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This paper addresses the development and testing of a new genetic-like algorithm for the Jiles–Atherton
ferromagnetic hysteresis model parameter fitting. The MATLAB/Simulink environment was used for
the simulation and postprocessing of data. Firstly, the model’s first-order ordinary differential equation
is introduced with a brief description of its parameters. A correction parameter was introduced into
the equation to eliminate the non-physical behavior of the model. Then the fitting algorithm and fit
function are described. An experimental setup is built to measure the hysteretic loops of a ferromagnetic
toroid core consisting of an iron powder material. The major and several minor hysteresis loops were
measured and used as inputs into the model fitting algorithm. The measurement is then compared with
the simulated results.
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1. Introduction

Several problems arise when designing electrical
machines like transformers and motors. One such
problem is the development of a reliable hysteresis
model of ferromagnetic materials. Such descriptions
can find use in the studies of hysteresis loss, which
manifests itself in heat dissipation during the re-
magnetization of ferromagnetic and ferrimagnetic
materials. The heating effect arises from the fact
that on a microscopic scale, a part of the magne-
tization process is due to domain wall movements.
The domain walls attach to and detach from pin-
ning sites according to the local magnetic field act-
ing on them. Wall jumps create a change in mag-
netic flux and thus generate eddy currents that dis-
sipate energy due to the Joule effect. Since tem-
perature is a factor strongly affecting ferromag-
netic material properties (study [1] showed the tem-
perature effect on magnetization curves for spe-
cial materials), describing the losses accurately is
crucial [2, 3].

Multiple ways of hysteresis modeling have been
studied in the past. The Preisach model [4] is
a common method used for this task, but it
needs a lot of measurement data for its parame-
ters to be determined, and they have a statisti-
cal non-physical nature. The material is thought
to consist of a distribution of elementary hysteresis
relay-type operators, which switch their outputs

between +1 and −1. The probability density func-
tion of the hysteresis operator’s switching states
must be fitted from experimental data, and it is
a material characteristic that defines the shape of
the major loop and any trajectory inside it (minor
loops) [4]. The combination of Jiles–Atherton (J-A)
and Preisach models with the theory of Néel’s fluc-
tuating field introduced an exponential model [5],
which was able to accurately predict even more in-
tricate magnetic behaviors, but is rather complex.
The Harrison model was also implemented for spe-
cific material types [6]. A substantial difference be-
tween the J-A model and the Harrison model is that
the reversible and irreversible magnetization equa-
tions are decoupled in the Harrison model, whereas
in the J-A model, they are coupled by an effective
field variable. Also, in the Harrison model, domain
pinning is not the primary source of hysteresis —
rather, it is assumed that it has mainly a quantum
origin. Both models require parameters as inputs,
but in the case of the Harrison model, the parame-
ter values are based on the physical aspects of the
sample and the environment so they can be eval-
uated directly, although some parameters are de-
pendent on one or more variables and are usually
for simplicity’s sake taken to be constant, which still
yields good results for the description of static loops
at specific excitations. Both models make use of the
Langevin function, but in a different way, which is
described in more detail in [7].
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TABLE IJiles–Atherton model parameters.

Parameter Physical units
Ms [A/m]

α [1]

k [A/m]

c [1]

a [A/m]

Study [8] also showed the temperature depen-
dence of J-A model parameters in reference to mag-
netocaloric compounds. Energy-based models were
proposed [9] that have multiple parameters and are
based on a set of simplifying assumptions to make
the model computable. However, the most used
model today for modeling hysteresis is the Jiles–
Atherton model, originally developed in 1984 [10].
It stands out due to its simplicity and the physical
nature of its parameters. It is modeled by one or-
dinary differential equation. The cost of using the
J-A model is that some minor loops tend to be mod-
eled less accurately because the parameters exhibit
a dependence on the field strength and therefore
are not constant for various minor loops [11], which
is solved by using field-dependent c and k param-
eters. Some studies pointed out the intricacies of
the model that lead to non-physical behavior [12].
The non-physicality stems that in the model, sev-
eral terms that the model is defined upon are un-
physical, e.g, defining work done in terms of co-
energies. The anhysteretic curve shown in [12] has
its trajectory passing through the second quadrant
of the M–H plane, which is not consistent with
experiments. This sets the anhysteretic curve that
the J-A model heavily relies upon, as a skeleton of
the model upon which the hysteresis loop is built,
and not much more. The respective authors of the
study [12] suggest that due to these observations,
the J-A model should be used as a tool in electri-
cal simulators and spice models to define hysteresis
loop shapes.

Several alterations of the original static J-A
model have been developed such as the dynamic
frequency-dependent J-A model [13] and a mechan-
ical stress-dependent model [14]. The simplicity of
the J-A model enabled it to be easily implemented
into finite element method (FEM) simulation algo-
rithms [15]. The ongoing research suggests that its
popularity will not end anytime soon. A more de-
tailed comparison between the most frequently used
models can be found in [16]. Symmetrical hysteresis
loops can also be modeled via the hyperbolic tan-
gent functions [17].

The most challenging aspect of employing the
J-A model is fitting its parameters to experimen-
tal data. The model is extremely sensitive to ini-
tial parameter values used for the optimization
problem to minimize the sum of squared errors
(SSEs) that quantifies the difference between the

simulated and measured hysteresis loops. The SSE
exhibits multiple local minima in the parameter
space [18]. Researchers successfully employed many
different methods to approach this problem, such
as space-filling designs and genetic algorithms [18],
particle swarm optimization [19], simulated anneal-
ing method [20], numerical iterative algorithms like
the Levenberg–Marquardt algorithm [21], determin-
istic sampling algorithms like the DIRECT algo-
rithm [22], random and deterministic searches [23],
and more. In this paper, a random search algorithm
is developed and tested.

2. The Jiles–Atherton hysteresis model

The J-A model describes the nonlinear nature of
magnetic materials by defining the shape of their
BH curve. The theoretic background is based on
the Weiss molecular field theory, the theories of
Langevin, and the assumption that domain walls
are elastic and can bend to a certain degree while
being pinned to a pinning site [10, 24].

In ferromagnetic materials, because there exists
a coupling between domains when magnetized, this
effectively changes the magnetic field acting on
them. Therefore, an effective field is defined as

He = H + αM, (1)

where He is the effective magnetic field, and α is the
mean-field coupling parameter, whose value will be
determined by the fitting process [10].

First, anhysteretic magnetization is defined,
which describes the dependence of the magnetiza-
tion on the effective field of an ideal ferromagnetic
material in its global equilibrium state with no de-
fects or pinning sites. The anhysteretic magneti-
zation can be measured experimentally for a non-
ideal material [25], but it is considered challenging
to do accurately. The anhysteretic magnetization
Man is commonly defined by the Langevin function
as

Man (He) = MS

[
coth

(
He

a

)
− a

He

]
, (2)

where a is a parameter that adjusts the shape of
the anhysteretic magnetization function, and MS is
the magnetization at technical saturation, which is
the maximum amount of magnetization the mate-
rial can attain when exposed to large magnetic field
strengths. The Langevin function was chosen arbi-
trarily. Other functions were employed as well in
different studies, like the hyperbolic tangent func-
tion and the double Langevin function [26], which
fit the experimental data well for specific materi-
als [10].

In a real hysteretic material, the magnetization
cannot reach its equilibrium state, and the differ-
ence between the magnetization and the anhys-
teretic magnetization determines the bending of do-
main walls, which tries to reduce this difference [10].
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Fig. 1. The developed Simulink model that implements the differential equation of the J-A model.
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There exist several different versions of the J-A
model. A detailed discussion can be found in the
recently published paper [27]. To create the model
used in this study, we have chosen the following
expression for the differential susceptibility

dM

dH
=

Man −M
kδ − α (Man −M)

+
ckδ

kδ − α (Man −M)

dMan

dH
, (3)

which can be found in the paper by Jiles and
Atherton from 1986 [10]. In this expression, there
are two terms: the first one is related to the irre-
versible magnetization process, and the second one
is to the reversible process, which is due to domain
wall bowing. The reversible process is weighted
by the c coefficient. Model parameter k is ex-
pressed in A/m, as suggested in the 1992 paper
by Jiles, Thoelke, and Devine [28]. This param-
eter is related in magnitude to the coercive field
strength, according to the mentioned authors. It
is worth noting that δ determines the sign of the
field strength derivative and is introduced to distin-
guish between the ascending and descending loop
branches.

3. MATLAB/Simulink model

The input into the model is the magnetizing cur-
rent of the primary coil wound on a toroid core,
which is the subject of analysis, and the output of
the model is the magnetic flux density B inside the
core. The magnetic field intensity in the core is ap-
proximated by

H =
NI

le
, (4)

where N is the number of turns of the primary coil
and le is the average magnetic field line length in
the core. Because the Simulink software only allows
us to do time derivation and integration, we express
the model by

M (t) +M0 =

∫
dt

(Man −M)

kδ − α (Man −M)

dH

dt

+

∫
dt

ckδ

kδ − α (Man −M)

dMan

dt
. (5)

A similar modeling approach was taken in the
study [29], where the authors implemented a Jiles–
Atherton model with a heuristic fitting process.
Using the Simulink model in the current state of
development of the software has been made easy by
special Simulink tools, such as the parameter esti-
mator application, which comes with various fitting
algorithms to fit experimental data.

Note that (5) can be directly modeled in
MATLAB/Simulink. The value of M0 (the initial
condition of the integrator) should be set from the
first data point of the measured B and H wave-
forms. One problem of the model is that when the

Fig. 2. The difference created between the simu-
lated minor and major hysteresis loops (BH curves
(a) with δm and (b) without δm) when using the
introduced delta parameter. Both curves were cre-
ated using the same model parameters. Nonphysical
behavior can be observed, especially in the case of
minor loops; Ms = 1.5× 106 A/m, a = 60, c = 0.1,
α = 4.437× 10−5, k = 100 A/m.

effective field He is close to 0, the anhysteretic
magnetization function (2) approaches singularities.
One way of solving this is to use the Taylor expan-
sion of the function, i.e.,

Man =


1
3MS

He

a , if |He| < 0.5,

MS

[
coth

(
He

a

)
− a

He

]
, if |He| ≥ 0.5,

(6)
when He is smaller than an arbitrary small number
that avoids these singularities. In the model, this
limit is set to a field intensity of 0.5 A/m [15].

However, (5) still shows non-physical behavior
most prominently near the tips of the hysteresis
loops, where negative differential permeability can
be observed. This can be fixed by introducing a
parameter δm [12], defined as

δm =


0 if dH

dt < 0 and Man −M > 0,

0 if dH
dt > 0 and Man −M < 0.

1 otherwise
(7)
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Fig. 3. The model of the measured toroid core.
The average magnetic field length inside the core
was taken as the average of c0 and ci (lm =
60.947 mm).

Fig. 4. The practical realization of the measure-
ment setup.

Fig. 5. A toroid-shaped yellow iron powder core
was measured. The resulting BH curves can be seen
in Fig. 6.

The parameter is then inserted into (5) [12], which
becomes

M (t) +M0 =

∫
dt

δm(Man −M)

kδ − α (Man −M)

dH

dt

+

∫
dt

ckδ

kδ − α (Man −M)

dMan

dt
. (8)

The developed Simulink model is shown in (Fig. 1).
The difference which the new parameter δM

makes can be seen in Fig. 2. The number of turns
of the coil N was set to 500, and the magnetizing

Fig. 6. The measured BH curves of the materials
at different saturation levels.

current was defined as having a sinusoidal wave-
form with an amplitude of 1 A and a frequency
of 50 Hz. The equivalent magnetic circuit length
lm was chosen to be the average of the inner (ci ≈
46.496 mm) and outer (co ≈ 75.398 mm) circumfer-
ence of the toroid core (Fig. 3).

The J-A model is quasi-static and therefore fre-
quency independent. For the simulation of the static
loops, we used a sinusoidal 50 Hz H waveform, and
the simulation time was set to be from time t = 0
to t = 40 ms, which captures two periods of the
50 Hz input current signal. The step size was set to
be automatically determined by the solver, which
used the build-in ode45 solver, based on an explicit
Runge–Kutta (4,5) formula, the Dormand–Prince
pair. The computation time of a single simulation
run was shorter than 1 s.

4. Measurement of hysteresis curves

The measurement setup is shown in Fig. 4. The
red rectangle depicts the energy source, which is a
laboratory sinusoidal voltage source with a control-
lable output RMS voltage from 0 to 250 V with
a 1 V resolution. Study [30] showed that the fre-
quency at which the hysteresis loop can be consid-
ered static is around 1 Hz for specific materials, but
naturally, even lower frequencies are preferred. It is
connected to a step-down transformer with a trans-
formation ratio of 10:1 to make the supply voltage
resolution at the output of the transformer approx-
imately 100 mV. The sinusoidal voltage creates the
magnetizing current. The input current of the mag-
netizing coil of the sample is measured with Hall
probes. The induced voltage of the secondary coil is
also measured on a different channel. The voltage is
then numerically integrated to obtain the B values
in the sample (Fig. 5), i.e.,

B (t) = − 1

N2Se

t∫
0

dt u2 (t) +B0, (9)
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Fig. 7. Variation of a single parameter ((a) Ms, (b) a, (c) α, (d) k) of the model and the shape changes it
produces.

where u2(t) is the secondary coil voltage, N2 is the
number of turns of the secondary coil, and Se is the
effective magnetic circuit cross-section [12].

The magnetic field intensity in the core is com-
puted by using (4). For a detailed description of the
measurement setup, the authors redirect the reader
to [31]. The material used for this measurement is
a carbonyl iron powder mix core that was used in
a 3 A 100 µH toroidal inductor. The number of
primary and secondary coil turns was 120 and 80,
respectively. Copper wire with a diameter of 0.3 mm
was used for the windings.

The waveforms were measured by a Tektronix
digital storage oscilloscope (DSO) visible in the yel-
low rectangle in Fig. 4, and the measured sample
is shown in the green rectangle (also Fig. 4) and in
more detail in Fig. 5.

After measuring multiple periods of voltage and
current signals, the signal was post-processed to fil-
ter out the noise by using moving mean functions
and other commonly employed techniques. The final
BH curves can be seen in Fig. 6.

The measurement of hysteresis curves was done
on a Tektronix DPO7354 4-channel oscilloscope.
The H values were determined from the primary
current measured by a hall probe, whose maximum
error in the datasheet is given as 1%. The maximum
current during the measurement was 4.67 A, and
it was measured on the 5 A range of the probe.

The analog channels, when the 200 mV per di-
vision is used, have a maximal DC gain error of
2%. In addition, a component of 1.4% of the full-
scale rating of the oscilloscope must be consid-
ered (the full-scale is understood as the software
zoom of the oscilloscope, or 1.2 V when using
the 200 mV per division setting). When measur-
ing the largest loop, the maximum induced volt-
age in the secondary coil was 1.068 V. When mea-
suring the dimensions of the sample, we used me-
chanical calipers with an accuracy rating of 0.1 mm.
Using the expressions from the study [32] to com-
pute the uncertainty of the measured BH loops, we
get an uncertainty value of 0.01106 (i.e., ≈ 1.1%)
for the H measurement. The uncertainty of the in-
duced voltage measurement was 2.85% when using
the specifications given by the oscilloscope’s user
manual. The variance of the integrator was as-
sumed to be like the one computed in the men-
tioned study [31] (but the computation of the error
was simplified due to the complexity of the prob-
lem) and therefore was assumed to be 0.0000082.
The sample cross-section is rectangular with dimen-
sions of 10 and 5 mm. The same calipers as above
were used for this measurement, and uncertainty
of the cross-section measurement of 0.0086602 was
obtained (i.e., ≈ 0.866%). When combining these
three uncertainties into one, we get a combined
uncertainty of 0.0297867, i.e., ≈ 2.9786% for the
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Fig. 8. Comparison of the measured and simu-
lated BH minor curves with optimized parame-
ter values (Ms = 405151, a = 542, c = 0.531,
α = 0.001, k = 579). The measured curve presents
the “2 V” curve in Fig. 6.

Fig. 9. Comparison of the measured and simu-
lated BH minor curves with the same values as
in Fig. 8 but using the same excitation as for the
“0.5 V” curve in Fig. 6. It is therefore evident that
(at least some) J-A model parameters are excitation
dependent.

B measurement, which is a lot larger compared
with the respective authors’ study, where they used
a REMACOMPr C-200 measuring system, which
also was certified, and the uncertainties were quan-
tified by the manufacturer. In our case, only the
maximum errors guaranteed by the manufacturers
were used, so the final uncertainties may be well
over-estimated.

5. Fitting process

To estimate the J-A model parameters for the
given hysteresis loops, a parameter estimating algo-
rithm was developed. Study [24] showed that every
parameter has an influence on the shape of the hys-
teresis loop, and this is also shown in Fig. 7. From
Figs. 8–11 it is evident that the parameter values
depend on the excitation.

Fig. 10. Comparison of the measured and simu-
lated BH minor curves with optimized parame-
ter values (Ms = 475368, a = 697, c = 0.494,
α = 8.969 × 10−4, k = 327). The measured curve
presents the “0.5 V” curve in Fig. 6.

Fig. 11. Comparison of the measured and simu-
lated BH major curves with the same values as in
Fig. 10 but using the same excitation as for the
“2 V” curve in Fig. 6. The fitted parameters for
different minor loops do not characterize all minor
loops, which is typical for the J-A model.

Some papers aid the estimation process with an-
alytical approaches that limit the search space [33].
In this work, we employed an estimation method by
random search. After some experimentation with
different methods, like the pattern search using
the Latin hypercube method [34] and the trust-
region reflective nonlinear least square algorithm
method [35], they optimized the values to some
extent, but we tried to implement our estima-
tion algorithm, which is defined by the flowchart
in Fig. 12.

How well the applied model parameters fit exper-
imental data was quantified by employing the sum
of squares error (SSE), which is computed for every
simulation output and is defined by

fit =
1

N

√√√√ N∑
i=1

(
Bexp (i)−Bsim (i)

max (Bexp)

)2

, (10)
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Fig. 12. Flowchart of the developed parameter estimation algorithm.

Fig. 13. The time evolution of the fitting process
in 165 iterations. The minimum SSE value reached
was 9.7336× 10−6.

where N is the number of experimental data points,
Bexp(i) is the i-th data point of the magnetic flux
measurement, and Bsim(i) is the i-th data point of
the magnetic flux estimation in the core. The op-
timization should therefore minimize the fit score
by iteratively changing the parameters in a specific
way using predefined rules [19].

To further aid the fitting process, parameter
bounds were set as described in the study [36].
Setting borders of the search space prevents the
algorithm from searching through unreasonable pa-
rameter values.

To shorten computation times, the simulation
output time was truncated only to simulate through
to the upper tip of the hysteresis curve peak, not
full loops. The simulation time was shortened from
a time interval of 43 to 6 ms. The time evolution of

396



Estimation of Jiles–Atherton Parameters. . .

Fig. 14. Graphs of Jiles–Atherton model parameters dependence on the excitation field amplitude. The Ms

(a) and c (c) parameters were fitted using a logarithmic fit, and the a (b) and k (d) parameters were fitted
with a linear fit. This combination yielded the best simulation results for other excitation waveforms.

Fig. 15. Example curves (a), (b) fit by using the parameter fit expression formulas. The formulas fit best for
lower excitation formulas.

the SSE value throughout the iterations can be seen
in Fig. 13. A minimum SSE value of 9.7336× 10−6

was reached after 165 iterations. The number of sim-
ulations evaluated was 16500, and by using parallel
computing on 4 Intel i5-8300H processor cores, the
total optimization time was approximately 30 min.
The graphical comparison of the measured and sim-
ulated BH curves can be seen in Figs. 8–11.

6. Excitation dependence of Jiles–Atherton
model parameters

Because of this phenomenon, an excitation de-
pendence formula was sought to estimate the Jiles–
Atherton model parameters for a given excitation.
More specifically, a dependence of the excitation
H-field amplitude was taken as the independent
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variable. Multiple approaches were considered, and
many simulations were done with different excita-
tion waveforms. What was found is that the pa-
rameters for this specific material are experienc-
ing linear and logarithmic excitation dependence
that could be fitted with an R2 value larger than
0.98. A dataset of 5 parameter sets was fitted from
5 different excitation values, and a least square
method was employed to find the best fit for the
given data. To test the expressions, other excitation
values were used for the models, and parameter val-
ues were computed by them. After experimenting
with some sets of fitted parameter values, a promis-
ing approach was to set the α parameter constant
at a value of α = 10−3 and let the other parameters
vary by the fitting process. Then, when further ana-
lyzing the 5 different excitation waveform amplitude
curves, we obtained the graphs shown in Fig. 14.

The found expressions for parameter values were
used for the given and other excitations waveforms,
and the results shown in Fig. 15 were obtained. A
MATLAB script was written to analyze theH wave-
form data and extract the amplitude, and then com-
pute the parameter values for the waveform, simu-
late the equation, and plot the data.

7. Conclusions

A brief description of the J-A model was pre-
sented with some additional alterations. The model
was created in the MATLAB/Simulink workspace
with the aid of well-known numeric solvers. Physical
curves were measured, and an optimization process
was developed using a random search method. The
fitting process, cost function, and algorithm have
been described. The biggest drawback of this model
is that it is random in nature, so the optimiza-
tion result can vary with repeated iterations with
the same initial conditions. The larger the search-
ing bounds used for the minimization search, the
longer the computation time will become, but con-
currently, a higher chance of finding the global min-
imum of the SSE value is to be expected. The fitting
process has a strong local searching power but still
enables global searching to some degree because the
random numbers have a Gaussian probability distri-
bution. Designing a more efficient algorithm and im-
plementing an excitation dependence on the model
parameters will be the subject of future research. A
formula that describes the parameter values on the
excitation field waveform amplitude has been intro-
duced and shows a good fit with experimental data
with a wide variety of excitations.
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