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The linear Rayleigh–Taylor instability of two immiscible superposed non-Newtonian fluids saturated
by a porous medium in the simultaneous presence of interfacial surface tension and suspended dust
particles is investigated. The non-Newtonian behavior of fluids is described by the Jeffrey model. The
set of coupled partial differential equations satisfying the appropriate boundary conditions is solved by
applying the linear theory and normal mode technique. The exact solutions are found for both regimes
with constant density, and the dispersion relation (between the growth rate and the wave number)
is obtained. The physical system is found to be stable for a bottom-heavy configuration density-wise,
such as in the Newtonian viscous fluid using the Routh–Hurwitz criterion. However, for the unstable
configuration, the surface tension, medium porosity, dynamic viscosity, and density of dust particles
have a stabilizing impact on the growth rate of the unstable Rayleigh–Taylor mode; whereas the density
difference between the fluids and the Jeffrey parameter has a destabilizing effect on the growth rate of
the unstable Rayleigh–Taylor mode.
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1. Introduction

Interfacial instabilities in fluid systems are
characterized by interpenetration of material and
mixing at molecular scales due to perturbations
occurring at the interfaces of the material. The
Rayleigh–Taylor instability (RTI) is buoyancy-
driven and occurs in fluid flows that contain species
of differing molecular masses in the presence of ac-
celeration, such as accelerating fronts or gravity [1].
The detailed understanding of the processes and the
consequences of interfacial instabilities has vast im-
plication for real systems, including the designs of
efficient, high-gain capsules for inertial confinement
fusion (ICF) and modeling of supernova implosions
and explosions. Such understanding is available due
to current computational efforts. A simple expla-
nation for the occurrence of the Rayleigh–Taylor
instability (RTI) deals with a normal room exist-
ing on Earth with normal gravitational effects. Sup-
pose this room contains the volume of air above the
floor, which supports a uniform layer of water that
lies beneath the ceiling. Similar to pouring of water
into oil, the heavier fluid, once perturbed, streams
to the bottom, pushing light fluid aside. The effect
of viscosity on the stability of the plane interface

separating two incompressible superposed fluids of
uniform densities in the presence of a uniform hori-
zontal magnetic field has been investigated by Bha-
tia [2]. The importance of surface tension with re-
gard to the problem of plasma instability might be
of industrial and astrophysical importance. Consid-
erable study has been given to the presence of sur-
face tension in fluid instabilities studies. The effect
of surface tension and viscosity on RTI has been
studied by Mikaelian [3]. The effect of surface ten-
sion on the immiscible Rayleigh–Taylor turbulence
has been investigated by Chertov et al. [4] and it
was observed that surface tension leads to the for-
mation of an emulsion whose typical drop size de-
creases over time.

In the recent study of spacecraft observations,
we note that suspended dust particles play an im-
portant role in the dynamics of the Martian
atmosphere. In geophysical situations, the fluid is
permeated with dust particles instead of pure con-
ducting fluid. In order to study the role of sus-
pended dust particles on RTI in such media, Sharma
and Chhajlani [5] have investigated the effect of sus-
pended dust particles and rotation on RTI of two
superposed magnetized conducting plasmas, and
they showed that rotation and suspended particles
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do not affect RTI. The problem of hydromagnetic
transverse instability of two highly viscous fluid par-
ticle flow with FLR (finite Larmor radius) correc-
tions was discussed by Sayed [6] and it was showed
that FLR and kinematic viscosity have a stabiliz-
ing effect for a vortex sheet. The effect of surface
tension and rotation on RTI of two superposed in-
compressible fluids with suspended dust particles
has been analyzed by Sharma et al. [7]. There, it
was observed that the growth rate of RTI decreases
with a rise in values of the mass concentration and
relaxation frequency of the suspended dust parti-
cles, and the substantial stabilizing effect of these
quantities was depicted. RTI of two superposed flu-
ids with suspended particles and in the presence of
rotation was studied by Hoshoudy and Kumar in
[8], and demonstrated greater stability due to the
simultaneous impact of the relaxation frequency of
suspended dust particles and rotation on the growth
rate of the unstable configuration.

Additionally, the investigation of fluid flow
through porous media has become more advanta-
geous due to the variety of applications in industry,
laboratories, geophysics and in industry in lieu of
the recovery of crude oil from that of reservoir rock
pores. In this light, Sharma and Spanos [9] have es-
tablished the Rayleigh–Taylor instability of stream-
ing superposed fluids with surface tension saturat-
ing a porous medium. The effect of surface tension
on the hydromagnetic Rayleigh–Taylor instability
of two superposed fluids in a porous medium with
suspended dust particles immersed in a uniform
horizontal magnetic field was studied by Sharma et
al. [10]. The authors found that the relaxation fre-
quency, mass concentration of dust particles have
stabilizing effect on RTI. The stability of two su-
perposed viscous, streaming horizontally fluids ly-
ing one over the other in the presence of suspended
dust particles flowing through a porous medium has
been analyzed by Prajapati and Chhajlani [11]. The
effect of boundary roughness on the saturation of
electro–hydrodynamic RTI in two superposed fluids
in the presence of nanostructured porous layer have
been studied by Chavaraddi and Awati [12]. The au-
thors found that surface tension stabilizes the sys-
tem while electromagnetic fields, boundary rough-
ness decrease the growth rate of RTI. The impact
of magnetic and electric fields on RTI in a power-
law fluid has been investigated by Chavaraddi et
al. [13], and the study revealed that the magnetic
field, electric field, power-law fluid and layer thick-
ness stabilizes the system. The fluids have been as-
sumed to be Newtonian in all the above-mentioned
studies.

Nevertheless, little attention has been given in
the literature to studying RTI of superposed fluids
with non-Newtonian behavior characterized by a va-
riety of models in the universe. Furthermore, the
mechanism and great potential of non-Newtonian
fluids, characterized by various model flows, have
attracted many researchers in the present arena due

to the existence of this behavior in the chemical in-
dustries as well as in astrophysical situations dur-
ing the past few decades. The Newtonian or non-
Newtonian behavior of a fluid is characterized by
a linear or non-linear relationship between the stress
and rate-of-strain components, termed the constitu-
tive equations. We are interested therein one of the
non-Newtonian fluids characterized by the Jeffrey
model (Joseph and Preziosi [14]), which signifies
the ratio of relaxation and retardation and exhibits
a linear viscoelastic feature, yield stress, shear thin-
ning properties and high shear viscosity. The Jeffrey
model is described by the following constitutive re-
lations

Tij = −p δij + τij , (1)
with

τij =
2µ

1 + λ

[
1 + λ1

(
∂ (2eij)

∂t
+
∂ui
∂xj

)]
eij , (2)

where Tij , τij , eij , p, µ, and δij denote the stress
tensor, the viscous stress tensor, the rate-of-strain
tensor, the isotropic pressure, the coefficient of vis-
cosity, and Kronecker delta, respectively. The Jef-
frey parameter (λ) is defined as the ratio of the
stress relaxation time (λ0) to the strain retardation
time (λ1).

For incompressible fluids, the above relation (2)
reduces to

τij =
2µ

1 + λ
eij . (3)

The two time representations are of great impor-
tance in the possibility of wave propagation in the
earth’s mantle in lieu of the strain retardation time,
whilst the stress relaxation time assigns the time
taken by a fluid to retain a position from its dis-
turbed position to its basic stable state. Such a fluid
also finds application in environmental engineering,
with the inclusion of polypropylene coalescence sin-
tering, geological flows and blood etc. Some exper-
imental methods have been proposed for measur-
ing rheology of polymeric solution [15]. The novelty
of such calculations was carried out for the move-
ment of microorganisms in weakly non-Newtonian
fluids [16]. The ill-posed second-order (retardation)
fluid model exhibiting stress relaxation has been
utilized by Christov and Christov [17] to establish
the stress retardation against stress relaxation in
linear viscoelasticity using Volterra functional se-
ries. The problem of Jeffrey fluid in the rotating
system with suspended dust particles in the pres-
ence of volume fraction and Hall effect was an-
alyzed by Dey [18] and the retarding impact of
the non-Newtonian behavior of the fluid was ob-
served on the considered system. The impact of
the magnetic field on RTI in a coupled stress fluid
was established by Chavaraddi and Awati [19]. The
instability of two Oldroydian viscoelastic rotating
superposed fluids with a uniform vertical angular
velocity through a porous medium was analyzed
by Mathur and Kumar [20]. The influence of the
boundary roughness on RTI at the interface of the
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superposed coupled stress fluid was demonstrated
by Chavaradi and Gouder [21] and the boundary
roughness and couple-stress parameter are found to
stabilize the system.

Therefore, this paper aims to investigate the im-
pact of suspended dust particles on the Rayleigh–
Taylor instability superposed Jeffrey fluids flowing
through a porous medium to see how the criterion of
instability/stability changes with variations in the
distinct parameters involved.

2. Formulation of the problem and
perturbation equations

The initial stationary state whose stability we
wish to examine is that of two infinite horizon-
tal layers of homogeneous Jeffrey fluids superim-
posed on one another, separated by a plane inter-
face at z = 0, saturated by a porous medium. The
porous medium is assumed to be of homogeneous
medium porosity (ε) and medium permeability (k1).
Two regimes z < 0 and z > 0 consist of two dis-
tinct layers of Jeffrey fluids with densities ρ1 and
ρ2. The system is acted on by the gravity force
g = (0, 0,−g). Suppose that at some prescribed
level (zs), the density may change discontinuity and
bring into play an effect due to the effective inter-
facial tension (Ts).

The modified conservation equations of the gov-
erning problem for Jeffrey fluid in a porous medium
(Joseph and Preziosi [14]; Prajapati and Chha-
jlani [11]) are
ρ

ε

[
∂

∂t
+

1

ε
(∇ · q)

]
q = −∇p+ ρg− µ

k1 (1+λ)
q

+
∑
s

[
Ts

(
∂2

∂x2
+
∂2

∂y2

)
zs

]
δ(z−zs)+

KN

ε
(V −q),

(4)

∇ · q = 0, (5)

ρ

ε

∂ρ

∂t
+ (q · ∇) ρ = 0, (6)

where q, V , ρ, p, µ, and λ represent the filter veloc-
ity of Jeffrey fluid, suspended particle velocity, den-
sity, hydrodynamic pressure, viscosity, and Jeffrey
parameter, respectively. In (4), δ(z−zs) denotes the
Dirac delta function. The density of each particle
remains unchanged as we follow it with its motion,
as revealed from (6).

Suspended dust particles are assumed to be non-
conducting, of spherical shape, and uniform in size.
Due to the dust particles, the fluid exerts a force
on particles that is equal and opposite to that of
the particles. Consequently, an extra force term
given by KN

ε (V − q) is added in the equations of
motion, where N is the particle number density;
K is the Stoke coefficient of resistance, given by
K = 4πaµ for spherical particles; a is the particle
radius. Inter-particle reactions are ignored due to
the large enough distance among the particles.

Therefore, the equations of motion and continuity
of suspended particles are given by

mN

[
∂V

∂t
+

1

ε
(V · ∇)V

]
= KN (q − V ) , (7)

ε
∂N

∂t
+∇ · (NV ) = 0, (8)

wherem is the mass of the dust particles andmN is
the mass of particles per unit volume.

The basic flow and suspended particles are sup-
posed to be motionless and quiescent (no settling
of suspended particles), and the physical state vari-
ables (pressure, density) are dependent only on the
z-axis only.

Therefore, the basic state solutions are given by
q = (0, 0, 0) , V = (0, 0, 0) , ρ = ρ (z) . (9)

To investigate the stability of hydrodynamic mo-
tion, infinitesimal perturbations are superimposed
to each of the physical quantities of the initial state
solutions as

q = q0 + q′, V = V0 + V ′, p = p0 + p′,

ρ = ρ0 + ρ′, zs = zs0 + zs
′, (10)

where q(u, v, w), V (l, r, s), p′, ρ′, and zs
′(x, y, t)

represent perturbations in the fluid velocity, particle
velocity, pressure, fluid density, and surface of sepa-
ration, respectively. The subscript ′ denotes an equi-
librium state.

Using perturbations (10) and linear theory,
(4)–(8) become

ρ

ε

∂q

∂t
= −∇p′ + gρ′− µ

k1(1+λ)
q +

KN

ε
(V −q)

+
∑
s

[
Ts

(
∂2

∂x2
+

∂2

∂y2

)
zs
′
]
δ (z−zs) ,

(11)

∇q = 0, (12)

ρ

ε

∂ δρ

∂t
+ (q · ∇) ρ = 0, (13)

τ

(
∂

∂t
+ 1

)
V = q, (14)

where τ = m/k is the relaxation time for suspended
dust particles.

3. Methodology adopted

To examine the stability of the system, perturba-
tions are analyzed in terms of normal modes by as-
cribing a wave number whose dependence on space
(x, y, z) and time t is of the form

f ′ (x, y, z, t) = f (z) e i (kxx+kyy−nt), (15)

where f(z) is some function of z, k =
√
k2x + k2y is

the resultant real wave number, and n is the growth
rate, in general, a complex number.

Using expression (14), (10)–(13) in Cartesian no-
tation are given by
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iρn

ε
u = − ikxp

′ − µ

k1 (1 + λ)
u, (16)

iρn

ε
v = − ikyp

′ − µ

k1 (1 + λ)
v, (17)

iρn

ε
w = −Dp′ − gρ′ − µ

k1 (1 + λ)
w

+ k2
∑
s

Tszs
′δ (z − zs) ,

(18)

ikxu+ ikyv +Dw = 0, (19)

iεnρ′ = −wDρ, (20)

zs
′ =

ws
iεn

, (21)

(τ in+ 1)V = u. (22)
The perturbation in the surface of separation (zs

′)
is defined in terms of the normal component of the
velocity ws at zs (see (21)).

Eliminating variables u, v, p′, ρ′, zs
′ from

(16)–(22), we get the characteristic equation for w
as

[
in

ε
+

v

k1(1 + λ)
+
α0

ε

(
in

τ in+ 1

)](
Dρ (Dw)− ρk2w

)
= igk2

[
(Dρ)− k2

g

∑
s

Tsδ(z − zs)

]
w

εn
, (23)

where ν = µ/ρ is the kinematic viscosity, and
α0 = mN/(ρ1+ρ2) is the mass concentration of
suspended dust particles. It is noteworthy that
the density of the embedded dust particles in
two regimes z > 0 and z < 0 are taken the
same.

Let two uniforms superposed Jeffrey fluids of den-
sities (ρ1) of the lower fluid and (ρ2) of the upper
fluid be separated by a horizontal boundary at z = 0
Then, in each of the two regions of the constant den-
sities, (22) becomes(

D2 − k2
)
w = 0. (24)

The boundary condition across the interface of
two fluids are as follows (Chandrasekhar [1]):

(i) The velocity w should vanish when z → +∞
(for upper fluid) and z → −∞ (for lower
fluid).

(ii) The function w(z) is continuous at z = 0.

(iii) Integrating (23) between zs − ε′ and zs + ε′

passing to the limit ε′ = 0, we obtain the jump
condition

∆s

[
in

ε
+

v

k1 (1 + λ)
+
α0

ε

(
in

τ in+ 1

)
Dw

]
=

igk2
[
∆s (ρ)−

k2T

g

]( w
εn

)
s
, (25)

where ∆s(f) = f(zs + 0) − f(zs − 0) is the jump
experienced by a physical quantity at the interface
z = zs.

Applying the boundary condition (i) and (ii), the
appropriate solutions of w are

w1 = Ae+kz, (z < 0), (26)

w2 = Ae−kz, (z > 0), (27)
where the constant A is chosen to ensure the conti-
nuity of w.

Using the solutions (26) and (27), after some al-
gebraic simplifications the jump condition (25) is

n3−
[
i (1+α1β1+α2β2)

τ
+

iε

k1

(
α1ν1
1+λ1

+
α2ν2
1+λ2

)]
n2−

[
ε

τk1

(
α1ν1
1+λ1

+
α2ν2
1+λ2

)
−gk

(
(α1−α2)+

k2T

g (ρ1+ρ2)

)]
n

+
igk

τ

[
(α1−α2) +

k2T

g (ρ1+ρ2)

]
= 0, (28)

Therefore, we obtain the following dispersion relation (using i n = σ)

σ3+σ2

[
fs

(
1+

2mN

ρ1+ρ2

)
+
ε

k1

(
α1ν1
1+λ1

+
α2ν2
1+λ2

)]
−σ
[(
gk(α1−α2)−

k2T

g (ρ1+ρ2)

)
−εfs
k1

(
α1ν1
1+λ1

+
α2ν2
1+λ2

)]

−gkfs
[
(α1−α2)−

k2T

g (ρ1+ρ2)

]
= 0, (29)

where fs = 1/τ is the relaxation frequency parameter, and α1 = ρ1
ρ1+ρ2

and α2 = ρ2
ρ1+ρ2

.
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The dispersion relation of the RT configuration
for two superposed Jeffrey fluids of different densi-
ties, taking into account surface tension, medium
porosity, permeability, suspended dust particles,
and Jeffrey parameters, is given by (29) and is also
similar to Prajapati and Chhajlani [11] in the ab-
sence of Jeffrey parameters.

Now, we assume that both fluids have equal vis-
cosities and the same values of Jeffrey parameter,
i.e., ν1 = ν2 = ν and λ1 = λ2 = λ (for the sake of
simplicity).

Therefore, (29) yields

σ3 + σ2

[
fs (1 + 2α0) +

2εν

k1 (1+λ)

]

− σ
[
gk(α1−α2)−

k2T

g (ρ1+ρ2)
− 2εfsν

k1 (1+λ)

]

−gk fs
[
(α1−α2)−

k2T

g (ρ1+ρ2)

]
= 0, (30)

Now, the condition of instability is evaluated from
the constant term in (30) as

(α2−α1)−
k2T

g (ρ1+ρ2)
> 0 (31)

or

k <

√
(ρ2−ρ1)g

T . (32)
The arrangement remains stable for all disturbances
k > kc, where the cutoff wave number kc or equiv-
alently a cutoff wavelength Λc =

2π
kc

is given by

kc =
2π

Λc
=

√
(ρ2−ρ1)g

T . (33)

The configuration is unstable for k < kc and after
this cutoff wave number the perturbations turned
out to be stabilized. Now, we consider two cases
from (30).

3.1. Case I: Stable configuration (α1 > α2)

As (30) does not allow any real positive or
complex root with the real positive part showing
thereby, the stability of the system implies that
the system fulfills the necessary stability condition
of the Routh–Hurwitz criterion, since the principal
diagonal minors from (30) are given by

∆1 = 1 +
2mN

ρ1+ρ2
+
ετ (α1υ1 + α2υ2)

k1 (1 + λ)
> 0, (34)

∆2 = 1 +
ε (α1υ1 + α2υ2)

k1 (1 + λ)

[
2mN

ρ1+ρ2
+
ετ (α1υ1 + α2υ2)

k1 (1 + λ)

] [
τgk(α2−α1) +

k2T

g (ρ1+ρ2)

]
+
ε (α1υ1 + α2υ2)

k1 (1 + λ)
> 0, (35)

∆3 = gk

[
(α2−α1) +

k2T

g (ρ1+ρ2)

]{
1 +

ε (α1ν1 + α2ν2)

k1
+

(
2mN

ρ1+ρ2
+
ετ (α1ν1 + α2ν2)

k1

)
+

(
τgk(α2−α1) +

k2T

g (ρ1+ρ2)

)
+
ε (α1ν1 + α2ν2)

k1

}
> 0. (36)

Hence, when α1 > α2, all ∆i (i = 1, 2, 3) are pos-
itive satisfying the sufficient condition of Routh–
Hurwitz criterion. Thus, a necessary and sufficient
condition of the Routh–Hurwitz criterion is satisfied
with ρ1 > ρ2.

3.2. Case II: Unstable case (α1 < α2)

If we assume the case where the upper fluid is
heavier than the lower fluid, the system will be
unstable. There is one real positive root of (30),
which leads to configuration instability. By using
the Routh–Hurwitz criterion to (30), we find the
condition for instability as

(α2−α1)−
k2T

g (ρ1+ρ2)
< 0, (37)

It is noteworthy from (37) that the stability con-
dition remains unaffected due to the presence of
porosity, suspended dust particle and Jeffrey pa-
rameters.

Thus, the configuration is stable for all distur-
bances with k > kc (given by (30)) and the surface
tension leads to the stabilization of the potentially
unstable configuration of all sufficiently short wave
lengths; however, the configuration remain unstable
for all long wave lengths.

Now, introducing the non-dimensional physical
quantities: σ∗ = σ√

gk
, f∗s = fs√

gk
and ν∗ = ν√

gk

(asterisks are dropped for the sake of convenience),
(30) transforms to the non-dimensional form (Pra-
japati and Chhajlani [11])

σ3 + σ2

[
fs (1 + 2α0) +

2εν

k1 (1 + λ)

]
−σ
[
(α1−α2)

(
1− k2

k2c

)
− 2εfsν

k1 (1 + λ)

]
−fs(α1−α2)

(
1− k2

k2c

)
= 0. (38)

which is the required dispersion relation to examine
stability/instability criterion.
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4. Numerical results and discussion

To investigate the effects of various parameters
on the stability of the system under consideration,
numerical calculations were performed for the dis-
persion relation (38) and analyzed by computing
the values of the RTI growth rate numerically using
software Mathematica version 12. The aim was to
demonstrate the influence of a variety of fluid prop-
erties accounting for perspective physical variables
on the stability of the system.

In Fig. 1 the behavior of kinematic viscosity on
the growth rate of unstable perturbed mode (σ) ver-
sus relaxation frequency of suspended dust particles
(fs) for different distinct values of kinematic vis-
cosity ν = 0, 0.1, 0.2, 0.3 has been emphasized. It
is depicted from the curves that the value of the
growth rate descends with the increase in the value
of kinematic viscosity. Thus, the kinematic viscos-
ity has a damping effect on the growth rate of RTI.

Fig. 1. Plot of the growth rate of unstable RT
mode σ versus relaxation frequency of dust parti-
cles fs, for different values of kinematic viscosity v.

Fig. 2. Plot of growth rate of unstable RT mode σ
versus relaxation frequency of dust particles fs, for
different values of mass concentration α0.

Fig. 3. Plot of growth rate of unstable RT mode σ
versus relaxation frequency of dust particles fs, for
different values of density difference between fluids
(α2−α1).

Fig. 4. Plot of growth rate of unstable RT mode σ
versus relaxation frequency of dust particles fs, for
different values of porosity ε.

It is also noticed that the maximum value taken
by the growth rate is higher for the system with
ν = 0. The impact of the mass concentration of dust
particles on the growth rate of unstable perturbed
mode (σ) versus relaxation frequency of suspended
dust particle (fs) for different values of the mass
concentration α0 = 0.2, 0.4, 0.6 has been displayed
in Fig. 2. From the curves, it is assessed that the
RTI growth rate decreases with an increase in the
value of the mass concentration of dust particles.
Henceforth, the level of mass concentration of dust
particles has a substantial stabilizing impact on the
growth rate of the RT configuration.

The growth rate of unstable perturbed mode (σ)
versus relaxation frequency of suspended dust par-
ticles (fs) for different values of density difference
between fluids, (α2−α1) = 1.5, 2.5, 3.5, is plotted
in Fig. 3. The curves illustrate an increment in the
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Fig. 5. Plot of growth rate of unstable RT mode σ
versus relaxation frequency of dust particles fs, for
different values of the Jeffrey parameter λ.

Fig. 6. Plot of growth rate of unstable RT σ versus
relaxation frequency of dust particles fs, for differ-
ent values of surface tension between fluids k/kc.

growth rate with an increment in the density differ-
ence between the fluids. Thus, the growth rate for
a system of two Jeffrey fluids tends to a maximum
value with a large density difference. It is also ob-
served that the maximum value of the growth rate
increases with the increase in the density difference
between the fluids.

Figure 4 displays the effect of the medium poros-
ity on the growth rate of unstable perturbed mode
(σ) versus relaxation frequency of suspended dust
particles (fs) for distinct values of porosity ε =
0.1, 0.3, 0.5.

From the curves, it is assessed that an incre-
ment in porosity leads to a decrement in the growth
rate. Thus porosity has a stabilizing impact on the
growth rate of the unstable mode of RTI.

The influence of different values of the Jeffrey
parameter λ = 0, 0.2, 0.4, 0.6 on the growth rate
of unstable perturbed mode (σ) versus relaxation
frequency of suspended dust particles (fs) has been

displayed in Fig. 5. The curves show an increase
in the growth rate of the unstable mode of RTI
upon increasing the value of the Jeffrey parame-
ter. Hence, the Jeffrey parameter has a destabiliz-
ing impact on the growth of RTI. It is also noticed
from the curve that the maximum value attained by
the growth rate is smaller for λ values considered.
The influence of different values of surface tension
k
kc

= 0.3, 0.5, 0.7 on the growth rate of unstable per-
turbed mode (σ) versus relaxation frequency of sus-
pended dust particles (fs) has been shown in Fig. 6.
The curves depict a fall in the values of the growth
rate with an increase in the surface tension values.
Hence, the surface tension has a substantial stabi-
lizing impact, thereby, suppressing RTI.

5. Conclusions

The Rayleigh–Taylor instability (RTI) of the in-
terface between two superposed Jeffrey fluids satu-
rated by a porous medium embedded by suspended
dust particles and the inclusion of interfacial sur-
face tension is analyzed. The criterion of this in-
stability and the cutoff wave numbers are found to
be uninfluenced due to the Jeffrey parameter, per-
meability, and suspended dust particles. However,
they are modified by the presence of surface ten-
sion. The surface tension shows a stabilizing role
on the growth rate of the considered configuration,
thereby, decreasing the cutoff wave number. The
medium porosity, dynamic viscosity and density of
dust particles stabilize rhe Rayleigh–Taylor insta-
bility. Furthermore, the density difference between
the fluids and the Jeffrey parameter describing the
non-Newtonian behavior of fluid tend to destabilize
the system. The maximum value of the growth rate
is also found to depend on the surface tension, dy-
namic viscosity, and embedded dust particles. The
Routh–Hurwitz criterion is applied to discuss the
stability of the system under consideration.
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