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We perform a theoretical analysis of the fate of the local magnetic moment of a quantum dot coupled to
a normal metallic lead and a topological superconducting wire hosting Majorana modes at the ends. By
means of simple analytical tools and numerical renormalization group calculations, we show that the
proximity of the Majorana mode reduces the magnetic moment from 1/4, characteristic of a free spin
1/2, to 1/16. Coupling to the normal lead then causes the Kondo effect, such that the magnetic moment
is fully screened below the Kondo temperature. The latter is vastly increased for strong coupling to
Majorana mode.
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1. Introduction

The quest for the realization of Majorana modes
(MMs) in the solid state is mainly motivated by
applications [1–3] and promising experimental re-
sults [4]. The hope for fault-tolerant quantum com-
putation using MMs stems from their topological
protection against local disturbances [5]. As a con-
sequence, a rich field of research focused on realiz-
ing and manipulating MMs has emerged, as sum-
marized in a number of reviews [6–9].

Recently, the field has been experiencing criticism
as summarized in [10] concerning hasty publications
with exaggerated conclusions. Furthermore, practi-
cal implementation for useful computation would
require a large number of Majorana devices, which
does not seem feasible soon. Here, we leave the
mainstream application-oriented approach and ad-
dress basic theoretical questions concerning the in-
terplay of MMs with strongly interacting meso-
scopic systems, hoping to gain some understand-
ing. This relatively unexplored direction has been
pioneered by [11] and remains relevant especially
in the context of transport properties of quantum
dots proximitized by topological superconducting
wires [12–16]. We focus on the interplay between
the Kondo effect [17] and the local MM-spin cou-
pling by studying the minimal model — as elabo-
rated further. We analyze this by looking at the fate
of the magnetic moment localized on the quantum
dot at low temperatures.

2. Model and methods

We consider a single quantum dot (QD) coupled
to a one-dimensional topological superconducting
nanowire, called further the Majorana wire (MW);
see Fig. 1. MW is characterized by a superconduct-
ing gap and a pair of (Majorana) modes at Fermi
energy, which are strongly localized at the ends of
the wire. Therefore, especially at temperatures (T )
much smaller than the superconducting gap, the
only relevant coupling between QD and MW is elec-
tron hopping into and from these end-modes, and
the in-gap Hamiltonian of QD and MW can be writ-
ten in the form [11]

HDM =
∑
σ

ε n̂σ + Un̂↑n̂↓ + λ
(
d̂†↓γ̂1 + h.c.

)
+ iεM γ̂1γ̂2, (1)

where ε is the QD energy level, U is the on-dot
Coulomb repulsion, while λ measures the QD–MW
coupling strength. The operators d̂†σ creates the
spin-σ electron at QD (n̂σ = d̂†σd̂σ), and the Ma-
jorana operators γ̂1, γ̂2 are normalized such that
{γ̂1, γ̂2} = 1. The last term in HDM, proportional
to εM, corresponds to the Majorana modes over-
lap, which is exponentially small for long wires and
shall henceforth be neglected, i.e., εM = 0. Note
that only σ =↓ electrons are coupled to MW.

At first glance (1) may be seen as a fusion
of the Anderson-like impurity with the Kitaev
chain model [18], where bulk states are completely
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Fig. 1. Scheme of a structure comprising a single
quantum dot hybrydized with a normal-metal con-
tact with overall coupling strength Γ and coupled to
a long topological superconductor nanowire hosting
Majorana modes γ1 and γ2.

removed and only in-gap states remain. One of them
is then coupled via hopping with QD. In the experi-
ment, MW is a complex hybrid nanostructure, typ-
ically comprising a semiconductor with strong spin-
orbit coupling and a conventional superconductor,
almost fully spin-polarized with the help of a mag-
netic field. While such a system is vastly more com-
plicated than the Kitaev model, it eventually leads
to a practically spin-polarized p-wave superconduc-
tor, with an energy gap and in-gap MMs. These are
the generic features we model simply by (1), which
serves very well at temperatures below the energy
gap in the superconductor, as long as the MW is
long enough for both the coupling to its other side
and εM to be neglected [19].

QD is further attached to metallic electrode,
modeled as non-interacting, with energy disper-
sion εk. This means the lead part of the Hamil-
tonian is HL =

∑
kσ εkn̂kσ, with n̂kσ = ĉ†kσ ĉkσ

and ĉkσ creating the corresponding electron. Fi-
nally, the hybridization term takes the form
Hh =

∑
kσ v(d̂

†
σ ĉkσ + h.c.), where v is the tunnel-

ing matrix element and h.c. stands for a Hermitian-
conjugate term. The total Hamiltonian of the sys-
tem is H = HDM+Hh+HL. In the calculations we
take the wide-band limit, i.e., we assume the (nor-
malized) density of leads states ρ(ω) is a constant
within the cut-off window, ω ∈ [−D,D], and van-
ishes outside (we use D = 2U). The broadening of
the dot level denoted by Γ = πρ(0)v2 measures the
coupling strength to normal lead.

In general, the magnetic susceptibility χ is de-
fined as a linear coefficient of the spin polarization
response induced by the application of a small ex-
ternal magnetic field B. In impurity or QD systems,
the relevant quantity is the impurity contribution to
χ(T ) [17], which can be defined as

χ(T ) = − ∂

∂B

〈
Ŝz
〉
T

∣∣∣∣
B=0

, (2)

where Ŝz is the z-th component of the QD spin, B is
the magnetic field acting locally at QD, and 〈. . .〉T
denotes a thermal expectation value. The magnetic

moment is simply µ(T ) = Tχ(T ). To calculate these
quantities numerically at given T , we add a small
field B � T into H (H 7→ H + gµBBŜz), with gy-
romagnetic ratio g, Bohr magneton µB; units of B
adjusted such that gµB = 1, and Ŝz = (n̂↑ − n̂↓)/2.
Then, χ(T ) = −〈Ŝz〉T /B follows from (2).

To reliably solve the model in the Kondo regime,
we use the numerical renormalization group (NRG)
technique [20]. Our implementation is based on
open-access code [21], exploiting the symmetries
of charge parity and total spin-↑ electron number
conservation. We use the discretization parameter
Λ = 3 and keep around the N = 1000 states during
NRG iteration. We also provide a number of exact
analytical results where possible.

3. Results

For a free spin S at low T , the magnetic suscep-
tibility can be calculated directly as defined in (2)
as

χS(T ) =
S(S + 1)

3T
, (3)

which implies µ(T ) = 1/4 for S = 1/2. This high
fragility to the magnetic field leads to the vulnera-
bility of localized spins, often suppressed at low T
due to one of the following circumstances:

(i) Ordering tendencies. In practice, spins are of-
ten coupled by the exchange interaction J ,
which in the case of just 2 local moments
leave them in a singlet (for antiferromagnetic
(AFM) J > 0) or triplet (for ferromagnetic
(FM) J < 0) ground state at T = 0, with 〈Ŝ〉z
independent of B unless it exceeds the bind-
ing energy ∼ |J |. The same mechanism leads
to magnetic instabilities in lattices possessing
local moments, which tend to form a magnetic
order (FM or AFM, depending on the sign of
effective exchange coupling between the local-
ized spins).

(ii) The Kondo effect. Coupling to the continuous
bath drives the Kondo effect. Then, a portion
of free conduction electrons bind into a sin-
glet with a localized QD spin at T below
the so-called Kondo temperature, TK. Then,
the divergence of χ is suppressed below TK,
such that for T � TK we have χ ∼ 1/TK
and µ = 0 [17] (see in particular Appendix K
there).

These two mechanisms typically compete with each
other [22], driving many strongly-correlated phases
of matter [23, 24].

In the model introduced in Sect. 2, free spin be-
havior is present in the absence of QD–leads cou-
plings, Γ = λ = 0. A direct calculation following
from (2) then gives

µQD =
1

4

[
1 + exp

(
− U

2T

)
cosh

(
δ

T

)]−1
, (4)
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Fig. 2. The temperature dependence of the mag-
netic moment µ(T ) for ε = −U/2 and Γ = 0.001U
(solid lines, NRG results), as well as for Γ = 0
(dashed lines, exact (5)), and different values of λ
as indicated in the figure.

Fig. 3. The magnetic moment µ for T = 10−7 as
a function of the QD–MW coupling λ for the indi-
cated values of Γ .

where δ = ε+U/2. In the limit T/U → 0 this result
asymptotically reaches (4T )−1 expected from (3) for
S = 1/2, as long as |δ| does not exceed U/2 (QD
is singly occupied then). This is shown (for δ = 0)
in Fig. 2 as a dashed black curve.

In fact, (2) can be exactly solved in a relatively
simple form also for the case λ 6= 0, δ = 0, since
HDM can be diagonalized exactly [14]. The result is

µDM =
1

4

[
w+16u2T/U

2w3/2
tanh

( √
w

4T/U

)
+

1+4u2

2w

]
,

(5)

where we set u = λ/U and w = 1 + 8u2. This is
presented for several values of λ as dashed lines
in Fig. 2. As expected, for λ = 0 we have u = 0,
w = 1, and at low T (when the argument of tanh
function becomes very large) µDM → 1/4. However,
for λ > 0, the T = 0 magnetic moment becomes

µT→0
DM =

1

4

[
1 +
√
1 + 8u2 + 4u2

]
2(1 + 8u2)

, (6)

which is plotted in Fig. 3 with a thick black line.
Strikingly, 1/4 ≥ µT→0

DM > 1/16, so the magnetic
moment is partially suppressed in the vicinity of
MW. This reflects the fractional nature of MMs.
Note that the suppressed fraction is not universal
and even the minimal value min(µT→0

DM ) = 1/16
does not correspond to any intuitive effective free
spin S in (3). Inverting it with χS = (16T )−1 gives
S = (

√
7− 2)/4 ≈ 0.161.

The significance of this result can be better un-
derstood by contrasting it with the result obtained
for QD proximitized by a conventional supercon-
ductor. Indeed, taking the BCS Hamiltonian with
states outside the gap integrated out [25], HDS =∑
σ ε n̂σ +Un̂↑n̂↓+ΓS(d̂

†
↑d̂
†
↓+h.c.) instead of HDM

of (1), we get

µDS =
1

4

[
1+ cosh

(√
Γ 2
S+δ

2

T

)
exp

(
− U

2T

)]−1
.

(7)
This differs from (4) only by replacement δ 7→√
δ2 + Γ 2

S , which for small ΓS simply slows the
approach to the asymptotic free-spin behavior at
T = 0 in singly-occupied regime (|δ| � U). How-

ever, at ΓS =
√

1
4U

2 − δ2 there is a quantum phase
transition from a spin doublet for small ΓS to a spin
singlet at large ΓS [26], and µDS(0) discontinuously
switches from 1/4 to 0. This is in stark contrast
to continuous and always incomplete suppression
of µDM, see (5).

In the presence of a normal lead, the situation
changes dramatically. Already for λ = 0 (i.e., with
MW completely detached) H takes the form of the
Anderson model, where the Kondo effect leads to
a screening of µ(T ) below T ≈ TK [17]. However, TK
decreases rapidly for small Γ , such that in reality
at the lowest experimentally relevant temperature
T (modeled here by T = 10−7U) a crossover is ob-
served between the weak coupling regime for small
Γ , with µ(T ) ≈ 1/4, and the strong coupling regime
for large Γ , characterized by the Kondo-screened
moment µ(T ) = 0. The weak coupling case is re-
alized e.g. for Γ = 10−3U , as presented in Fig. 2
with a solid black line lying on top of the dashed
free-spin (λ = 0) one.

While without MW, Γ = 10−3U is too small
to affect the fate of the magnetic moment at
the relevant temperatures (corresponding TK ∼
10−172U [27]). The presence of MW changes this sit-
uation dramatically. This is clearly visible as the dif-
ference between the dashed and solid lines in Fig. 2
for λ > 0. In all these cases, µ(T ) is partially sup-
pressed — as for Γ = 0 at the intermediate T , but
drops to 0 for T → 0 — similarly to the Kondo
regime. This is even more evident in Fig. 3, where
µ is plotted as a function of λ for a few values of
Γ at T = 10−7U , mimicking a cryogenic experi-
ment. Even for Γ = 10−5U , a large λ leads to
complete suppression of µ, which requires screen-
ing by conduction band electrons. This shows that
the presence of MW vastly increases the Kondo tem-
perature, by hasting the renormalization group flow
away from the local moment fixed point at high en-
ergies before the Kondo coupling becomes relevant
there. Apparently, the Kondo coupling is even more
relevant around the Γ = 0 fixed point for λ > 0. Not
only does it scale to strong coupling [11, 15], but it
also does so at much higher T . This result agrees
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with the general tendencies of λ increasing TK, re-
ported in [13, 14], but due to the large λ considered
here, the effect is much more spectacular. This in-
triguing effect calls for a better understanding.

4. Conclusions

Our analytical results for a quantum dot cou-
pled to large-gap topological superconductor wire
in the absence of a normal leads show a univer-
sal partial suppression of the QD’s local magnetic
moment for strong QD–MW coupling λ. This is in
contrast to the conventional superconductor behav-
ior, where the low-temperature magnetic moment
does not change. In the presence of the normal
lead, even smaller magnitude of λ causes a tremen-
dous increase in the Kondo temperature. In par-
ticular, λ = 0.01U is sufficient to enhance it for
Gammap = 0.001U from hundreds of orders of
magnitude below U to around 10−7U . Together
with the recent reinterpretation [28] of existing ex-
perimental data concerning candidate Majorana ob-
servation [29] in terms of conventional Kondo effect,
this shows that proper understanding of the Kondo
physics in the Majorana systems might be crucial
for correct interpretation of the measurements.
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