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In this study, we investigated the pinning effect exerted by second-phase particles on grain growth. To
overcome the difficulties, mainly linked to the complex topological events while using the standard vertex
technique in the presence of particles, a modified version of grain growth simulation is presented. The
simulation is based on input data from electron backscatter diffraction measurements. Two hexagonal
lattices discretize the physical space. One grid stores the grain orientation data, i.e., Euler’s angles
(ϕ1, ϕ, ϕ2). Nodes (vertices) are located in the second grid, where particles are randomly distributed.
Vertex simulations, by mean triple junctions dynamics only, were performed to highlight the influence
of the surface fraction of the particles on the grain size distribution, the limiting mean grain size, and
the edges per grain distribution. During the simulation procedure, vertices move in the direction of the
effective force, which results from the driving and the pinning forces.
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1. Introduction

The physical and mechanical properties of poly-
crystalline materials, such as metallic alloys and ce-
ramic composites, are greatly controlled by their
microstructures. Grain growth has been the sub-
ject of active research over the past decades, due to
its importance in controlling the microstructures of
final materials [1]. Normal grain growth is a pro-
cess through which the average grain size R̄ in-
creases in time as a result of the vanishing of small
grains. The presence of second-phase particles in
polycrystals plays an important role in inhibiting
normal grain growth during thermal treatment by
pinning their grain boundaries (GBs) [2]. The in-
teraction of particles with GBs, which is referred
to as “Zener pinning” [3], is of high technological
importance in the manufacture of materials, such
as magnetic alloys Fe-3%Si [4]. To investigate the
influence of particles on the grain growth process,
a variety of computational methods have been used,
such as Monte Carlo (MC) Potts [5, 6], vertex or
front-tracking [7, 8], molecular dynamics [9, 10], cel-
lular automata [11, 12], and phase field [13, 14]. Of
these numerical techniques, the MC Potts method
has been largely used in the simulation of polycrys-
tals at a mesoscopic scale. The extensive use of this
technique results from its computational simplicity.
However, the significant drawback of this approach

is the relation between the Monte Carlo time and
the physical time. In the phase field method, field
variables are employed as parameters to represent
the microstructure. Although this method is widely
used, its enormous computational cost has been
the main drawback of multi-orientation field vari-
ables [15]. The vertex method presents a physical
way to simulate the grain growth phenomena. Un-
fortunately, although this method is potentially the
best one to explore normal grain growth, it is hardly
used due to the difficulties, mainly linked to detect-
ing and solving the system topology, which evolves
continuously during grain growth. In spite of these
difficulties, this technique has been used in other
natural structures, e.g., for the growth of ice in
glaciology [16] and cells in biology [17]. The com-
plex topological events, e.g., the shrinkage of grains
and the influence of neighborhood on individual
grains, are difficult to manage during the simula-
tion procedure. To avoid these problems, modifica-
tions to the vertex model have been suggested in
a recent work [18]. This technique usually begins
with using a matrix generated by Voronoi tessella-
tion [19, 20]. In the present work, an experimental
microstructure obtained from electron backscatter
diffraction (EBSD) measurements, where the grain
area is discretized, is used as input data. The mi-
crostructure is represented on a fixed hexagonal lat-
tice (microstructure grid), which stores the grain
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orientation data. Neighboring points with the same
and different orientations define grains and GBs,
respectively. In the presence of second-phase parti-
cles, serious difficulties were encountered while us-
ing the standard vertex technique, e.g., complex
topological changes due to vertices–particles inter-
actions. To surmount these obstacles, one suggested
that triple and double junctions (vertices) are from
a second lattice (vertices grid) where particles are
randomly distributed. However, no orientation is
distributed to particles. The individual effective
force, which is the force resulting from the driv-
ing and the pinning forces, is easily calculated. This
force is directly introduced into the vertex motion
equation. Therefore, vertices move toward its direc-
tion. These modifications improve the vertex simu-
lation efficiency.

2. Modification of the vertex method
in the presence of particles

In the vertex models [21, 22], the triple junc-
tions (real vertices) were supposed to govern the
whole-grain growth process. The evolution of the
microstructure is described by the displacement of
these nodes (vertices), which is accurately described
from a physical viewpoint. The resultant of grain
boundary tensions is considered the only driving
force acting upon triple junctions. So, the vertex
moves in its direction with the speed

vi = mi

3∑
j=1

γij
rij
|rij |

, (1)

where mi is the mobility of the vertex i, γij is the
energy per unit length of grain boundary between
real vertices i and j, and rij is the vector connec-
tions vertex i to vertex j.

In the presence of immobile particles, Tamaki et
al. [23] have studied the interaction between par-
ticles and GBs, in a two-dimensional vertex model,
by considering the grain boundary energy minimum
as the evaluation function. However, the complex
topological changes due to vertices–particles inter-
actions are difficult to manage and can be a very
complex task. In another work, Weygand et al. [7]
introduced the pinning effect of particles in the ver-
tex model through a critical angle ϕcr. During the
grain growth simulation, vertices are pinned when
they intersect particles (active particles) and will
be unpinned as soon as ϕ becomes greater than ϕcr
(Fig. 1a),

sin(ϕcr) =
Fcr
2γ

, (2)

where Fcr is the pinning force, and γ is the grain
boundary energy.

As shown in Fig. 1a, (2) is true only for the case of
virtual vertices (double junctions) where the driving
force Fd is given by

Fd = 2 γ sin(ϕ). (3)

Fig. 1. Driving force for: double junctions (a), and
triple junctions ϕ = 30◦ (b), ϕ > 30◦ (c), and
ϕ < 30◦ (d).

For triple junctions, (2) is not valid. The driving
force Fd will be (Fig. 1b, c, and d)

Fd = γ
∣∣2 sin(ϕ)− 1

∣∣. (4)

One can distinguish three cases:
1. the vertex does not move (triple point equilib-

rium) if 2 sin(ϕ) = 1, i.e., ϕ = 30◦ (Fig. 1b);
2. the vertex moves up if 2 sin(ϕ) > 1, i.e.,
ϕ > 30◦ (Fig. 1c);

3. the vertex moves down if 2 sin(ϕ) < 1, i.e.,
ϕ < 30◦ (Fig. 1d).

The motion of triple junctions affects the motion
of the boundaries. Many works focus on the influ-
ence of triple junctions on grain growth [10, 24–27].
It has been demonstrated that the motion of triple
junctions can have a significant effect on the result-
ing grain growth. In a recent work [18], the global
features of the grain growth process were best re-
produced by using triple junction motion. However,
one considers only triple junction dynamics in the
present work. The effect of a particle is explained
by considering the pinning force F f , which counter-
acts the driving force. In 2D, the maximum pinning
force is given by [28]

Ff = 2γ. (5)
The pinning force can be incorporated directly
into (1). So, the triple junctions speed becomes

vi = mi

 3∑
j=1

γij
rij
|rij |

− Ff

 . (6)

Instead of using the critical angle ϕcr to simu-
late grain growth, the influence of particles on grain
growth can be incorporated into the simulation pro-
cedure throw (6). However, no topological assump-
tions are made about the complex GBs–particles in-
teractions. During the simulation procedure, in each
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Fig. 2. Microstructure and vertices lattices used in
the simulation.

Fig. 3. Simulation algorithm proposed for grain
growth in the presence of particles.

time increment ∆t, the new positions of the vertices
are calculated using the following relation

ri (t+ ∆t) = ri (t) + vi (t) ∆t, (7)
where the velocity vector vi(t) is obtained from (6).

The flexibility of vertex dynamics is a powerful
tool to investigate the effect of second-phase par-
ticles on grain structure evolution, but the price
to pay is the difficulty of managing the topological
changes. To avoid these obstacles, the simulation
is done simultaneously with two hexagonal lattices.
One lattice stores the matrix grains orientation data
(M), where the orientation of each site is defined by
three Euler’s angles (ϕ1, ϕ, ϕ2). So, the microstruc-
ture is easily reconstituted. Vertices are located in
the second lattice (Fig. 2). It is important to note

Fig. 4. Initial microstructure measured by EBSD
(a), the corresponding straight boundaries (b), and
the size distribution (c).

that all vertices are real. Therefore virtual vertices
do not exist. The present simulation procedure is
shown in Fig. 3.

The particles matrix “S” is defined as follows

S(i) =

{
1 active particle at vertex (i),

0 no particle at vertex (i).
(8)

The size of “S” is equal to the vertices lattice size.

3. Conditions of the simulation

The simulation begins by using an exper-
imental microstructure Fe-3%Si obtained from
electron backscatter diffraction (EBSD) measure-
ments (Fig. 4a). This microstructure is constituted
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Fig. 5. Microstructural evolution after different times: t∗ = 0 (a), t∗ = 9 (b), and t∗ = 27 (c). Color code
defined in standard triangle (d).

of N0 = 1110 grains, and its mean grain size is R̄0 =
5.77 µm. The microstructure lattice is a hexagonal
grid of 200 by 203 points with a step size ∆ = 2 µm,
where every lattice site is characterized by three
Euler’s angles (ϕ1, ϕ, ϕ2). Two neighboring lattice
points with disorientation angle ∆θ ≤ 2◦ belong to
the same grain — otherwise, a grain boundary sep-
arates the two points. In another way, the vertices
and network of straights connecting them can rep-
resent the microstructure (Fig. 4b). To characterize
the microstructure, one uses Orientation Imaging
Microscopy (OIM™). Figure 4c shows the initial ma-
trix grain size distribution, which can be best fitted
by the normal distribution function.

During the simulation, one uses the normalized
time [18]

t =
t∗

mγ
. (9)

To accurately describe the microstructure evolu-
tion, the step time ∆t is chosen

∆t =
3

mγ
. (10)

The simulation is done by MATLAB software for
the isotropic cases where all energies (γ) and mo-
bilities (m) were assumed to be uniform.

4. Results and discussion

4.1. Normal grain growth without particles

To verify that the improved vertex model prop-
erly describes the grain growth phenomenon, e.g.
topological requirements and kinetics of change in
mean grain size with time, one examines the kinet-
ics for normal isotropic grain growth. The growth
rate of a given grain as a function of its topology is
given by von Neumann–Mullins law [29, 30]

dA

dt
=
π

3
mγ (n− 6) , (11)

where A is the grain area and n is the number of its
edges or neighbors.

From the mean-field approach, Hillert [31] de-
duced the grain size distribution in normal grain
growth. Due to the poor agreement between the
Hillert’s distribution and the experiments, modifi-
cations to the grain size distribution have been pro-
posed [32–35]. The basic equation that described
the growth rate of the average grain size, R̄, is given
by [31]

dR̄

dt
=
α

4

m̄ γ̄

R̄
⇐⇒ dR̄2

dt
=
α

2
m̄ γ̄, (12)
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Fig. 6. Square average radius variation versus
time.

Fig. 7. Time-invariant of normalized grain size
distribution.

where α is a geometrical constant that takes the
value of 1

2 for 2D and 1 for 3D systems, and γ̄ and m̄
are the mean grain boundary energy and mobility,
respectively.

For the case with isotropic grain boundary prop-
erties, where γ̄ and m̄ were assumed to be uniform,
(12) leads to the parabolic kinetic law

R̄2 − R̄2
0 = k t, (13)

where k is the growth constant, and R̄0 is the initial
average grain size at t = 0.

In order to test the validity of the improved
model, a simulation is done for the first case
for grain growth without particle consideration
(Ff = 0). The temporal evolution of the microstruc-
ture is illustrated in Fig. 5. Colored orientation
maps are used to follow the local topological and
morphological evolutions of grains. After different
times of simulation, normal grain growth occurs. It
is clear that n-sided grains with n > 6 will grow,
whereas grains with n < 6 will shrink. This behav-
ior is in good agreement with the von Neumann–
Mullins law in (11).

Fig. 8. (a) Grains matrix, (b) particles matrix for
f = 10%, and (c) combination of (a) and (b).

Figure 6 displays the change of the square mean
radius as a function of time. Its dependence can be
obtained by linear fitting the parabolic equation

R̄2 = 1.35t∗ + 33.75. (14)
In fact, (14) is in good agreement with the parabolic
kinetics in (13).

With the parabolic growth kinetics, the nor-
malized size distribution is time-invariant or self-
similar, as shown for different times in Fig. 7
(t∗ = 33 and t∗ = 36).

4.2. Grain growth with particle pinning

During the grain growth process, immobile par-
ticles are randomly distributed between the ma-
trix sites, i.e., on GBs and vertices. Consequently,
the vertices lattice is used to locate the position of
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Fig. 9. Evolution of the grain structure at t∗ = 27
for f = 5% (a) and f = 10% (b).

the particles. The present simulation is done with
two input matrixes, namely the grains matrix “M”
containing the experimental microstructure data
(Fig. 8a) and the particles matrix “S” (Fig. 8b).

During the simulation, one uses a combination
of matrices “M” and “S” as shown in Fig. 8c. So,
the grains occupy only those sites of the simulated
microstructure where the particles are virtually dis-
tributed without orientation.

According to Zener [3], the normal grain growth is
inhibited when the matrix mean grain size R̄ attains
the critical value

RL =
2

β

r

f
, (15)

where r and f are, respectively, the average radius
and the volume (surface) fraction of the particles,
and β is a constant that takes the value of 4

π for 2D
and 3

2 for 3D systems.
Many modifications have been made to the Zener

equation for predicting RL in real materials. How-
ever, (15) is given in the general form

RL = b
r

fn
, (16)

where b is a dimensionless constant and n varies
between 1 and 1

3 [36–39].

Fig. 10. Temporal development of mean grain ra-
dius for different particle fractions f .

Fig. 11. Grain size distribution at t∗ = 27 for f =
5% (blue), and f = 15% (red).

In the present work, simulations were performed
for different amounts of particles: 5%, 10% and 15%
area fractions. Figure 9 demonstrates the evolution
of the grain structure at t∗ = 27 for f = 5% (a) and
f = 10% (b).

In Fig. 10, where each point corresponds to one
simulation, the mean grain size R̄ for different cases
is compared to the case of pure growth (f = 0). It
is shown that growth is significantly slowed down
by pinning, and nearly stopped for f = 15%. Fur-
thermore, the limiting grain size decreased as the
second-phase particle fraction f increased. Compar-
ison with experiment [40] or simulation data [13, 41]
showed good agreement. Figure 11 shows a compar-
ison of the grain size distribution at the same time
t∗ = 27, for two cases: f=5% (a) and f = 15%
(b). In the matrix containing 5% of particles there
are more large grains and fewer small grains than in
the matrix containing 15% particles (end and begin-
ning of Fig. 11). This is caused by the fast growth
of the grains in the matrix less pinned, i.e., in the
microstructure corresponding to case (a). The size
ratio of the mean radius to the initial mean radius
(R̄/R̄0) is equal to 1.37 and 1.20 for (a) and (b), re-
spectively. It is clear that the grain size distribution
varied with the particle concentration.
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Fig. 12. Distribution of edges per grain at t∗ = 30
for f = 15%.

Fig. 13. Pinned mean grain size as a function of
surface fraction of particles.

In two dimensions, to measure topological char-
acteristics associated with individual grains, grains
can be classified by their number of edges [42–44].
The distribution function of edges per grain, p(n),
is depicted in Fig. 12 at t∗ = 30 for f = 15%. It
is observed that 5-sided grains have the highest fre-
quency and 6-sided grains are the second highest,
where p(5) = 26.3% and p(6) = 23.9%, respec-
tively. Our results compare well with the distribu-
tion of edges per grain as given in the following ref-
erences [27, 45, 46]. The modified model has been
used to predict the limiting matrix grain size RL in
the presence of particles. In the logarithmic form,
(16) will be

ln(RL) = ln(b r)− n ln(f). (17)

Figure 13 illustrates the variation of ln(RL) as
a function of ln(f). It is well fitted by linear be-
havior as in (17), where ln(br) = 1.258± 0.036 and
n = 0.345 ± 0.015. The fitting value of n does not
fully comply with the Zener relationship [3]. A con-
siderable number of simulations have demonstrated
that the classical Zener law cannot accurately pre-
dict the limiting mean grain size. Globally, the fit-
ting indices n were in the range of 0.33–0.50 for
2D [13, 41, 47, 48]. For this reason, it is necessary
to perform additional studies in the future.

5. Conclusions

To avoid the difficulties due to the topological
changes, when using the vertex technique in the
presence of second-phase particles, the simulation
is done simultaneously with the matrix grid and
the vertices lattice where particles are randomly
distributed. The strength of the improved model
is its simplicity, while no assumptions are made
to the grain boundaries–particles interaction. The
grain size distribution is calculated and exhibits
self-similarity. The distribution of edges per grain
is correctly reproduced. Different amounts of par-
ticles are used in order to study the effects of the
particles surface fraction on the limiting mean grain
size. Simulations have demonstrated that the clas-
sical Zener law cannot accurately predict the lim-
iting mean grain size. Our results are in agreement
with some experiments and simulation works. The
present modifications improve the vertex simulation
efficiency and the computational cost considerably
decreases.
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