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A theoretical model to determine the properties of an exciton confined in a semiconductor quantum
box with rectangular potential is presented. We have used the two-band model and the effective mass
approximation. The theoretical approach includes a considerable analytic phase and makes it possible
to reduce the numerical calculations. According to the new formulation, the limit cases for an exciton in
a bulk semiconductor and an exciton confined in a two-dimensional structure are deduced, and a good
agreement is shown in comparison with known results in the literature. We calculated the binding
energy, spatial extension, and effective Bohr radius of the exciton. The variation law of the confined
exciton energy, as a function of the dimension of the semiconductor quantum box, is established. The
illustrations are given for a rectangular confining potential with finite and infinite barriers.
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1. Introduction

The rapid progress of nanometer-scale fabrication
technologies in recent years has enabled the con-
struction of low-dimensional semiconductor nanos-
tructures. These systems have become the object
of extensive research activity due to their promis-
ing technological applications. They will form the
basis of the electronic and optical devices of the
future. The optical properties of these structures
are dominated by excitonic effects. An exciton is
a quasi-particle that consists of an electron–hole
pair bonded by the Coulomb interaction. Excitonic
effects are important in the development of sta-
ble and high-efficiency nanoscale optoelectronic de-
vices. Through the localization of charge carriers,
excitonic effects are enhanced in low-dimensional
nanostructures compared to bulk semiconductors.

In the last decades, several studies have focused
on excitonic states in semiconductor nanostruc-
tures. In the particular case of excitons confined
in three directions of space, also called the zero-
dimensional (0D) nanostructure, the models used
are quite diverse. This diversity concerns both the
geometric shape of the structure and the profile of
the associated confinement potential. There have
been several reports on excitonic phenomena in 0D
nanostructures where they are described as rect-
angular quantum boxes (QB) with a finite or in-
finite confinement barrier [1–3], spherical quantum
dots with a rectangular potential barrier [4, 5],
parabolic [6–8] and gradual potential profile [9]. We

found also a description of 0D nanostructures as
cylindrical [10–16], conical [17], triangular [18], and
lens-shaped quantum dots [19].

Exciton states confined in nanostructures have
often been investigated theoretically by using ei-
ther the variational approach [1, 2, 20] or the
configuration-interaction approach [3, 21]. In the
variational approach, the exciton wave function
is represented by a trial function. However, in
the configuration-interaction approach, the exciton
wave function is expanded in terms of an appro-
priate basis set, and thus the ground and excited
states can be described accurately with a large
number of bases. It was reported by Kubota and
Nobusada [3] that the validity of the variational ap-
proach depends on the choice of the trial function
and, in general, its application to excited excitonic
states is practically difficult, but the configuration-
interaction approach requires huge computational
costs. Planelles and Climente [22] have calculated
the ground state energy of neutral and charged
excitons confined in semiconductor quantum dots
by using the variational Quantum Monte Carlo
method.

So, the calculations of excitonic states presented
in the literature are essentially based on numerical
methods and require heavy calculations with pow-
erful machines. Thus, it would be interesting to pro-
vide a simple, fast, accurate, and useful analytical
formulation that can be easily applied to determine
the exciton properties in 0D semiconductor nanos-
tructures.
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In this work, we present a method that uses
a rather important phase of analytical calculation,
considering the 0D nanostructure as a rectangu-
lar quantum box (QB). This makes it possible to
greatly limit the use of numerical calculations and
to find the desired results in a short time. In or-
der to calculate the binding energy, spatial exten-
sion, and effective Bohr radius of an exciton in
a quantum box, we develop a calculation model,
which includes a considerable analytical phase and
is valid for any shape of the confining potential,
provided that the solution of the one-particle prob-
lem is known. The formulation is performed in the
framework of the effective mass approximation and
the two-band model.

The paper is organized as follows. In the next sec-
tion, we formulate the assumptions and equations of
the model. Expressions of the binding energy, spa-
tial extension, and effective Bohr radius of the exci-
ton are presented. Two-dimensional (2D) and three-
dimensional (3D) limit cases are deduced. The ap-
plication of the calculation model for rectangular
QB is discussed in Sect. 3. A brief summary is pre-
sented in the last section.

2. Model calculation

2.1. Basic equations

We consider a single quantum box of type I of
dimensions Lx, Ly, and Lz along the x-, y-, and z-
axis, respectively. The confining potential is of ar-
bitrary shape, say Ve(xe, ye, ze) for an electron and
Vh(xh, yh, zh) for a hole. Throughout the paper, we
use effective atomic units, which means that all dis-
tances are measured in units of the exciton Bohr
radius aB = ~2ε/(µ∗e2), energies in units of the
Rydberg constant Ry = µ∗e4/(2~2ε2), masses in
units of the reduced electron–hole mass µ∗, where
1
µ∗=

1
m∗

e
+ 1
m∗

h
, and m∗e(h) is the effective masses of

electron (hole).
In the hypothesis of uncoupled excitons, the

Hamiltonian operator of one exciton (X), in the
effective mass approximation, is given by

H = He +Hh +HC, (1)

with
Hi = − ∂

∂xi

(
∂

mi∂xi

)
− ∂
∂yi

(
∂

mi∂yi

)
− ∂
∂zi

(
∂

mi∂zi

)
+Vi (xi, yi, zi) , (2)

where i = e, h, and

HC = −2

r
. (3)

In the above equations,He (Hh) describes the move-
ment of an electron (hole) with energy Ee (Eh);
HC is the Coulomb interaction term; r is the relative
position r=

√
(xe−xh)2 + (ye−yh)2 + (ze−zh)2,

and ε represents the dielectric constant (assumed
to be equal inside and outside the box).

The exciton wave function is chosen to be of the
following form

Ψ(re, rh) = Ψe(re)Ψh(rh)Φ (4)
where Φ is the coupling factor, which will be conve-
niently chosen to describe the exciton state. Thus,
for the ground state X1s, we take

Φ = exp
(
− r
λ

)
. (5)

The eigenstate Ψi(ri) of one-particle Hamiltonian
(HiΨi = EiΨi), in this work, is considered as the
product of three independent functions

Ψi(ri) = fi(xi)gi(yi)hi(zi). (6)
The exciton energy EX is determined by minimiz-

ing the expectation value of H with respect to the
suitable variational parameter λ. Then, the binding
energy of exciton Eb is given by

Eb = Ee + Eh − EX . (7)
The effect of the mass mismatch on the binding

energy is very small [23]. This effect is neglected
from now on, but it is taken into account for the
calculation of one-particle state. The anisotropy of
the valence band is neglected.

Inserting the exciton wave function (4) into (1),
we find after some algebra
〈Ψ |H|Ψ〉 = (Ee + Eh) 〈Ψ |Ψ〉

+

∫
dΩ

[
(∇eΦ)

2

me
+

(∇hΦ)
2

mh
− 2Φ2

r

]
Ψ2
eΨ

2
h

(8)
with dΩ = dxedxhdyedyhdzedzh.

The first term 〈Ψ |Ψ〉 can be written as

〈Ψ |Ψ〉 =
∫
r

dr

[∫
dredrh |Ψe|2 |Ψh|2 Φ2

]
×
(
δ (re − rh − r) + δ (rh − re − r)

)
, (9)

where r = (X,Y, Z) is the electron–hole relative
position, which we consider with positive compo-
nents. The previous expression can be transformed
into the following form
〈Ψ |Ψ〉 =∫

r

dr

∫
dre |Ψe(re)|2 |Ψh(re−r)|2 Φ2(re, re−r)

+

∫
r

dr

∫
dre |Ψe(re)|2 |Ψh(re+r)|2 Φ2(re, re+r).

(10)
We note that Φ(v, v + r) = Φ(v + r, v) = Φ(r)

(see (5)). Making the substitution v = re−r in the
first term, and re = v in the second, the expression
〈Ψ |Ψ〉 can be written as

〈Ψ |Ψ〉 =
∫

dr Φ2(r)P (r), (11)

where the function P is defined by

P (r) =

∫
dv

[
|Ψe(v + r)|2 |Ψh(v)|2

+ |Ψe(v)|2 |Ψh(v + r)|2
]
. (12)

247



A. El. Haddad

Owing to these transformations, the binding energy
defined in (7) writes

Eb = −
1

λ2
+

2Υ(G)

Υ(F )
(13)

with

G =
Φ2

r
(14)

and
F = Φ2. (15)

The operator Υ is defined as

Υ(F ) =

∫
dX dY dZ P (X,Y, Z)F (X,Y, Z),

(16)
where X,Y , and Z are the separated distance be-
tween the electron and the hole along the x-, y-, and
z-direction, respectively, (e.g., X = |xe − xh|).

In the hypothesis of the one-particle eigenstate
of (6), P (X,Y, Z) can be written as

P (X,Y, Z) = Px(X)Py(Y )Pz(Z), (17)

where Px(X) represents the uncorrelated probabil-
ity of finding an electron and hole separated by
a distance X along the x-axis [24],

Px(X) =

+∞∫
−∞

dx
[∣∣fe(x+X)

∣∣2∣∣fh(x)∣∣2
+
∣∣fh(x+X)

∣∣2∣∣fe(x)∣∣2], (18)
where fe and fh are the functions defined in (6).

The extension of the exciton rex, defined as
rex =

√
〈r2〉, is given by

rex =

√
Υ (r2F )

Υ(F )
. (19)

The effective Bohr radius of a quantum-confined
exciton [1, 16] is defined as

aex =

(〈
Ψ
∣∣∣1
r

∣∣∣Ψ〉)−1. (20)

The above calculation transformations make it
possible to determine the binding energy, spatial
extension and effective Bohr radius of the exciton,
passing from integrals with six variables to integrals
with three variables.

2.2. 3D and 2D limit cases

At this stage, we can to deduce the behaviour
of the exciton in the limiting cases 3D (bulk mate-
rial) and 2D (electron and hole confined in the same
plane).

In 3D limit case (Lx, Ly, and Lz →∞), the func-
tion Px (Py and Pz) varies slowly withX (Y and Z),
and we have Υ(G)

Υ(F ) = 1
λ and Υ(r2F )

Υ(F ) = 3λ2. Maximiz-
ing Eb(λ) gives E3D

b = Ry, with λ3D = aB. In this
case, the extension of the exciton is rex =

√
3 aB

and it effective Bohr radius is aex = aB.

In the 2D limit case corresponding to X = 0,
(Ly and Lz → ∞), we find Υ(G)

Υ(F ) = 2
λ and

Υ(r2F )
Υ(F ) = 3λ2

2 . Maximizing Eb(λ) gives expressions
known in the literature, i.e., E2D

b = 4Ry and λ2D =
1
2aB. In this case, the extension of the exciton is
rex =

√
3aB/

√
8 and it effective Bohr radius is

aex = 1
4aB. The rex expression above is the same

as reported in [25].

2.3. Single-particle ground state

The confining potential is given by

Vi (xi, yi, zi) =


0 if |xi| < Lx

2 , |yi| <
Ly

2 ,

|zi| < Lz

2

V0,i otherwise (21)
i = e, h; Lx, Ly, and Lz are the dimensions of the
box. First, we consider infinite confinement poten-
tial (V0,i =∞). The one-particle wave function can
be written as

Ψi = cos

(
π

Lx
xi

)
cos

(
π

Ly
yi

)
cos

(
π

Lz
zi

)
(22)

In this particular case, the functions Px(X),
Py(Y ), and Pz(Z) can be calculated analytically
and take the similar form as

Px(X) = (Lx −X)

[
1

4
+

1

2
cos2

(
πX

Lx

)]
+

3Lx
4π

cos

(
πX

Lx

)
sin

(
πX

Lx

)
.

(23)
For a finite barrier height V0,i, for simplicity we

considered only the square quantum box (SQB)
(Lx = Ly = Lz = L). The ground state of the
one-particle problem is solved for the x-component
of the wave function by using fi(xi) = cos(kixi), if |xi| < Lx

2

fi(xi) = cos
(
ki
Lx

2

)
e−Ki(|xi|−Lx

2 ), otherwise,
(24)

where Ki =
√

1
3mi,b(V0,i − E), ki =

√
1
3mi,wE,

and
ki
mi,w

tan

(
ki
Lx
2

)
=

Ki

mi,b
, (25)

obtained by requiring continuity of Ψi (see (6)) and
its partial derivatives at the interfaces, i = e, h;
mi,w and mi,b are the effective masses inside and
outside the box, respectively.

The functions Px(X), Py(Y ), and Pz(Z) are the
same but cannot be found analytically, their values
are calculated numerically (18).

3. Results and discussion

The calculations in this section have been per-
formed assuming that the box is a GaAs well, sur-
rounded by an Al0.3Ga0.7As barrier. We adopted
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Fig. 1. Binding energy of the 1s confined state
of a heavy-hole exciton in a GaAs quantum box
with sides of length L. The results are calculated
for an infinite barrier (dashed line) and a finite
Al0.3Ga0.7As barrier (solid line).

Fig. 2. Separation between the electron and the
hole for the heavy-hole exciton as a function of
the quantum box side L. The exciton is confined
with an infinite barrier (dashed line) and a finite
Al0.3Ga0.7As barrier (solid line).

the same values of parameters as Koh et al. [16]. The
GaAs parameters are ε = 13.18; me,w = 0.0665m0;
mh,w = 0.34m0 (for heavy-hole); Ry = 4.35 meV
(effective Rydberg) and aB = 12.6 nm (exciton
Bohr radius). For the barrier, we have used me,b =
0.09m0; mh,b = 0.466m0; V0,e = 243 meV and
V0,h = 140 meV.

The binding energy of an exciton confined in
a square box, with a finite and an infinite barrier, is
shown in Fig. 1 as a function of the side box L. From
this figure, we can see that for the infinite barrier,

Fig. 3. Effective Bohr radius of the quantum con-
fined exciton as a function of the quantum box
size L. The exciton is confined in a quantum box
with an infinite barrier (dashed line) and a finite
Al0.3Ga0.7As barrier (solid line).

the binding energy decreases with increasing box
size. However, in the case of a finite barrier, the
binding energy increases with increasing L, reaches
a maximum value, and decreases monotonically. As
L is increased, the binding energy approaches the
value of the Rydberg unit. The peak in the binding
energy occurs for the smallest values of L (L ' 0.4),
where the probability of finding an electron or a hole
outside the box is very weak. For a narrower quan-
tum box (i.e., L < 0.4), the probability of finding
an electron or a hole outside the box increases (weak
confinement of the carriers), and this leads to a de-
crease in the binding energy. The effect of the con-
fining potential becomes small when the box size in-
creases (L > 4 aB). The present results are slightly
superior to those found by Koh et al. [16] who con-
sidered a cylindrical form of the box.

In Fig. 2, we present the spatial extension of the
exciton given by (19). For the infinite barrier case,
this extension increases monotonically with increas-
ing L. However, for the finite barrier case, rex de-
creases with lowering L, with a pronounced mini-
mum near the value maximizing the binding energy,
and increases again due to the delocalization of the
wave function into the barrier layer. The electron–
hole separation rex approaches the value of the bulk
material (3D limit case) for large values of L.

The effective Bohr radius of the quantum-
confined exciton aex is plotted in Fig. 3. It may be
used for analysing the confinement effect and the
quantum size effect on the exciton. Here, we find
that aex decreases rapidly until it reaches a mini-
mum and then increases as L decreases. A smaller
exciton Bohr radius may be attributed to the local-
ization of the exciton wave function. Therefore, as
shown in Figs. 1 and 2, the smaller is the effective
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Fig. 4. Plot of the exciton energy versus L. The
exciton is confined in a GaAs quantum box with
a finite Al0.3Ga0.7As barrier. Squares are calcu-
lated values. The dashed line is (a) the plot
of the model 1, EX = 80 exp(0.27L2−2.2L)− 1,
and (b) the plot of the model 2, EX =
94 exp(−0.07L3+0.66L2−2.8L)− 1.

Bohr radius of the exciton, the greater is the bind-
ing energy and the smaller is the electron–hole
separation rex.

In Fig. 4, we present the exciton energy EX ver-
sus L. The exciton is confined in a GaAs quantum
box with a finite Al0.3Ga0.7As barrier. Squares are
values calculated using (7), i.e., EX = Ee+Eh−Eb.
The optical gap is E = EX + Eg, where Eg is
the GaAs energy gap (Eg = 1.424 eV). It should
be noted that the confinement energies of electrons
are two to four times higher than those of holes as
a result of the huge effective mass of heavy-holes
compared to that of electrons. Figure 4 shows that
the exciton energy increases monotonically with de-
creasing L. So, compared to a bulk semiconductor,
the optical gap is very influenced by confinement
in a quantum box and varies more strongly when
L < aB. This allows the adjustment of the optical
gap of nanostructures across their sizes.

The empirical laws of energy variation of an ex-
citon confined in a 0D nanostructure have been re-
ported as a function of its dimension L. Yu et al. [26]
proposed the law EX = A/LB . On the other hand,
Wu et al. [1] proposed the law EX = A/ exp(LB).
In these two expressions, A and B designate ad-
justment parameters, where B < 2 in the first and
0 < B < 1 in the second. Here, we revisit this de-
pendence and propose two empirical models. The
first model is shown as a dashed line in Fig. 4a,
where we take EX = 80 exp(0.27L2−2.2L)−1. The
second model, shown in Fig. 4b as the dashed line, is
plotted with the expression EX = 94 exp(−0.07L3+
0.66L2− 2.8L)− 1. The second law agrees very well
with the calculated exciton energy values, and make
it possible to find the 3D limit of the bulk semicon-
ductor EX = −Ry.

4. Conclusion

In conclusion, using a variational calculation us-
ing the two band model and the effective mass ap-
proximation, we established a set of analytical equa-
tions to be used for calculating the properties of the
excitons confined in a quantum box with a rectan-
gular potential profile. We have tested the validity
of the equations by checking the properties of the
exciton in a bulk semiconductor (3D) and confined
in a plane (2D). The calculations are clearly sim-
plified in the case of confinement with an infinite
barrier. Finally, we note that the perspective of ap-
plication of the model developed in this paper re-
mains widely open. Owing to its simplicity, it can
be extended without difficulty to many types of ap-
plications, such as exploring new potential profiles
of the quantum box, investigating higher excited
states of the exciton, and calculating transitions en-
ergy and oscillator strengths for these states, exam-
ining electric and magnetic field effects, etc. How-
ever, it should be noted that the application of the
model requires knowledge of the solution of the one-
particle problem. Nevertheless, the work involved in
obtaining the binding energy and other properties of
the exciton is considerably reduced using analytical
equations, making it easy to apply to any potential
profile.
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