
ACTA PHYSICA POLONICA A No. 5 Vol. 143 (2023)

Squeezing Properties of Degenerate High-Order
Hyper-Raman Lines Emitted by Two-Level System

Á. Gombkötőa,b,∗

aUniversity of Pannonia, Zalaegerszeg Campus, Gasparich u. 18/A, H-8900 Zalaegerszeg,
Hungary
bWigner Research Centre for Physics, Konkoly-Thege M. út 29-33, H-1121 Budapest, Hungary

Received: 16.01.2023 & Accepted: 20.03.2023

Doi: 10.12693/APhysPolA.143.347 ∗e-mail: gombkoto.akos@zek.uni-pannon.hu

Quantized descriptions of nonlinear-optical processes can be relevant from the perspective of developing
novel nonclassical sources of light. As a special case, it is useful to characterize light emitted by classically
driven systems, since the excitations in many practical cases are laser beams. As a material model, we
choose a two-level system. In earlier work, Phys. Rev. A 104, 033703, (2021), we investigated photon
statistics and intermodal cross-correlations and noted that squeezing is primarily present in specific sets
of parameters, corresponding to the degeneracy of hyper-Raman lines. Here we focus on this specific
set of parameters, presenting details of the squeezing.
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1. Introduction

The concept of squeezed light is a historically im-
portant idea. Not only fundamental but also applied
science has benefitted a lot from using squeezed
light — a valuable tool of metrology and quantum
information processing [1–6].

A light field is analyzed with respect to many dif-
ferent modulation frequencies, and the result con-
stitutes the squeezing spectrum [7], where both the
degree and the bandwidth of squeezing are impor-
tant for potential applications [8]. While experi-
ments with pulsed squeezed light reach a bandwidth
up to tens of THz [9], it may be of practical interest
to develop sources of squeezed light characterized
by even greater bandwidth.

From another direction, in recent years there has
been an increasing interest in quantum optical de-
scriptions of highly nonlinear optical phenomena,
particularly in exploring nonclassical states of the
electromagnetic field induced by high-field light–
matter interaction [10–13]. A groundbreaking work
[14] has shown qualitatively that nonclassical prop-
erties can be expected in harmonic radiation even
for rather general material systems and excitations.
A characterization of the harmonics was given for
the case of monochromatic excitation and two-level
system [15] have shown nonclassical features, in-
cluding squeezing being present in the scattered
modes, particularly in the hyper-Raman lines in the
case of a given choice of parameters, when these
lines are degenerate.

We note, in advance, that the squeezing in the
optical lines of a single two-level atom is going to
be negligible, especially compared to state-of-the-
art sources of squeezed light. However, there are
a few points that are worth raising.

(i) As shown in [14], for a manifold of identical
2-level systems, the squeezing present in the
scattered radiation can be significant and can
be increased further with the number charac-
terizing the size of the manifold.

(ii) While the squeezing in the optical lines of
a single 2-level atom is weak, the number of
lines (and the spectral width of the squeez-
ing spectrum) can be increased, in principle,
arbitrarily.

(iii) High-intensity quantum optical devices can
be extremely flexible in their application
(one-photon states, multimode entanglement,
squeezing in the harmonics, Schrödinger-cat
states in the excitation), but it is important
to identify the limits of each specific appli-
cation so that long-term expectations can be
realistically evaluated.

2. Model

The fundamental and necessarily very simpli-
fied model of the material system in quantum
optics is the two-level atom, which may be ac-
ceptably used to describe harmonic generation in
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semiconductor heterostructures [16, 17], granted
that the wavefunction spams essentially two isolated
bound states, with negligible effect on the dynamics
by additional components. On the other hand, the
simplicity of two-level systems helps to form qual-
itatively correct predictions and also offers insight
into the dynamics.

In our model, we will assume that the exter-
nal driving can be treated classically and that the
dipole approximation is correct. We will consider
the Hamiltonian as independent of spatial coordi-
nates and neglect the effects due to the propagation
of the field [18–20]. Let us consider the following
terms

Ha =
~ω0

2
σz, (1)

Hm =
∑
n

~ωn a†nan, (2)

Ham =
∑
n

~Ωn
2

σx(an + a†n), (3)

which correspond to the two-level atom, the quan-
tized electromagnetic modes, and the quantized
dipole interaction, respectively. Since the strong ex-
ternal exciting pulse can be described classically, we
use

Hex(t) = −DE(t) = −d σxE(t) = −~Ω(t)

2
σx.

(4)

We note that Ωn = 2d
√

~ωn

ε0V
, where V is the quan-

tization volume. Let us denote the eigenstates of
the atomic Hamiltonian by |e〉 and |g〉, i.e., Ha|e〉 =
1
2~ω0 |e〉, Ha|g〉 = − 1

2~ω0 |g〉.
In the following, we will investigate the system
H(t) = Ha +Hm +Ham +Hex(t), (5)

with the initial state being |Ψ0〉 = |g〉 ⊗
∏
n |0〉,

which is approximately the ground state of
the system. Throughout this paper, we used
Ωn/
√
ωn = 0.005.

2.1. Measure of squeezing

We use the notations below

Xn =
a†n + an

2
, Yn = i

a†n − an
2

,

X2n =
(a†n)2 + a2n

2
, Y2n = i

(a†n)2 − a2n
2

.

(6)
Squeezed states are associated with canonical ob-
servables — in quantum optics typically electric
field strength at a given φ phase. The corresponding
dimensionless Xφ

n and Y φn operators are defined as

Xφ
n =

an + a†n
2

cos(φ) + i
a†n − an

2
sin(φ),

Y φn = −an + a†n
2

sin(φ) + i
a†n − an

2
cos(φ),

(7)
and for the sake of completeness, we write the
quadratic variances as〈

(∆Xφ)2
〉

=

[
1+2〈N〉+2〈X2〉−4〈X〉2

]
4

cos2(φ)

+
[1+2〈N〉−2〈X2〉−4〈Y 〉2]

4
sin2(φ)

+
[
〈Y2〉−2〈Y 〉〈X〉

]
cos(φ) sin(φ), (8)

〈
[∆Y φ)2

〉
=

[
1+2〈N〉+2〈X2〉−4〈X〉2

]
4

sin2(φ)

+

[
1+2〈N〉−2〈X2〉−4〈Y 〉2

]
4

cos2(φ)

−
[
〈Y2〉−2〈Y 〉〈X〉

]
cos(φ) sin(φ). (9)

Light is considered squeezed if there exists
a mode n and phase φ [21, 22] such that ∆Xφ

n <
1
2 .

The minimal variance (and its associated phase)
can be calculated through the smaller eigenvalue
(and associated eigenvector) of the noise-ellipse
matrix 〈

(∆X)2
〉

1
2

〈{
∆X,∆Y }

〉
1
2

〈{
∆X,∆Y

}〉 〈
(∆Y )2

〉
 . (10)

The eigenvalues [23] expressed with our notation are

λ± =
1

4

〈{
∆a,∆a†

}〉
± 2

∣∣〈(∆a)2〉
∣∣ =

1

4

[
1 + 2

(
〈N〉 − 〈X〉2 − 〈Y 〉2

)
± 2

∣∣∣〈X2 + iY2〉 −
〈
X + iY

〉2∣∣∣ ],
(11)

and the components u+, u− of the eigenvectors [24] are fulfilling

(u±)
2
1 =

[
λ± −

〈
2X2 + 2N + 1

〉
− 4
〈
Y
〉2]2(

λ± − 〈2X2 + 2N + 1〉 − 4〈Y 〉2
)2

+
〈
2Y2 − 4〈X〉〈Y 〉

〉2 , (13)

(u±)
2
2 =

〈
2Y2 − 4

〈
X
〉〈
Y
〉〉2(

λ± − 〈2X2 + 2N + 1〉 − 4〈Y 〉2
)2

+
〈
2Y2 − 4〈X〉〈Y 〉

〉2 . (14)

To quantify the squeezing of a given mode, we will also use the notation
S ≡ log10(4λ−). (15)
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3. Dynamics of the degenerate
hyper-Raman lines

Let us remind the reader that the harmonic
spectra of monochromatically driven two-level
atoms contain odd-harmonic lines and Mollow-
sidebands/hyper-Raman lines [25], which we have
also referred to as even-order harmonics in [15, 18]
due to their proximity to the even multiples of the
base harmonic.

In this work, we focus on the special case when
the frequency of these lines exactly coincides with
the even multiples of the driving frequency. An il-
lustrative plot of the relevant parameters is shown
in Fig. 1.

It is worth pointing out that in our experience
— under monochromatic excitation — practically
all optical lines are characterized by photon num-
bers monotonically increasing in time, except for
the case of degenerate hyper-Raman lines (that is,
when the frequency of the two spectrally nearest
sidelines coincide). The anomalous time-evolution
of these modes is such, that the population fluctu-
ates in time (see Fig.2).

The dynamical fluctuation has a more-or-less
well-defined “period,” although, of course, it is not
periodic in the strict sense. The initial vacuum state
gains noticeable modification during the period. We
can make the following statement: For all degen-
erate hyper-Raman lines, both the qualitative fea-
tures and the approximate period are the same.
This implies that after the isolation of the Raman
lines from the odd-order harmonics (which may be
possible due to higher spatial divergence [26]), ul-
trashort squeezed pulses may be generated.

Fig. 1. Black lines show the parameters corre-
sponding to the special cases when the hyper-
Raman lines correspond to even harmonic frequen-
cies. The axis corresponds to the dimensionless am-
plitude and frequency of the excitation (based on
the calculations in the Appendix of [15]).

Fig. 2. Illustrative plot of the dynamical evolution
of photon number expectation value (panel (a)) and
Mandel-parameter (panel (b)) of the 8th harmonic
under monochromatic excitation.

Fig. 3. Time-evolution of (λ−− 1
4
) (blue), (λ+− 1

4
)

(red), and (
√
λ+λ−− 1

4
) (gray) values characterizing

the 8th and 14th harmonic, respectively.

The dependence of the period on the system’s
parameters, on the other hand, is highly nontrivial.
An analytical calculation regarding this topic can
be seen in the Appendix.

3.1. Quadrature-squeezing time-evolution
and spectra

Below, we consider an excitation that is
monochromatic for a given number of optical cy-
cles, before the amplitude cuts off. Time-evolution
of relevant quantities for two given (8th and 14th)
harmonic modes can be seen in Fig. 3.

Numerical calculations indicate that the squeez-
ing becomes more significant for longer interac-
tion times and larger coupling strengths. At the
same time, it is apparent that most of the time√
λ+λ− >

1
4 is fulfilled, meaning that the quantum

states characterizing even harmonic modes, while
squeezed, are not intelligent states. Hence, they can-
not be correctly described by squeezed coherent
states.

On the other hand, at the interaction time when
〈N〉 reaches a local minimum and Q ≈ 1, the quan-
tum state can be considered practically a squeezed
vacuum state.

Under an excitation with a rectangular carrier
function, with a cutoff at t ≈ 50 T, the quantities
follow oscillatory dynamics around a well-defined
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Fig. 4. Squeezing spectra with resonant and red-
detuned excitation. Colored vertical lines show
the position of odd-order (blue) and even-order
(red) harmonics. One can observe that squeezing
is present primarily in even harmonics.

value. We calculated this through averaging and
plotted the asymptotical value of λ− − 1

4 as a func-
tion of frequency in Fig. 4. We note that the squeez-
ing spectrum is qualitatively similar (albeit less
structured and more complicated) in the case of
pulsed excitations.

3.2. Characterization of squeezing

From a practical point of view, it is not just
the presence of the squeezed quantum states that
is important, but also whether they correspond to
known special cases, such as amplitude- or phase-
squeezed states. In order to gain insight, we define
the quadrature angle as

ϕ ≡ atan2
(〈
Y
〉
,
〈
X
〉)

(16)

and compare the time-evolutions of 〈(∆Xϕ)2〉
and 〈(∆Y ϕ)2〉. We note that since the photon
quadrature averages do not reach significant val-
ues, these quantities can only qualitatively be in-
terpreted as amplitude and phase variances.

In our experiences, while the time-evolution of
〈(∆Xϕ)2〉 − 1

4 and 〈(∆Y ϕ)2〉 − 1
4 is complicated, it

is qualitatively very similar for all degenerate even
harmonics to the time-evolution seen in Fig. 5.

A qualitative statement that can be made is
that the degenerate hyper-Raman photons can be
approximately either phase-squeezed, amplitude-
squeezed, or squeezed vacuum, depending on the
interaction time.

For short interaction times, we can expect the
degenerate hyper-Raman lines to be approximately
phase-squeezed. Since the dynamics coincide for all
Raman lines, we can expect that the generation of
wideband phase-squeezed pulses should be possible.

Fig. 5. Time-evolution of 〈(∆Xϕ)2〉− 1
4
(red) and

〈(∆Y ϕ)2〉 − 1
4

(blue) of the 8th harmonic. The
monochromatic excitation has a cutoff after 150 op-
tical cycles.

4. Conclusions

We identified the parameters for which the
hyper-Raman lines of the high-harmonic generation
(HHG) spectra emitted by a two-level system are
degenerate. Our calculations suggest that in this
special case, the corresponding degenerate modes
are in a significantly more squeezed state than for
other parameters. Generally speaking, we can con-
clude that the squeezing increases with interaction
time, and depending on its exact value, the squeezed
states can be characterized as either amplitude-
squeezed, phase-squeezed, or squeezed vacuum. The
type of squeezing coincides for all degenerate hyper-
Raman lines and is independent of the modal fre-
quency and coupling strength.

Acknowledgments

We are grateful for the support of the Na-
tional Research, Development and Innovation Office
of Hungary (Project No. K124351 and TKP2021-
NVA-04).

Appendix A: Analytical results

Since the photon statistics of the harmonics differ
little from the vacuum state, a perturbative treat-
ment of the dynamics in independent-mode approx-
imation seems to be reasonable, at least at a quali-
tative level. With the same transformations and no-
tations as presented in [15], the wavefunction can be
written in the following form

|Ψ〉 = exp

[
i
Aξ

2ω
sin(ωt+φ0)σx

]
e

i
2 (ωt+φ0)σz e−

i
~ tε+

∑∞

j=0
bej |ẽ〉|j〉e− i jωnt

+ exp

[
i
Aξ

2ω
sin(ωt+φ0)σx

]
e

i
2 (ωt+φ0)σz e−

i
~ tε−

∑∞

j=0
bgj |g̃〉|j〉e

− i jωnt, (17)
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while the dynamical equations governing the bgj , b
e
j coefficients turn out to be

i ḃej(t) = 〈ẽ|W (t)|ẽ〉 bej(t) + 〈ẽ|W (t)|g̃〉e i (ε+−ε−)t/~ bgj (t) + 1
2Ω e i (δωt−φ0)

∑
k

〈
j
∣∣a+a†

∣∣k〉 e− iωn(k−j)t bgk(t)

−Ω cos(θ)e i (ε+−ε−)t/~ cos(ωt+φ0)
∑
k

〈
j
∣∣a+a†

∣∣k〉 e− iωn(k−j)t bgk(t)

+ 1
2Ω sin(2θ) cos(ωt+φ0)

∑
k

〈
j|a+a†

∣∣k〉e− iωn(k−j)t bek(t), (18)

i ḃgj (t) = 〈g̃|W (t)|g̃〉 bgj (t)+〈g̃|W (t)|ẽ〉e− i (ε+−ε−)t/~ bej(t)+
1
2Ω e− i (δωt+φ0)

∑
k

〈
j
∣∣a+a†

∣∣k〉e− iωn(k−j)tbek(t)

−Ω cos(θ)e i (ε−−ε+)t/~ cos(ωt+φ0)
∑
k

〈
j
∣∣a+a†

∣∣k〉 e− iωn(k−j)t bek(t)

− 1
2Ω sin(2θ) cos(ωt+φ0)

∑
k

〈j|a+a†|k〉 e− iωn(k−j)t bgk(t). (19)

These general dynamical equations can be slightly
simplified in the special case explored in this work,
as shown below. We note here that resonances in the
first-order of perturbation calculations are present
for ωn = 0, ωn = ω, and ωn = 2ω modes, how-
ever, we will exclude these in favor of the higher
harmonic modes. Therefore we only use analytical
reasoning to gain an understanding of the behavior

visible in Fig. 2 and Fig. 3, that is, that degener-
ate hyper-Raman lines have an approximately pe-
riodic time-evolution, at the end of which its quan-
tum state corresponds to that of a squeezed vac-
uum state. Specifically, we shall calculate analyti-
cally this period, which turns out to be indepen-
dent of the harmonic order and coupling strength,
as follows

i ḃej(t) = 〈ẽ|W (t)|ẽ〉 bej(t) + 〈ẽ|W (t)|g̃〉 e iωt bgj (t)

+
Ω

2
e− iφ0

∑
k

〈
j
∣∣a+a†

∣∣k〉 e− iωn(k−j)t bgk(t)− Ω cos(θ)e iωt cos(ωt+φ0)
∑
k

〈
j
∣∣a+a†

∣∣k〉 e− iωn(k−j)t bgk(t)

+
Ω

2
sin(2θ) cos(ωt+φ0)

∑
k

〈
j
∣∣a+a†

∣∣k〉 e− iωn(k−j)t bek(t), (20)

i ḃgj (t) = 〈g̃|W (t)|g̃〉 bgj (t) + 〈g̃|W (t)|ẽ〉 e− iωt bej(t)

+
Ω

2
e− iφ0

∑
k

〈
j
∣∣a+a†

∣∣k〉 e− iωn(k−j)t bek(t)− Ω cos(θ)e− iωt cos(ωt+φ0)
∑
k

〈
j
∣∣a+a†

∣∣k〉 e− iωn(k−j)t bek(t)

−Ω

2
sin(2θ) cos(ωt+φ0)

∑
k

〈
j
∣∣a+a†

∣∣k〉 e− iωn(k−j)t bgk(t). (21)

We will assume, based on the discussion in Ap-
pendix B, that the effect of the ~W (t) term can
be properly accounted for by first-order perturba-
tion. In the first order, the coefficients are

be0(t)(1) = be0(0) [1+iζ1(t)]− ibg0(0) ζ2(t), (22)

bg0(t)(1) = bg0(0) [1− iζ1(t)]− ibe0(0) ζ∗2 (t). (23)

In the second order,

be0(t)(2) = ibe0(0)χ
t

2
, (24)

bg0(t)(2) = − ibg0(0)χ
t

2
, (25)

thus

be1(t)(2) = − i
Ωnt

2
e− iφ0F

[
bg0(0)[1− iζ1]− ibe0(0) ζ∗2

]
(−ωn)

+
iΩn cos(θ) t

2

{
e− iφ0F

[
bg0(0)[1− iζ1]− ibe0(0) ζ∗2

]
(−ωn) + e iφ0F

[
bg0(0)[1− iζ1]− ibe0(0) ζ∗2

]
(−ωn+2ω)

}
− iΩn sin(2θ) t

4

{
e iφ0F

[
be0(0)[1+iζ1]− ibg0(0) ζ2

](
−ωn−ω

)
+ e− iφ0 F

[
be0(0)[1+iζ1]− ibg0(0) ζ2

]
(−ωn+ω)

}
,

(26)
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bg1(t)(2) = − iΩn t

2
e− iφ0F

[
be0(0)[1+iζ1]− ibg0(0) ζ2

]
(−ωn)

+
iΩn cos(θ) t

2

{
e− iφ0F

[
be0(0)[1+iζ1]− ibg0(0) ζ2

]
(−ωn) + e iφ0F

[
be0(0)[1+iζ1]− ibg0(0) ζ2

]
(−ωn+2ω)

}
+

iΩn sin(2θ) t

4

{
e iφ0F

[
bg0(0)[1− iζ1]− ibe0(0) ζ∗2

]
(−ωn−ω) + e− iφ0F

[
bg0(0)[1− iζ1]− ibe0(0) ζ∗2

]
(−ωn + ω)

}
.

(27)

Fig. 6. Illustrative plot of the approximate period
measured in units of optical periods of the excita-
tion, for resonant excitation, as a function of the
(dimensionless) excitation amplitude A (1/χ as per
the nomenclature of the Appendix).

From further investigation, it is easy to check that
up to the second power of time the coefficients can
be approximated as

be1(t) ≈ be1(t)(2)
[
1 + iχ t

]
, (28)

bg1(t) ≈ bg1(t)(2)
[
1− iχ t

]
. (29)

We can infer that for the Raman lines
b
(e/g)
1 (t) ∼

(
1− e± iχ t

)
+O(Ω2) (30)

approximately holds, that is, for interaction times
the multiple of 2π/χ, the b(e/g)1 (t) coefficient is zero.
A plot of the value of 1/χ as a function of the ampli-
tude under resonant excitation can be seen in Fig. 6.

Appendix B: Functions ζ1, ζ2, and χ

Following the same notations as in the Appendix
of [15], we can analyze the semi-analytic model. The
dynamical equations, in the special case of δω = 0
become

i ḃe(t) = be(t)ω0

∑∞
n=1

[
J2n(η) cos(2θ) cos[2n(ωt+φ0)] + J2n+1(η) sin(2θ) cos[2n(ωt+φ0)]−cos[(2n+2)(ωt+φ0)]

2

]
+bg(t)ω0 e iωt

∑∞
n=1

[
J2n(η) sin(2θ) cos[2n(ωt+φ0)]− J2n+1(η) cos(2θ) cos[2n(ωt+φ0)]−cos[(2n+2)(ωt+φ0)]

2

+iJ2n+1(η) sin[(2n+2)(ωt+φ0)]+sin[2n(ωt+φ0)]
2

]
, (31)

i ḃg(t) = −bg(t)ω0

∑∞
n=1

[
J2n(η) cos(2θ) cos[2n(ωt+φ0)] + J2n+1(η) sin(2θ) cos[2n(ωt+φ0)]−cos[(2n+2)(ωt+φ0)]

2

]
+be(t)ω0 e− iωt

∑∞
n=1

[
J2n(η) sin(2θ) cos[2n(ωt+φ0)]− J2n+1(η) cos(2θ) cos[2n(ωt+φ0)]−cos[(2n+2)(ωt+φ0)]

2

− iJ2n+1(η) sin[(2n+2)(ωt+φ0)]+sin[2n(ωt+φ0)]
2

]
. (32)

This special case corresponds to the parameters
investigated in this paper. Here we give the an-
alytic expression of the first-order perturbation
calculation results

be(t) ≈ be(0) + ibe(0)ζ1(t)− ibg(0)ζ2(t), (33)

bg(t) ≈ bg(0)− ibg(0)ζ1(t)− ibe(0)ζ∗2 (t), (34)
where we define the ζ1(t) and ζ2(t) expressions as

ζ1(t) = ω0

ω

∞∑
n=1

[
−
(
J2n(η) cos(2θ)+ 1

2J2n+1(η) sin(2θ)
) sin[2n(ωt+φ0)]−sin[2nφ0]

2n

+J2n+1(η) sin(2θ) sin[(2n+2)(ωt+φ0)]−sin[(2n+2)φ0]
(4n+4)

]
, (35)
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ζ2(t) = ω0

ω

∞∑
n=1

[
i
(
J2n(η) sin(2θ)− 1

2J2n+1(η) cos(2θ)− J2n+1(η)n
)

exp( iωt) cos[2n(ωt+φ)]−cos[2nφ]
(4n2−1)

−
(

1
2J2n+1(η) + J2n+1(η) cos(2θ)n− 2J2n(η) sin(2θ)n

)
exp( iωt) sin[2n(ωt+φ)]−sin[2nφ]

(4n2−1)

+i
(

1
2J2n+1(η) cos(2θ)− J2n+1(η)(1+n)

)
exp( iωt) cos[(2n+2)(ωt+φ)]−cos[(2n+2)φ]

(1+2n)(3+2n)

−
(

1
2J2n+1(η)− J2n+1(η) cos(2θ)(1+n)

)
exp( iωt) sin[(2n+2)(ωt+φ)]−sin[(2n+2)φ]

(1+2n)(3+2n)

]
. (36)

Our goal at this point is to express the timescale associated with the “period” of the dynamics of the
squeezing. For this, we estimate the functional dependence of χ. In the first step, we do this by leaving
aside most of the non-resonant terms, and we get

ḃe0(t)
be0(0)

≈ ω2
0

ω

{
− i

3

(
J2(η) sin(2θ)− 1

2J3(η) cos(2θ)− J3(η)
)

cos
[
2(ωt+φ)

]
− i
∑∞
n=1

[(
J2n+2(η) sin(2θ)−J2n+3(η)

[
1
2 cos(2θ)+(n+1)

])
4(n+1)2−1 +

(
1
2J2n+1(η) cos(2θ)−J2n+1(η)(1+n)

)
(1+2n)(3+2n)

]
× cos

[
(2n+2)(ωt+φ)

]
+ 1

3

(
1
2J3(η) + J3(η) cos(2θ)− 2J2(η) sin(2θ)

)
sin
[
2(ωt+φ)

]
+
∑∞
n=1

[
J2n+3(η)

(
1
2+cos(2θ)(n+1)

]
−2J2n+2(η) sin(2θ)(n+1)

4(n+1)2−1 +
1
2J2n+1(η)−J2n+1 cos(2θ)(1+n)

(1+2n)(3+2n)

]

× sin
[
(2n+2)(ωt+φ)

]} {(
J2(η) sin(2θ)− 2J3(η) cos(2θ)

)
cos
[
2(ωt+φ0)

]
+
∑∞
n=1

[
J2n+2(η) sin(2θ)− 1

2J2n+3(η) cos(2θ)− 1
2J2n+1(η) cos(2θ)

]
cos
[
(2n+2)(ωt+φ0)

]
+ i

2J3(η) sin[2(ωt+φ0)] + i
2

∑∞
n=1

(
J2n+1(η) + J2n+3(η)

)
sin
[
(2n+2)(ωt+φ0)

]}
,

(37)
from which the resonant terms are simple to identify, i.e.,
be0(t)
be0(0)

≈ ω2
0

ω
t
2

{
− i

3

(
J2(η) sin(2θ)− 1

2J3(η) cos(2θ)− J3(η)
)(
J2(η) sin(2θ)− 1

2J3(η) cos(2θ)
)

− i
∑∞
n=1

[
J2n+2(η) sin(2θ)−J2n+3(η)

[
1
2 cos(2θ)+(n+1)

]
4(n+1)2−1 +

1
2J2n+1(η) cos(2θ)−J2n+1(η)(1+n)

(1+2n)(3+2n)

]
×
[
J2n+2(η) sin(2θ)− 1

2J2n+3(η) cos(2θ)− 1
2J2n+1(η) cos(2θ)

]
+ iJ3(η)

1
2J3(η)+J3(η) cos(2θ)−2J2(η) sin(2θ)

6

+ i
2

∑∞
n=1

[
J2n+3(η)

(
1
2+cos(2θ)(n+1)

)
−2J2n+2(η) sin(2θ)(n+1)

4(n+1)2−1 +
1
2J2n+1(η)−J2n+1 cos(2θ)(1+n)

(1+2n)(3+2n)

]
×
(
J2n+1(η) + J2n+3(η)

)}
, (38)

χ =
ω2

0

ω

{
− 1

3

(
J2(η) sin(2θ)− J3(η)

2 cos(2θ)− J3(η)
) (
J2(η) sin(2θ)− J3(η)

2 cos(2θ)
)

−
∑∞
n=1

[
J2n+2(η) sin(2θ)−J2n+3(η)

[
1
2 cos(2θ)+(n+1)

]
4(n+1)2−1 +

1
2J2n+1(η) cos(2θ)−J2n+1(η)(1+n)

(1+2n)(3+2n)

]
×
[
J2n+2(η) sin(2θ)− 1

2J2n+3(η) cos(2θ)− 1
2J2n+1(η) cos(2θ)

]
+ J3(η)

1
2J3(η)+J3(η) cos(2θ)−2J2(η) sin(2θ)

6

+ 1
2

∑∞
n=1

[
J2n+3(η)

(
1
2+cos(2θ) (n+1)

)
−2J2n+2(η) sin(2θ) (n+1)

4(n+1)2−1 +
1
2J2n+1(η)−J2n+1 cos(2θ) (1+n)

(1+2n)(3+2n)

]
×
(
J2n+1(η) + J2n+3(η)

)}
. (39)
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