.12693/APhysPolA.143.S183
mailto:laturski@cft.edu.pl


Ł.A. Turski

where

F (f̂) =

∫
dr′dp′ F (r, r′)f̂(r′p′), (4)

here F (r, r′) is the force acting between the parti-
cles. The fact that the function f̂(r,p) is one of the
exact solutions of (1) plays a fundamental role in all
applications of the Vlasov equation and particularly
in mathematically correct solutions of it [3].

For an N -particle system with the Hamilto-
nian H(r,p), the Hamilton equations of motion,
identical to the Newton ones, can be written as

ṙ = {r, H},

ṗ = {p, H},
(5)

where {a, b} denote the Poisson brackets between
the arbitrary phase space functions a = a(r,p) and
b = b(r,p)

{a, b} =
∂a

∂r
· ∂b
∂p
− ∂b

∂r
· ∂a
∂p

. (6)

Using (5)–(6), we can derive the Poisson bracket re-
lation between the Klimontovich distributions (2),

{
f̂(r,p, t), f̂(r′,p′, t)

}
=
[
f̂(r,p′, t)−f̂(r′,p, t)

]
∇ · ∇P δ(r−r′) δ(p−p′) =

∫
dr′′dp′′ Cr

′′p′′

rp,r′p′ f̂(r′′,p′′, t),

(7)

where ∇ ≡ ∂/∂r and ∇P ≡ ∂/∂p. Now, (7) shows
that the algebra of the Klimontovich distribution
functions forms the Lie algebra with structure co-
efficients Cr

′′p′′

rp,r′p′ . This algebra is, therefore, of fun-
damental interest in the metriplectic formulation of
dissipative systems dynamics [11].

Assuming the conventional form of the Hamilto-
nian

H(r,p) =
∑

i=1...N

p2

2m
+

1

2

∑
i<j

V
(
|ri − rj |

)
, (8)

we can write the Hamiltonian H as functional of f̂ ,

H{f̂} =

∫
drdp

p2

2m
f̂(r,p)

+
1

2

∫
drdp

∫
dr′dp′ f̂(r,p)V (|r − r′|)f̂(r′,p′),

(9)
and subsequently (3) can be written as

∂f̂(r,p)

∂t
=
{
f̂(r,p), H{f̂}

}
. (10)

Note that (2), (7), and (10) form the symplectic
formulation of the many-body dynamics equivalent
to the Hamiltonian formulation. The complete in-
troduction to symplectic dynamics can be found in
a classical book by Marsden and collaborators [12]
and in a series of works by Morrison [13]. It is worth
noticing that by replacing the Klimontovich distri-
bution with the Wigner function [14] and its Poisson
brackets through the Moyal brackets [15], we obtain
the quantum version of the Vlasov–Klimontovich
formulation of the many-body system.

Back in the late 1970s, Piotr Goldstein and I
were working extensively on the use of the Vlasov–
Klimontovich formulation to describe the proper-
ties of waves propagating in a quasi-relativistic
plasma, described by an approximation, in which
interactions between charged particles are de-
scribed by means of the Breit–Darwin Hamiltonian
containing velocity-dependent interactions [16].
Simultaneously, with Zbigniew Iwiński, a former
student of Iwo Białynicki-Birula, we were analyzing
the possibility of formulating a fully relativistic

form of the Vlasov equation. In a preliminary pa-
per, we formulated such a description and derived
the Poisson brackets for a relativistic generalization
of the Klimontovich function [17]. Years later, Iwo
Białynicki-Birula and John C. Hubbard were work-
ing on the same subject, and eventually, we pub-
lished together a complete description of the gauge-
independent and canonical formulation of the rela-
tivistic plasma theory [18].

2. Relativistic plasma theory

The publication [18] mentioned at the end of the
previous section contained the gauge-independent
formulation of the theory of relativistic plasma
constituting the multicomponent particle system
and the electromagnetic field. Our theoretical tool
for that purpose is the symplectic (or canonical)
formulation with the dynamical variables for
electromagnetic field E,B and particle variables,
namely, positions ξA and relativistic kinematic mo-
menta PA. The index A-labels particles belonging
to a particular particle species A ∈ Sa, a = 1, . . . ,S,
and PA = mavA/

√
1− v2A/c2. These variables

obey the Maxwell–Lorentz equations of the form
dξA
dt

= vA,

dpA
dt

= ea
[
E
(
ξA(t), t

)
+ vA(t)×B

(
ξA(t), t

)]
,

∂B(r, t)

∂t
= −∇×E(r, t),

∂E(r, t)

∂t
= ∇×B(r, t)−

∑
A

eAvA(t) δ(r−ξA(t)),

∇ ·B(r, t) = 0,

∇ ·E(r, t) =
∑
A

eA δ(r − ξA(t)).
(11)

The relativistic invariant phase space Klimontovich
function is identical to that in (2), with the
relativistic kinematic momenta replacing p, i.e.,
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f̂a(r,p, t) =
∑

A∈Sa
δ(r − ξA)δ(p−PA), (12)

where
p = mav/

√
1− v2/c2. (13)

The Maxwell–Lorentz equation (11) can be cast
into a canonical form using the Poisson bracket
relations
{ξiA, P

j
B} = δAB δ

ij ,

{P iA, P
j
B} = eAδAB ε

ijkBk(ξA),

{P iA, Ej(r)} = eAδ
ij δ(r − ξA),

{Bi(r), Ej(r′)} = εijk∂k δ(r − r′),
(14)

with all other Poisson brackets vanishing. The Pois-
son brackets for electromagnetic fields {Ei, Bj}
are the classical form of commutators derived by

Born and Infeld [19] and discussed in greater detail
in [20]. These Poisson brackets are consistent with
the constraints described by the last two equations
in (11).

With the above choice of canonical variables and
their Poisson brackets, the full Poincaré group is
realised as a subgroup of the canonical transforma-
tion group [18] and the theory of plasma becomes
fully relativistic. Using (14) one can easily derive
the Poisson brackets for electromagnetic fields
and the phase space function (12) which we write
below employing shorthand notation z=(r,P ),
ζA=(ξA,PA), rational system of units with c = 1
and following{
F
(
{ζA}

)
, G
(
{ζB}

)}
=
∑
ζA,ζb

∂F

∂ζA

{
ζa, ζB

} ∂G
∂ζB

,

(15)

{
f̂a(z, )f̂b(z

′)
}

= δab

[(
f̂a(r,P ′)− f̂a(r′,P )

)
∇ · ∇P + eaB(r) ·

(
∇P f̂b(z)×∇P

)]
δ(z − z′). (16)

The remaining non-zero Poisson brackets read{
f̂a(z),E(r′)

}
= −ea∇P f̂a(z)δ(z − z′),

{
f̂a(z),B(r′)

}
= 0. (17)

Having the above formalism, we can express all the
generators of the Poincaré group in terms of the
Klimontovich function f̂ and fields E, B [18]. For
example, the Hamiltonian of the system reads

H =
∑
a

∫
dz
√
p2+m2f̂a(z) +

1

2

∫
dr
(
E2+B2

)
,

(18)
and momentum vector

Π =
∑
a

∫
dz p f̂a(z) +

∫
dr E ×B. (19)

Note that the Hamiltonian (18) does not contain the
coupling constant between the plasma and the elec-
tromagnetic field, i.e., the charge ea. The interaction
between these two is fully contained in the Poisson
brackets (14), (16), (17). The Klimontovich–Vlasov
formulation of relativistic plasma physics, presented
in [18], therefore follows some ideas presented by
Souriau and Sternberg [21, 22]. This gauge-invariant
formulation of the interacting system of particles
and fields can be extended for general relativity for-
mulation [23].

The Vlasov equation and the Maxwell equation
can then be written as

∂f̂a
∂t

=
{
f̂a, H

{
f̂a,E,B

}}
≡

−
[
va · ∇+ ea

(
E + va ×B

)
· ∇P

]
f̂a,

∂E

∂t
= {E, H} ≡ ∇×B −

∑
a

∫
dp vaf̂a,

∂B

∂t
= {B, H} ≡ −∇×E.

(20)

The relativistic statistical mechanics does not of-
fer a mathematically rigorous formulation of the re-
lation between the Vlasov (1) and the Kimontovich
equation (3) like that in [7]. Nevertheless, there is
sufficient experimental experience from hot plasma
and astrophysical applications for one to make an
assumption that the one-particle distribution func-
tion defined in one-particle phase space of positions
and relativistic kinematical momenta — the ensem-
ble average of the Klimontovich function — obeys
identical equations as our relativistic one (20). With
this assumption, we can generalize the formula-
tion given above by including in our description di-
rect information on destroying physical processes in
plasma — direct charge particle collisions — sim-
ilarly as Landau has done for the original Vlasov
equation. To do this, it is convenient to follow an
algebraic method of including dissipative processes
in symplectic dynamics — the metriplectic method.
We shall discuss this procedure in Sect. 4.

3. Semiclassical spin 1/2 Bloch
electrons plasma

In the quantum theory of crystalline solids, the
motion of electrons is described by means of the
wave packets constructed from Bloch wave func-
tions with periodic part uk, where k labels the wave
vectors for the specific band [24]. For the sake of
simplicity, we consider here the solids with only
one energy band ε(k). J. Zak [25] observed that the
Bloch systems yield the geometric phases and that
the gauge-invariant Berry curvature [26]
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Ω̃(k) = i
〈
∇kuk| × |∇kuk

〉
(21)

is observable and generally nonzero for crystals
without inversion symmetry. Theoretical analy-
sis [27, 28] has shown that in many important exper-
imental applications, it is sufficient to describe the
motion of electrons by a semiclassical equation of
motion in which the position of the center of the
localized electron wave function and wave vector
(r,k) obey the equation of motion

ṙ =
∂ε(k)

~ ∂k
+ F × Ω̃/~, k̇ = F /~, (22)

where F = −∇U(r) is the net force acting on the
electrons.

These equations play the role of the Hamilton
equations in classical mechanics and, therefore, can
be used in the formulation of the symplectic, or Lie–
Poisson bracket technique [11, 12, 29], description of
the semiclassical Bloch electrons. This description
can subsequently be rewritten using the Vlasov–
Klimontovich equation approach [30]. We begin by
defining the Poisson brackets for “position” r and
“momenta” κ = ~k (where Ω = Ω̃/~) as follows
{ra, rb} = εabcΩc, {ra, κb} = δab,

{κa, κb} = 0,
(23)

a special case of non-commutative classical mechan-
ics Poisson brackets discussed in [31]. Assuming
that the Hamiltonian for semiclassical electrons can
be written as H(r,κ) = ε(κ) + U(r) equations

ṙa = {ra, H}, κ̇a = {κa, H}, (24)
become identical to (22). That allows us to use
the Klimontovich function [9, 10] with momenta p
replaced by κ to describe the semiclassical Bloch
electron plasma. We can write, as in previous sec-
tions, H{f̂} =

∫
d1 ε(1)f̂(1), where 1 = (r,κ)

and the mean value of a physical observable as
〈A〉 =

∫
d1A(1)f̂(1). Using the Poisson brackets

(23), one easily finds the Poisson brackets for f̂ func-
tion{
f̂(1), f̂(2)

}
=
(
∇f̂(1) · ∇κ−∇κf̂(1) · ∇

)
δ(1−2)

+ Ω ·
[
∇f̂(1)×∇δ(1−2))

]
. (25)

Now, (25) allows us to write the Vlasov–
Klimontovich equation for the semiclassical elec-
trons as

∂f̂(1)

∂t
= {f̂(1), H{f̂}}. (26)

To account for the specific properties of the semi-
classical electron plasma, for example, Ohm’s law,
we need to supplement the Vlasov–Klimontovich
equation (26) with the proper dissipative term on
its RHS, which we shall denote W{f̂}. In [27, 28],
the simple relaxation time approximation has been
used for W{f̂}. The full kinetic equation for f̂ does
not then conserve the number of charge carriers
in the system. It seems, therefore, more appropri-
ate to replace this W{f̂} by the generalization of

the Boltzmann–Lorentz collision operator [32, 33],
which offers a formulation of the collision operator
for a tight-binding model. The relation between the
construction of such an operator and the symplectic
formulation of many-particle system dynamics will
be outlined in the last section. Having done so and
using the linearized version of the Chapman–Enskog
approximation f̂(r,κ) ≈ ρ(r)φB(κ), where ρ(r) de-
notes carriers density and φB(κ) stands for equi-
librium carriers distribution function at the tem-
perature of the carrier β−1 defined as mδijβ−1 =∫

dκ φB(κ)κiκj , and, furthermore, assuming that
the Berry curvature Ω is slowly varying function of
the wave vector k traversing the Brillouin zone, we
obtain the dispersion relation for the fluctuation of
the density of carriers ρω,q, which replaces the Ohm
law for spinless Bloch electrons(

ω̃(q) + izΓq

)(
ω̃(q)− iSqΓq

)
=[ q2

mβ
− eq ·

(
E0 × (q ·Ξ )

)
+ ieE0 ·

q

m

]
,

(27)

where
ω̃(q) = ω − eq · (Ω ×E0) (28)

is the frequency shift due to the anomalous Hall
drift velocity eΩ × E0. There, Γq, Sq, and z
are the scattering amplitude, scatterers struc-
ture factor, and coordination number, respectively;
Ω and Ξij denote, respectively, the averaged val-
ues of the Berry curvature Ω =

∫
dκφB(κ)Ω(κ)

and the averaged “curvature torque” Ξ ij =∫
dκκi Ωj(κ)φB(κ).
The charge carriers in solid carry internal de-

grees of freedom spins. One can generalize the
Vlasov–Klimontovich description of semiclassical
carriers, shown above, for the case of Bloch elec-
trons with spin 1

2 . We do this by describing the
carriers by spinor Klimontovich distribution func-
tion f̂ = 1

2

∑3
α=0 fασ̂α, where σ̂i=1,2,3 are the Pauli

matrices and σ0 is the 2×2 unit matrix. The mean-
ing of coefficients fα stems from the meaning of
the mean value of the observables 〈A〉 = Tr(A f̂).
Here, Tr denotes the matrix trace in spinor space
and phase-space integration. The coefficient f0 is
the Vlasov–Klimontovich function used for spinless
carriers, and fi are carriers spin densities 〈Si〉 =
1
2

∫
d1 Tr(~

2 σ̂i
∑
α fασ̂α) = ~

2

∫
d1 fi(1).

For the spinor distribution function f̂ , the Pois-
son brackets now become 4× 4 functional matrices
(i, j = 1, 2, 3)[
f̂(1), f̂(2)

]
=

(
{f0(1), f0(2)} , {f0(1), fj(2)}
{fi(1), f0(2)} , {fi(1), fj(2)}

)
,

(29)

where {f̂0(1), f̂0(2)}} is given by (25) and{
f̂i(1), f̂0(2)

}
= −∇f̂i(1) · ∇κ δ(1−1){

f̂i(1), f̂j(2)
}

= εijkf̂k(1) δ(1−1).
(30)
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The kinetic equation for the spinor f̂ becomes
now

∂ f̂

∂t
=
[
f̂ , H{f̂}

]
+W{f̂} =

Tr2
[
f̂(1), f̂(2)

] δH{f̂}
δf̂(2)

+W{f̂}. (31)

The collision operator W must preserve the length
of the carrier spin S2. The Poison brackets for the
spinor f̂ (see (29)) guarantee that the spin length
is the Casimir of the Lie–Poisson brackets.

Using the notation from [34, 35], we write

W{f̂} =

−λ
∫

d2
[
δijφB(κ2)δ(1−2)− f̂i(1)f̂j(2)

]δH{f̂}
δf̂(2)

.

(32)
Having formulated the kinetic equation for semi-
classical spin 1/2 Bloch electrons, we can use them
to analyze the properties of such a carrier plasma.
For example, we can consider plasma with con-
stant equilibrium carriers density ρ0, constant ex-
ternal electric field E0, and diagonal pressure tensor
Pij(ρ) =

∫
d3κ f(κ)κiκj . Linearizing (31), we ob-

tain the dispersion relation for plasma excitation

ω̃(q)2 = ω2
P + Cij q

iqj +
ie

m
q ·E0, (33)

where (ω, q) denotes the plasma excitations fre-
quency and momentum; ωP=

√
4πe2ρ0/m is the

plasma frequency; ω̃(q) is given in (28); c=(∂P∂ρ )1/2
0

is the speed of sound in carrier gas at equilib-
rium; and sound velocity is anisotropic c→ Cijq

iqj ,
with Cij = c2(δij−εijk El0 Ξ

kl
/c2). This anisotropy

is caused by the coupling of the external electric
field and the Berry phase curvature torque. The
plasma excitations group velocity is shifted with re-
spect to that of usual plasma in the frame of ref-
erence drifting with the anomalous Hall velocity
vD = eΩ̃ ×E0.

In the following sections, we shall discuss
the metriplectic generalization of the Vlasov–
Klimontovich formulation of both relativistic
plasma and plasma of semiclassical Bloch electrons.

4. Metriplectic description

In two previous sections, we have described the
use of the Lie–Poisson brackets technique, together
with the use of the Vlasov–Klimontovich function,
for two important physical models of plasmas: the
relativistic plasma and the plasma of semiclassical
Bloch, spinless and spin 1/2, electrons. The Lie–
Poisson bracket technique has been applied to many
other examples in non-linear physics leading to im-
portant progress in those fields [12, 36]. All these
applications are examples of reversible (dissipation-
less) dynamical systems. Allan Kaufman and Phil
Morrison suggested [37–39] that this description can

be generalized to include dissipative processes by
employing a technique called now metriplectic dy-
namics.

This theory, described for example in [11, 13],
consists of two steps.

Step one is replacing the Hamiltonian in equa-
tions of motions by the system free energy F(ψ) =
H(ψ)−θ S(C), where ψ stands for the system
dynamical variables, S is the entropy functional and
C denotes a set of the Casimir variables defined as
quantities which Poisson brackets with all ψ van-
ishes identically, independently of the form of the
Hamiltonian [29]. The coefficient θ depends on the
type of interaction between the dynamical system
and the environment. For example, it can be iden-
tified with the system temperature by assuming
that the absolute minimum of F(ψ) is described by
the equilibrium distribution function for the system
given by the Hamiltonian H. In both examples dis-
cussed in previous sections, this distribution func-
tion is the proper Maxwell–Blotzmann distribution.

Step two consists in adding to the Poisson brack-
ets in the Hamilton equations of motion (5) the
symmetric–“dissipative” brackets
≺ψ(ζA), ψ(ζB)� = ≺ψ(ζB), ψ(ζA)� = D(ψA, ψB).

(34)
The dynamical equations of motion are now written
as
∂ζA
∂t

=
[
ψA(ζ),F(ζ)

]
=

∫
Dζ ′ LAB(ζ, ζ ′)

δF
δψB(ζ ′)

,

(35)
where
LAB(ζ, ζ ′) =

{
ψA, ψB

}
−≺ψ(ζA), ψ(ζB)�. (36)

The structure of the dissipative bracket depends
on the nature of the processes causing the dissipa-
tion.

In [29], the general theory of algebraic construc-
tion ofD(ψA, ψB) was given. For the dynamical the-
ory equipped with Lie–Poisson brackets associated
with Lie algebra with the structure constant CABC
(compare with (7)), the dissipative brackets, consis-
tent with preservation of the Casimirs of that Lie
algebra, have the form

DAB = GCDCMCA C
N
DB ψMψN , (37)

where GCD is the inverse of the Cartan–Killing
tensor built from the structure constant as
GAB = −CDANCNDB .

In both applications described in previous sec-
tions, these brackets describe the direct particle–
particle collisions. Thus recalling that the role of
fields ψ is played by the Klimontovich function, we
can rewrite (34) as

≺f̂(z), f̂(z′)� ≡ D(f̂(z), f̂(z′)) =

1

2

∫
d6z1d6z2 f̂(z1)∆(z, z′; z1, z2)f̂(z2),

(38)
where the kernel ∆(z, z′; z1, z2) accounts for
physics of those particle–particle interactions.
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In the analysis of the semiclassical Bloch elec-
trons, we have used the collision operator W. The
use of a linearized version of such operator results
in the dispersion relation in (27). A similar collision
operator is shown in (32).

The dissipative bracket for relativistic classical
plasma, discussed earlier, should yield the collision
operator on the RHS of the first equation in (20) in
the form of the Landau collision operator [3]. This
requirement gives the kernal ∆(z, z′; z1z2) in the
form

∆(z, z′; z1z2) =

∫
dk αk(z1, z2) δ

(
k · (v(p)−v(p′)

) (
k ·
[
∇P1

δ(z−z1)−∇P2
δ(z−z2)

])
×
(
k ·
[
∇P1

δ(z′−z1)−∇P2
δ(z′−z2)

])
, (39)

where αk(z1, z2) describe details of particle–
particle collision and as before, v(p) =

p/
√
p2 +m2, [40].

The metriplectic description based on the
Klimontovich function suffers from mathematical
difficulties related to the problems with the opera-
tions on the singular distribution functions. In most
of the applications, the distribution f̂ is therefore
replaced by the “smooth” one-particle distribution
function f(r,p, t) = 〈f̂(r,p, t)〉, where 〈. . .〉 denotes
initial ensemble averaging. That surely leads to the
loss of information. One can attempt to restore at
least part of that lost information by amending
the RHS of (35) with a properly chosen Langevin
“force” [40–42]

∂ζA
∂t

=

∫
Dζ ′ LAB(ζ, ζ ′)

δF
δψB(ζ ′)

+ λA(ζ)

(40)
with
〈〈λA(ζ, t)λB(ζ ′, t)〉〉 = SAB(ζ, ζ ′) δ(t− t′), (41)

where the double brackets 〈〈. . .〉〉 denote averaging
over the realizations of the Langevin forces λA. The
generalized Fokker–Planck equation for the proba-
bility distribution P in space of dynamical variables
ψ can now be written as [40]

∂P
∂t

= L̂

(
δ

δζ

)
P, (42)

where

P =

∫
Dζ Dζ ′

δ

δψA(ζ)
LAB(ζ, ζ ′)

δF
δψB(ζ ′)

+

∫
Dζ Dζ ′

δ

δψA(ζ)
SAB(ζ, ζ ′)

δ

δψB(ζ ′)
.

(43)

Note that (43) has the same form for both spe-
cific examples discussed in Sect. 3. Note, therefore,
that for the relativistic plasma, it is a fully rela-
tivistic Fokker–Planck equation for the dynamical
variables ψA(ζ), which in this case are the Vlasov
one-particle distribution function f(r,p), with p
given by (13) and electromagnetic field (E,B). For
semiclassical Bloch electrons, p is the kinematic mo-
mentum of the carrier. Assuming that the Hamil-
tonian for semiclassical Bloch carriers is given as
a nonrelativistic form of (18) supplemented with the

Zeeman-like coupling proportional
∑3
j=1 γ fjBj(1)

and neglecting the internal electric and magnetic
fields generated by the motion of carriers and using
the dissipative brackets (32) stemming from dissi-
pative brackets for spins [43]

≺ Si, Sj �= −λ|S|
(
δij −

SiSj
S2

)
, (44)

we can derive the conservation equation for the spin
density Si(r) =

∫
dp fi(r,p), which is equivalent to

the convective version of the Gilber–Landau equa-
tion for sample magnetization [44]

∂S

∂t
+∇ ·Λ = γS ×B − λS ×

(
S ×B

)
, (45)

where Λij =
∫

dp pi fj(r,p) is the spin current
tensor. The explicit form of Λ follows from the
Chapman–Enskog approximations in solving the ki-
netic equation (31).

The above example of continuum equations fol-
lowing from metriplectic analysis of the Vlasov–
Klimontovich description of the many particles sys-
tem allows us to derive the hydrodynamic-like de-
scription of that system. These continuum me-
chanics equations can also be cast in the form of
metriplectic dynamics [41], and it has been dis-
cussed in many recent publications of Massimo
Materassi and Phil Morrison and their collabora-
tors [13, 36]. Whether this technique can be useful
in other applications, for example, in the theory of
quark–gluon plasma, remains to be seen.

5. Conclusions

The above sections contain a discussion of the
use of Vlasov–Klimontovich formulation of the clas-
sical many particle systems dynamics. Some im-
portant generalisations of that formulation, for ex-
ample, quantum many-body problems or classi-
cal hydrodynamics [36] are mentioned in included
references. There is essentially no applications of
that formulation in equilibrium statistical mechan-
ics in spite of the fact that the Vlasov descrip-
tion could easily be used within the Martin–Rose–
Sigma formulation [45]. The general relativity gen-
eralisation of the kinetic theory base on the present
above formulation [23] is now being prepared for
publication.
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1. Introduction

In this paper, we would like to present an exam-
ple of the usefulness of scientific knowledge gained
in the school of Professor Iwo Białynicki-Birula
(the Master). Namely, in the middle eighties of the
last century, the present author (Van Cao Long)
together with other Master’s outstanding descen-
dants: Professor Jan Mostowski from the Institute
of Physics, Polish Academy of Sciences, and Pro-
fessor Marek Trippenbach from the University of
Warsaw, we tried to construct a classical theory
of ionization of many-electron atoms [1]. Our clas-
sical model of ionization is described in detail in
the third chapter of M. Trippenbach’s doctoral dis-
sertation [2]. This model is practically a precursor
of the simulation method — the so-called molecu-
lar dynamics, very popular nowadays in the sim-
ulation of multi-particle systems — on which the
present author (Van Cao Long) is now working in-
tensively with the current Ph.D. student Nguyen
Trong Dung. During only the last two years, we
published approximately 20 papers [3–22].

The quantum description of a large, multi-
element physical system is usually complex and
impossible to analyze by current supercomputers.
Often these attempts obscure the physical pic-
ture of the phenomena under consideration. There-
fore, approximate baseline simulations were used
in the probabilistic treatment of the system with

the parameters included in the problem after their
quantum averaging, while the tested physical quan-
tities were already treated as random variables or
classical stochastic processes, and further numerical
simulations were carried out using classical equa-
tions. This approach was first used in the 1950s
and then developed intensively in the 1980s. One
of us (Van Cao Long) actively participated in these
processes during his work in the Department of
Theoretical Physics (now the Center for Theoret-
ical Physics of the Polish Academy of Sciences) in
the eighties of the last century. In particular, the
research emphasized above and described in detail
in M. Trippenbach’s doctoral dissertation “Selected
issues concerning ionization of atoms in the field
of strong laser waves” [2] can be treated as a pre-
cursor of the deterministic simulation method, cur-
rently widely used in the theory of solids, chemistry,
and molecular biology, namely the so-called molecu-
lar dynamics method. The model we proposed con-
sisted in drawing the initial conditions for the posi-
tion and momentum of a particular electron using
the Monte Carlo method according to their certain
distribution in the phase space, namely with the
modified Wigner distribution. Then we simulated
the dynamics of electrons classically, i.e., we solved
Newton’s equations. We counted the total energy
of the electron at a given moment with the newly
obtained distribution in the phase space. When this
energy is positive, we say we have ionization. In this
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way, we have studied the ionization of a multi-
electron atom. This scheme is exactly the same as
in the molecular dynamics (MD) method. We will
take an example below concerning the study of bulk
Au materials to illustrate this powerful simulation
method.

2. Structure, phase transition, and
crystallization progress of bulk Au materials

within the molecular dynamics (MD)
simulation method

It is widely known that gold (Au) is a precious
metal, inert and strongly colored [23, 24], with the
number of protons Z = 79 and the electronic struc-
ture 4f145d106s1. It has great applicability in sci-
entific and technological fields due to biocompati-
bility, ability to perform biological/chemical anal-
yses [25, 26]. Gold is used in biosensors [27], can-
cer therapy [28], as jewelry and foreign currency
for exchange and economic transactions in life. To
study and fabricate bulk Au materials, scientists
use research methods such as experiment, theory,
and simulation. One can say that the traditional
division of physics and other natural sciences into
“experiment” and “theory” is no longer valid. Com-
puter simulation is the third that is complementary
to these two traditional branches of science.

With the experimental method, Yuk et al. [28]
successfully studied the process of crystallization of
the material at the temperature of T = 700 K, with
an appearance time of only 10 s, which is a very
short time for observations [28]. The bond length
of Au–Au determined by experiments is rAu−Au =
2.48, 2.88 Å, 3.6–4.0 Å [29], and 3.0–3.6 Å [30],
whereas by the simulation it is rAu−Au = 2.8 Å [42]
and 2.9 Å [31].

Results with such large deviations are explained
by impurities. To confirm this, the authors success-
fully studied the influence of factors on the bond
length of the CuAu alloys with rAu−Au = 3.05 Å [10]
and of the NiAu alloys with rAu−Au = 3.09–
3.17 Å when the heating rate increases from 4×1012

to 4×1014 K/s [4]. In particular, the simulation
method is considered the most advanced tool today,
with low cost and high efficiency. It gives access to
materials with sizes less than 2 nm, placed in harsh
conditions such as those in the center of the earth
at a temperature of T = 7000 K and a pressure
of P = 360 GPa with materials MgSiO3 [32] and
CaSiO3 [33], when experimental methods are inac-
cessible.

To study the structural properties of Au cubic
materials, researchers mainly use the molecular dy-
namics (MD) method [34, 35]. The reason is that
this research method can study large-sized materi-
als using the equations of motion according to New-
tonian second laws. Research results include, among
others, consideration of the radial distribution func-
tion (RDF) [36, 37]. In this formalism, the distance

to the second peak of RDF [38] defines the size
of the crystalline state of the material. When the
Honeycutt–Andersen (HA) structural transforma-
tion appears in these materials [39], the deformation
of atoms [40, 41] can be determined and this char-
acteristics requires the choice of properly embed-
ded atomic interactions (EAM). Mishin et al. [42]
successfully determined the structural stability and
defects in the crystal lattice with Cu metal. Other
authors [43, 44] studied the structure of materials in
liquid metals. The obtained results show that crys-
tallization usually occurs at a size of about 10 nm.
In MD simulation studies, researchers often use
commercial or free software such as LAMMPS [45].
Zhou et al. [46] successfully studied the deformation
of Cu thin films with the simulation method. Here
an important question appears, what factors affect
the structure, phase transition, crystallization, and
phase transition temperature of bulk Au materials?
To answer this question, in the content of this pa-
per we study the influence of factors such as atomic
number, temperature, and annealing time on struc-
tural characteristics, phase transition, crystallinity,
and phase transition temperature. The obtained re-
sults would be the basis for experimental studying
the structural characteristics of Au bulk materials
in the future.

3. Calculation method

According to the MD simulation scheme, initially,
the Au atoms are randomly seeded into a cubic
pattern of size (l), determined by

l = 3

√
N

ρ
. (1)

For interaction potential between atoms in
the classical Newtonian equations, we choose the
Sutton–Chen (SC) embedded interaction potential
field [47, 48] in the framework of the MD simulation
method with periodic boundary conditions. The fol-
lowing formulas are used

Etot =
1

2

N∑
i=1

N∑
j=1,j 6=i

Φ (rij) + F (ρi) ,

Φ (rij) = ε

(
a

rij

)n
,

F (ρi) = AiE
0
i ρi ln(ρi),[

ρi (R)
]α(l)

= e−b
∗
,

b∗ = β
(l)
i

(
R

R0
i − 1

)
,

(ρ̄i)
2

=

3∑
l=0

t
(l)
i

(
ρ
(l)
i

)2
.

(2)
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Fig. 1. Initial shape (a), structure shape (b), number of structural units (c), RDF (d) of Au23328 material at
T = 300 K.

In order to increase the accuracy, we choose the
interaction force field parameters as E0

i = 3.93 eV,
R0
i = 2.0 Å, α = 6.34, Ai = 1.0, β(0)

i = 5.77,
β
(1)
i = 2.2, β(2)

i = 6.0, β(4)
i = 2.2, t(0)i = 1.0,

t
(1)
i = 2.9, t(2)i = 1.64, t(4)i = 2.0 [49]. To implement
the simulation program, we use the open-source
code LAMMPS [47, 48], which is completely free for
the scientific research community. This source code
works on the basis of the MD method combined
with embedded interaction potential (EAM) to sim-
ulate the interactions between Au atoms. Initially,
for the bulk Au material, we run 2×104 MD recov-
ery statistic runs at a heating rate of 4 × 1011 K/s
and a heating step time of 1 fs at a temperature
T = 4000 K. Then the temperature is reduced from
4000 to 300 K to increase the crystallization state
of the material. The number of atoms (N) in the
considered model is taken as N = 4000 Au atoms
(Au4000), 6912 Au atoms (Au6912), 10976 Au atoms
(Au10976), 16384 Au atom (Au16384), and 23328 Au
atom (Au23328). After determining the Au23328 ma-
terial with the highest crystallinity, we chose this
material as a sample to continue the study of the
influence of temperature. As a consequence, we suc-
cessfully determine the glass temperature (Tg) as
Tg = 600 K and continue the annealing after an an-
nealing time t = 400 ps. To study the structural fea-
tures, we determine the characteristics, i.e., shape,
structure shape, and number of structural units.
The radial distribution function (RDF) g(r) [50] is
given by the formula

g(r) =
n(r)

4πr2 ρ0 dr
, (3)

where g(r), n(r) are the functions used in the cal-
culations: the probability of finding the atom i in
space, the number of atoms, respectively; ρ0 is the
atomic density, and r is the distance from the atom i
to other atoms. The total energy of the system Etot

is given in [51]. To determine the diffusion mecha-
nism of the atoms, mean squared distance (MSD)
is applied according to the following expression [52]

r (t) =

√√√√ 1

N

[
N∑
i=1

∣∣∣ri (t) − ri (0)
∣∣2], (4)

where N is the number of atoms in the system, ri(0)
is the initial position of the i atom, whereas ri(t) is
the position of the atom i at time t. In all samples,
phase transitions were studied by applying Com-
mon Neighborhood Analysis (CNA) [55, 56], ac-
cording to Nosé’s [53], see also Hoover [54]. OVITO
software was used [57, 58] to visualize the results.
Finally, to check the accuracy of the results, Dual
Energy X-ray Absorbance Measurement (DXA) was
used [59]. These programs are edited and used in the
computer system of the Institute of Physics, Univer-
sity of Zielona Góra, Poland.

4. Results and discussion

4.1. Structural properties of bulk Au materials

The structural properties of bulk Au are shown
in Fig. 1.

The obtained results show that the material of
Au23328 metal has the shape of a cube, made up of
Au metal atoms identified by yellow color (Fig. 1a).
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Fig. 2. Number of structural units (a), radial dis-
tribution function (b) of Au blocks with different
number of atoms.

The Au23328 material is determined by 4 struc-
tural units: face-centered cubic (FCC) shown in
red, hexagonal packing (HCP) shown in blue, body-
centred cubic (BCC) shown in black, and amor-
phous (Amor)shown in yellow (Fig. 1b). The num-
ber of the structural units is 1714 FCC, 7927
HCP, 6158 BCC, 7529 Amor (Fig. 1c), the length
of the link rAu−Au = 2.825 Å, the height of
the first peak of the radial distribution function
g(r) = 5.95 (Fig. 1d). Our simulation results are
completely consistent with the experimental re-
sults rAu−Au = 2.48, 2.88 Å, and 3.6–4.0 Å [29]
and with the simulation results obtained before:
rAu−Au = 2.8 Å [42] and 2.9 Å [31]. In addition,
the material has material size (l) corresponding to
l = 7.965 nm and Etot = −88328 eV. The obtained
results show that the structural characteristic quan-
tities of the Au23328 material model are consistent
with the results obtained before [29, 31, 42] and
create a premise for the process of studying the in-
fluencing factors.

4.2. Influencing factors

To study the influencing factors, we use the
material models Au4000, Au6912, Au10976, Au16384,
Au23328. In particular, we consider the influence of
size, the influence of temperature at T = 300, 400,
500, 600, 700, 800, 900, 1000 K and incubation time
after t = 0, 10, 50, 250, 400 ps.

4.2.1. Effect of the number of atoms

The results in Fig. 2a show how the number
of atoms affects the structural properties of the
considered material. Here, the results are for the
metal material Au4000 (its structural shape is shown
in Fig. 1a). The number of structural units is repre-
sented by 1714 FCC, 7927 HCP, 6158 BCC, 7529
Amor (the same as in Fig. 1c) and rAu−Au =
2.825 Å, g(r) = 5.95 (as in Fig. 1d) and l =
7.965 nm, Etot = −88328 eV. When the num-
ber of atoms increases from N = 4000 (Au4000)
through N = 6912 atoms (Au6912), 10976 atoms
(Au10976), 16384 atoms (Au16384), up to 23328
atoms (Au23328), the shape the material structure
changed as follows: the number of structural units
for FCC increases from 286 to 1714, for HCP it
increases from 1295 to 7927, for BCC this num-
ber increases from 982 to 6158, for the Amor units
it increases from 1437 to 7529 (see Fig. 2a). Now,
whereas g(r) is unchanged for r<rAu−Au = 2.825 Å,
it decreased from g(r) = 6.27 to g(r) = 5.95 (see
Fig. 2b).

In Fig. 3a, the structure size l increases from 4.502
to 7.965 nm, and the system total energy Etot de-
creases from −15025 to −88328 eV (Fig. 3b). The
obtained results show a close relationship between
the number of atoms, the size, and the total en-
ergy of the system (Fig. 3). The linear relationship

(a)

(b)

N [atoms]

-E
 [

e
V

]
to

t

l 
[n

m
]

-1/3
N  [atoms]

Fig. 3. Relationship between the number of atoms
and size (a), between the number of atoms and total
energy of the system (b) as N changes.
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TABLE IStructural characteristics and phase transitions of Au23328 materials at different temperatures.

T [K] 300 400 500 600 700 800 900 1000
r [Å] 2.825 2.825 2.825 2.825 2.825 2.825 2.825 2.825

g(r) 5.95 5.56 5.26 4.91 4.59 4.32 4.09 3.88

FCC 1714 1621 1536 1405 1292 1040 971 760

HCP 7927 7796 7578 7547 7386 6944 6606 6103

BCC 6158 6226 6073 5999 5863 5709 5294 4906

Amor 7529 7685 8141 8377 8787 9635 10457 11559

l [nm] 7.965 7.967 7.971 7.975 7.982 7.990 7.995 8.000

Etot [eV] −88328 −87965 −87588 −87153 −86701 −86194 −85668 −85099

between the size (l) and N−1/3 (where N is the
number of atoms) is described by the expression
l = 11.97−121.98N−1/3. Similarly, the dependence
of the total energy of the system (Etot) and the
inverse of the the number of atoms (N) is described
by the linear expression Etot = −164.93−3.793N−1

(Fig. 3b).
There is a clear similarity between our results

and those for metals in [60, 61]. When increasing
the number of atoms, the size of matter increases
with the ratio l ∼ N−1/3, and the total energy of
the system decreases with the ratio Etot ∼ N−1.
This phenomenon is due to the size effect and also
to the surface effect. The obtained results can be
the basis for testing methods to test future applica-
tions. To ensure the calculation speed as well as the
stability of the structural features, we choose the
Au23328 material model as the standard material to
investigate the influencing factors in the following
sections.

4.2.2. Effects of temperature

The effect of temperature on the structural char-
acteristics and phase transition of Au23328 mate-
rials is shown in Table I. When T increases from
300 to 1000 K, the results show that Etot increases
from −88328 to −85099 eV, the size l increases
very slightly from 7.965 to 8.000 nm, r is constant
rAu−Au = 2.825 Å, and g(r) decreases from 5.95
to 3.88. Correspondingly, the number of FCC struc-
tural units decreases from 1714 to 760, of the HCP
structural units it decreases from 7927 to 6103, of
BCC this number decreases from 6158 to 4906, and
of the Amor units it increases from 7529 to 11559
(Table I). The obtained results demonstrate that
when the temperature increases, the length of the
Au–Au links remains constant, while the number
of FCC, HCP, and BCC structural units decrease
and increases only for the Amor unit. The rela-
tionship between the sum of Etot and T is shown
in Fig. 4.

The obtained results indicate that as the temper-
ature T increases, E always increases linearly and
proportional to T in two ranges, i.e., 300–600 K

T [K]

E
 [

e
V

]
to

t

Fig. 4. Relationship between total energy of the
system and temperature of the Au23328 material.

and 600–1000 K. Increasing of T leads to an in-
crease in l, an increase in the total energy of the
system Etot, a decrease in the number of FCC,
HCP and BCC structural units, and an increase
in Amor. It follows that at T = 600 K the glassi-
ness of the material Au23328 appears. The intersec-
tion between the two temperature ranges is called
the glass point or glass temperature (Tg), with the
value Tg = 600 K in Fig. 4. The cause of this phe-
nomenon is due to the effective size, the effective
surface and the fact that phase transition of mate-
rials Au23328 is of type 1. To determine the crys-
tallization process of Au23328 materials at the glass
transition temperature Tg = 600 K, we investigate
the effect of the incubation time. The result will
be presented in the following section. In another
paper [62], the authors determined the glass transi-
tion temperature by taking the intersection of these
lines and obtained the value of 700 K [62], which is
evidently different from the value we established in
the present study (600 K). Our simulations show
that the simulation procedure with the use of the
SC potential is stable for the number of atoms of
the order of thousands. Meanwhile, the results of
our analysis of structural phase transitions of bulk
Au23328 materials are shown in more detail.
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4.2.3. Effect of incubation time

Figure 5 presents the results, when annealing
Au23328 material at temperatures T = 500, 600,
700 K is considered at different annealing times (t),
i.e., t1, t2, t3, t4 and the annealing time increases.
At a given temperature (T ), the total energy of
the system (Etot) decreases, showing that the crys-
tallization process of the material increases. At
T = 500 K, Etot decreased the least, slightly greater
decrease was at T = 700 K, and the largest decrease
at T = 600 K after t3 = 250 ps. The obtained results
are completely consistent with the results obtained
above for Tg = 600 K, so we confirm that this is the
crystallization temperature of the material. To con-
firm this in a more demonstrated manner, we chose
the temperature to be investigated at each different
annealing time as T = Tg = 600 K — the results
are shown in Fig. 6.

For the Au23328 bulk material at glass tempera-
ture Tg = 600 K and annealing time t1 = 10 ps, with
the structural form shown in Fig. 6a, the number of
the structural units is 941 FCC, 6717 HCP, 5104
BCC, 10566 Amor (Fig. 6e), the length of the link
is rAu−Au = 2.825 Å, and g(r) = 3.86, l = 7.644 nm,
Etot = −85988 eV (Fig. 6i). As the annealing time
increased from t1 = 10 ps to t2 = 50 ps, t3 = 250 ps,
and t4 = 400 ps, the structural geometry of the
material changed (Fig. 6a–d), with the number of
FCC units increasing from 941 to 1481. In ad-

dition, the number of HCP units increased from
6717 to 7598, of BCC increased from 5104 to 6507,
and of Amor units increased from 10566 to 7742
(Fig. 6e–h). Accordingly, for the cubic Au23328, g(r)
has a constant value when r<rAu−Au = 2.825 Å.
Then the value of g(r) increases with anneal-
ing time from 3.86 (at t1) to 4.38 (at t4), l de-
creases slightly from 7.644 to 7.643 nm, Etot de-
creases from −85988 to −87636 eV (Fig. 6i–l).

E
 [

e
V

]
to

t

t [ps]

Fig. 5. Phase transition of bulk Au23328 at glass
temperatures T = 500, 600, 700 K as a function of
annealing time t.
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Fig. 6. The crystallization process of Au23328 bulk material at glass temperature Tg = 600 K for different
annealing times (a, e, i) t1 = 10 ps; (b, f, j) t2 = 50 ps; (c, g, k) t3 = 250 ps; (d, h, l) t4 = 400 ps.
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The obtained results show that when increasing the
annealing time, the length of the links Au–Au has
a constant value rAu−Au = 2.825 Å and this result
is consistent with the results obtained previously for
Au [29, 31, 42]. Also, our results showed that after
annealing time at glass temperature Tg = 600 K,
the crystallization process increased. We hope that
the recent results obtained here will serve as the
basis for future experimental studies.

5. Conclusions

The results obtained in this paper show the in-
fluence of such factors as the number of atoms,
temperature, and annealing time on the structural
characteristic quantities of bulk Au materials. We
used here the Sutton–Chen embedded interaction
potential, which is the most suitable for the peri-
odic boundary conditions and the Verlet algorithm
in the MD scheme. In the equilibrium state, bulk
Au materials always exist in 4 types of structures:
FCC, HCP, BCC, and Amor. An increase of the
number of atoms (N) leads to an increase in size
(l), whereas the total energy of the system (Etot)
decreases, and at the same time, an increase of the
annealing time (t) leads to the decrease of both l
and Etot. As temperature increases, both l and Etot

increase. In addition, by increasing t at T = 600 K,
the number of the structural units FCC, HCP, BCC
increases, and the Amor unit decreases, which is
confirmed by the fact that the glass temperature of
the bulk Au material is Tg = 600 K. The influence
of N , T , and t on the structure, phase transition,
and crystallization of Au bulk materials was consid-
ered in detail. We observed that the length of the
links Au–Au has a constant value rAu−Au = 2.825 Å
when the influencing factors change. It follows that
the influencing factors do not change the length of
links, but they change the height of the first peak
of the radial distribution function. The obtained re-
sults are completely consistent with the experimen-
tal and simulation results obtained previously. Also,
as N increases, the size l of the material increases
proportionally to N−1/3 and the total energy Etot

is proportional to N−1. The results have success-
fully determined that the crystallization process in-
creases at the glass temperature Tg = 600 K. The
question that why the crystallization temperature
leads to an increase in the crystallization process
has not been yet explained. This is devoted to fu-
ture studies.

6. Relations with Professor Iwo
Białynicki-Birula — personal remarks

by Cao Long Van

I was born in Vietnam, a poor country, underde-
veloped due to constant wars, with no traditions in
the sciences. Nevertheless, in my youth, I was well
educated in mathematics, and since mathematics is

Fig. 7. A centuries-old traditional image of
a teacher from the Nghê. An area of Vietnam “Ông
đố xú’ Nghê.”, where Vinh University is located. Pro-
fessor Iwo Białynicki-Birula has many scientific de-
scendants at this University.

the language of nature, I was able to deeply learn
physics (fundamental science) with love. At the be-
ginning of this path, I was very lucky to find my sec-
ond homeland, Poland, where, through the school of
life, I found exceptional teachers in my profession, in
particular Professor Dr. hab. Iwo Białynicki-Birula.

The history of my contact with Professor Iwo
Białynicki-Birula is very long, more than 50 years.
During my studies at the Warsaw University in
the years 1971–1976, I was one of the best stu-
dents of my generation. As a consequence, from
the fourth semester I was on an individual course
of study under the supervision of Dr. Adam Bech-
ler, who is now a full professor at the University
of Szczecin (retired), but at that time he had just
completed his doctorate under the supervision of
Professor Dr. hab. Iwo Białynicki-Birula in the De-
partment of Field Theory and Statistical Physics,
Institute of Theoretical Physics, University of War-
saw. Since then, my scientific and educational career
has been closely related to the school of Professor
I. Białynicki-Birula with his outstanding students,
such as Professors Kazimierz Rzążewski, Krzysztof
Wódkiewicz, Jan Mostowski, and “scientific grand-
children” such as Professors Maciej Lewenstein,
Marek Kuś, or Marek Trippenbach. It is enough
to emphasize the fact that the physicists of three
generations of this school (namely, the Master him-
self, his student K. Rzążewski and his “scientific
grandson” M. Lewenstein) were laureates of the
Polish Science Foundation Award. Over time, they
became my older and younger friends† and work-

†1It is a great regret that one of them, Professor K. Wód-
kiewicz, passed away prematurely due to a serious illness.
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ing with them was a pure pleasure. It can be said
that the long-term friendship and cooperation with
them under the guidance of my Master (who was
the supervisor of my masters and Ph.D. thesis),
my mentor, an excellent scientist and teacher —
Professor I. Białynicki-Birula, who treated me as
“the nicest student”, he provided me with basic pro-
fessional knowledge necessary for my later achieve-
ments both in research and teaching (see Fig. 7).
As an example of this, me and his “scientific grand-
son” Professor M. Trippenbach more than 20 years
ago created the best School of Optics in the biggest
university in Middle Vietnam, i.e., Vinh University.
For this contribution, we were both honored with
the title of Doctor Honoris Causa of this Uni-
versity. We regularly organized international con-
ferences and workshops at Vinh University. As
an example, I and another “scientific grandson”
of Professor I. Białynicki-Birula, i.e., Professor
M. Lewenstein, organized the Workshop on Quan-
tum Information at this University in 2016. Thus
Professor I. Białynicki-Birula has many Vietnamese
students who played an important role in develop-
ment of physics in Vietnam.

To summarize, my Master Professor I. Białynicki-
Birula and his outstanding former students of
different generations are real masters who have
vast knowledge and experience in transferring this
knowledge to students. I myself had the opportu-
nity to educate under the guidance of one of the
best, then work among older and younger wonderful
friends in my environment. Therefore, now, when I
am close to the 70th anniversary of my life, I can say
with confidence that all my dreams about my pro-
fession have come true. I am one of many successive
masters who, accepting the baton from their excel-
lent predecessors, fulfilled the mission of deepening
their physical knowledge and passing this knowl-
edge to the next generations of physicists, thus con-
tributing to the development of this exceptionally
beautiful and at the same time meritorious science.
For this, I am immensely grateful to my Master
Professor Iwo Białynicki-Birula. On the occasion of
his 90th birthday, I would like to wish him a lot
of health and long life, so that we can admire the
wonderful teacher for the years to come.
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