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An effective two-dimensional two-band model for infinite-layer nickelates consists of bands obtained from
dx2−y2 and s-like orbitals. We investigate whether it could be mapped onto a single-band Hubbard
model and the filling of Hubbard bands. We find that both one-band physics and a Kondo-lattice
regime emerge from the same two-orbital model, depending on the strength of electronic correlations
and the filling of the itinerant s-band. Next, we investigate one-particle excitations by changing the
screening. First, for weak screening, the strong correlations push electrons out of the s-band so that the
undoped nickelate is similar to a cuprate. Second, for strong screening, the s and dx2−y2 bands are both
partly filled and weakly coupled. Particularly in this latter regime, mapping to a one-band model gives
significant spectral weight transfer between the Hubbard subbands. Finally, we show how the symmetry
of superconducting phases depends on the interaction parameters and determine the regions of d-wave
or s-wave symmetry.
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1. Introduction

A few years ago, superconductivity was reported
in infinite-layer NdNiO2 thin films with Sr dop-
ing [1]. The lattice structure shares similarities with
cuprate superconductors, with NiO2 planes taking
the place of CuO2 planes. While both can be ex-
pected to be quite correlated and both show an-
tiferromagnetic (AFM) superexchange [2–6], there
are some microscopic differences. One is the lack of
apical oxygens in the Ni case, which affects crystal-
field energies, the other is the presence of dispersive
rare-earth states close to the Fermi level. Whether
one starts from isolated NiO2 layers [2–8] or from
band-structure calculations [9–16], one expects that
more than one orbital or band might be relevant.

While single-band [17] and three-band [11, 18]
models have also been proposed, two bands cross
the Fermi level (see Fig. 1), and many groups have
accordingly investigated two-band models [18–23].

One of the bands has a large contribution from the
x2 − y2 orbital at Ni, and its dispersion is nearly
perfectly two-dimensional (2D). This band can be
expected to share features with the Cu-dominated
band of the cuprates and to be rather correlated. In
the second band, rare-earth states hybridize with
Ni apical states, thus obtaining some Ni(d3z2−r2)
and Ni(dxy) character, however, its wave function
has s-symmetry [20], and we denote it accordingly.
Previous studies of various two-band models have
yielded a large variety of potential pairing sym-
metries [7, 24], among them s, d, and s±-wave
states [8, 11, 18], while a one-band scenario favors
d-wave [17].

The s-like band lies mostly above the Fermi level,
however, it forms electron pockets around the Γ
and A points in the Brillouin zone. In the density
functional theory (DFT) band structure, the pock-
ets account for ≈ 7% of the occupied states [25].
Even without Sr-doping, these electrons are thus
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missing from the x2 − y2 band. When translating
to a cuprate scenario, it should be noted that 5%
of Sr doping suffices to destroy antiferromagnetism
in La2CuO4−y [26]. We thus have to expect partly
filled bands, and at least one of them is correlated.

The purpose of this paper is to investigate the
evolution of the bands shown in Fig. 1 with crystal-
field splittings and electron correlations in both
bands. Thereby we investigate to what extent multi-
band effects come into play in nickelates. It is im-
portant to realize that partial filling of the strongly
correlated x2−y2 orbitals means that the electronic
spectral weight may be transferred from the up-
per Hubbard band (UHB) to the lower Hubbard
band (LHB) above the Fermi energy. The mecha-
nism of such a weight transfer is well known for
the doped Hubbard model [27, 28]. Another mecha-
nism that promotes such a weight transfer is interac-
tion screening, which generates finite filling within
the weakly correlated orbitals of s-wave symme-
try. It is remarkable that for both very weak and
strong screening, the bands mostly decouple, and
the effective physics becomes similar to a single
Hubbard band [17]. We then find a Mott insula-
tor (a doped band with potential d-wave pairing)
for strong (weak) correlations. Correlation strength
thus emerges as an important factor in the descrip-
tion of nickelate superconductors.

The rest of this paper is organized as follows. The
two-band model arises from the electronic structure
calculations as described in Sect. 2.1. Electronic
interactions are given by two Kanamori parame-
ters for an atom α, {Uα, JH}, and we discuss their
screening in Sect. 2.2. Next, in Sect. 3.1, we inves-
tigate a very wide range of potential regimes go-
ing from weak to very strong correlations. Then we
show how the density of states changes with screen-
ing for strong and weak interactions in Sect. 3.2.
Finally, we present the essential AFM and supercon-
ducting (SC) phases for various regimes of screening
in Sect. 3.3. The paper is concluded in Sect. 4.

2. Two-band model and methods

2.1. Kinetic energy

We start with the kinetic energy in the electronic
structure. The DFT band structure (see Fig. 1)
is calculated with the Quantum ESPRESSO
code [29–31] using a plane-wave pseudopotential
method [32]. As discussed in [33], many models can
be constructed that differ in the shape of the apical
s-like orbital. Since their hopping integrals, given
in [33], are nevertheless very similar, the kinetic en-
ergy is not affected by this ambiguity in any physi-
cally relevant way.

The Wannier90 interface [34] gives the
parametrization,

Hkin =
∑

i,λ=d,s;σ

ελd
†
iλσdiλσ +

∑
ij,{λµ},σ

tλµij d
†
iλσdjµσ,

(1)

Fig. 1. Non-interacting band structure of
NdNiO2: DFT bands crossing the Fermi sur-
face (black dashed lines) and the 2D tight-binding
model obtained by projecting a Wannier fit onto
the plane along 2D path (green solid lines). The
Fermi energy E = µ corresponds to the DFT
electronic structure.

where diλσ (d†iλσ) annihilates (creates) an electron
at site i in orbital λ = d, s, with spin σ (d and s
refer to the two bands discussed above and shown
in Fig. 1). Hopping parameters tλµij and on-site en-
ergies ελ are given in [33]. We project these three-
dimensional bands onto the (x, y)-plane, as we are
here mostly interested in the correlated x2 − y2

states, whose band is already quite 2D to start
with [33].

2.2. Interactions and screening effect

While the rather extended wave-function of (es-
pecially) the s-like state might lead to longer-ranged
Coulomb interactions, on-site terms can be ex-
pected to dominate, and we use (intraorbital and
interorbital) Coulomb elements of the form [3],

Hint =
∑

i,λ=d,s

Uλniλ↑niλ↓ +

(
U ′−JH

2

)∑
i

nidnis

− 2JH
∑
i

Sid · Sis

+ JH
∑
i

(
d†id↑did↓d

†
is↓dis↑ + h.c.

)
,

(2)
where niλσ is the electron number operator at site
i, in orbital λ and for spin σ and {~Siλ} the cor-
responding spin operator. Intraorbital Coulomb re-
pulsion Uλ depends on the band index λ = d, s.
Hund’s exchange is given by JH , and interorbital
repulsion U ′ couples the bands.

Upper limits for the ’bare’ Ud and J0 are given
by their atomic values Ud ≈ 8 eV and J0 ≈ 1.2 eV,
as one might use in modeling an insulating NiO2

layer [2, 3]. However, when projecting out oxygen
states and using the Wannier functions instead, the
effective values have to be significantly reduced. In
the case of Us, atomic values for Ni cannot be even
taken as a starting point, as the s-orbital is mostly
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made up of rare-earth states and is not centered on
a Ni site [20]. The strong Nd(5d) character and very
itinerant character of the s-bands suggest that their
effective interaction should be strongly screened, in
fact, less screening can be expected for the d states.
One thus expects Ud > Us, which we take into ac-
count in a phenomenological way via a screening
parameter α ∈ [0, 1], so that

Us = αUd, JH = αJ0, U ′ = Us − 2JH . (3)
This parametrization provides the simplest ap-
proach to discuss the interplay of a more and a less
correlated band.

We then use the Lanczos exact diagonalization
to treat the full Hamiltonian H = Hkin + Hint

on an eight-site square cluster standing for a NiO2

plane. Orbital densities are analyzed following [33]
for the two orbitals, d and s. Below, we summarize
the evolution of the density of states in the cor-
related d band and the accompanying s band. We
particularly focus on the circumstances favoring the
electron transfer between the Hubbard subbands in
the correlated band.

3. Numerical results

3.1. Hubbard subbands

To understand the occurrence of possible SC
phase in infinite-layer nickelates, we consider first
the one-particle spectra in the normal phase. Fig-
ure 2 shows the orbital-resolved density of states,
taking two values of the Coulomb interaction
Ud = 8.0 and 4.0 eV. The larger value is the same
as interactions in cuprates [35] and could be consid-
ered the upper limit; the lower value stands for ef-
fective Coulomb interactions in the metallic state in
nickelates, where Coulomb interactions are weaker.
Here, we begin with unscreened interactions in the
s band, i.e., we take α = 1.0.

In both cases of large Ud = 8.0 eV and moderate
Ud = 4.0 eV, one finds a Mott insulator with two
subbands separated by a gap, the occupied LHB
and the empty UHB. For large Ud = 8.0 eV, the gap
sh 3.5 eV, and the Fermi energy falls within the gap
(see Fig. 2a). This may be considered a textbook
example of a Mott insulator. Then one also finds
an AFM order in LHB.

When Ud = 4 eV, the gap in the correlated band
decreases to less than h 1.0 eV, and the tail of the
s band falls below the Fermi energy, which still sep-
arates the occupied and unoccupied states of LHB
(see Fig. 2b). However, we should keep in mind that
the calculations are done for a finite system, and we
cannot exclude a metallic phase in the thermody-
namic limit. In any case, one finds a small fraction
of electrons occupying the s states, and these states
are just below the Fermi energy (see Fig. 2b). Here,
the correlated LHB band is less than half-filled and
develops dynamics. As a result, electron transfer
from UHB to the unoccupied part of LHB increases,
and the total occupancy of LHB exceeds 0.5. We

Fig. 2. Density of states D(ω) of undoped nicke-
late with unscreened interactions (α = 1). Fermi
energy is set to zero; the orbital densities are nor-
malized to one (per spin). Intraorbital Coulomb in-
teraction in (2) is selected at (a) Ud = 8 eV and (b)
Ud = 4 eV.

conclude that the presence of the second more itin-
erant band is responsible for the electron transfer
between the Hubbard subbands.

The next question to ask is where doped holes
go in the quarter-filled system. Previously, we have
shown [36] that three regimes emerge in increased
screening, as discussed below. The reduction of the
Coulomb interaction to Ud = 4.0 eV is sufficient
to cause the loss of long-range AFM order in the
x2 − y2 orbital due to reduced electron filling.

3.2. One-particle spectral density

First, in the weakly screened Mott insulator and
for large Ud, the ground state is AFM, and holes
naturally enter only the x2 − y2 orbital. In con-
trast, the second regime is found at intermediate
screening [α ' 0.5] or for interactions that are
reduced from the outset (see Fig. 2b). Finally, in
the third regime of strong screening (α ' 0.2),
hole doping occurs again into the x2 − y2 or-
bital, with the s electrons remaining unaffected [36].
This behavior is presented in more detail later
in the text.

The different behavior in the three regimes men-
tioned in Sect. 3.1 is also reflected in the single-
particle spectra shown in Fig. 3. Filling corresponds
to doping with two holes, and twisted boundary
conditions (TBC) are used to resolve more mo-
menta [37–39]. Both for very strong Ud = 8.0 eV
(see Fig. 3a) and for moderate Ud = 4.0 eV (see
Fig. 4a), the correlations induce a gap in the x2−y2
band [40]. The lowest (occupied) states for elec-
trons are in the s band at reduced Ud = 4 eV, i.e.,
both bands are partially filled. This can be seen
in Fig. 2b, where we show the density of states for
eight electrons (i.e., at quarter filling). Data were
obtained by means of twisted boundary conditions
(TBC), integrating over five sets of boundary con-
ditions.

At strong screening when α = 0.2, the occupied
states in the x2 − y2 band are rather similar for
Ud = 8.0 eV and Ud = 4.0 eV, except that the
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Fig. 3. Density of states D(ω) of undoped nick-
elate for Ud = 8.0 eV and for different values of
screening α.

Fig. 4. Density of states D(ω) of undoped nick-
elate for Ud = 4.0 eV and for different values of
screening α.

curvature of the occupied states changes along the
(π, 0) − (0, π) line. Also, the values of ns and of
the weight transferred to LHB are similar. Since
this implies that interactions U ′ and JH between d
and s states do not play here a significant role, it
supports the notion of a correlated (and doped) d
band that is only affected by a metallic s band via
self-doping.

In contrast, for stronger correlations, i.e., weaker
screening α ∈ [0.5, 0.7], the spectra shown
in Fig. 3b and c are affected by Ud. All electrons are
here in the correlated x2−y2 states. It is remarkable

TABLE I

Electron densities nd and ns per spin obtained in the
undoped nickelate for screened interactions (α < 1).
The weight of LHB wLHB is increased by the kinetic
weight transfer from UHB [41, 42].

Ud [eV] α nd ns w>
LHB wLHB

8.0 0.20 0.358 0.139 0.343 0.700
0.50 0.445 0.051 0.079 0.524
0.70 0.475 0.021 0.011 0.485
1.00 0.473 0.025 0.002 0.475

4.0 0.20 0.342 0.158 0.382 0.724
0.50 0.374 0.126 0.321 0.695
0.70 0.419 0.079 0.236 0.656
1.00 0.427 0.072 0.078 0.505

that the occupied states fall almost at the same en-
ergies, independently of whether Ud = 8.0 eV or
Ud = 4.0 eV (cf. Figs. 3 and 4). However, splitting
between d and s states is clearly affected by Ud (via
U ′ and JH), which indicates that the s- and d-bands
are in this regime directly coupled, not only via self-
doping.

Analogous conclusions can be drawn from the
fact that the undoped densities of states shown
in Figs. 3(a) and 4(a) are extremely similar, i.e.,
in the regime of strong screening, both bands are
partly filled, and the results hardly depend on Ud at
all. In the intermediate regime, on the other hand,
both bands are likewise partially filled. A compari-
son between Figs. 3 and 4 indicates that the s states
close to the Fermi level could be doped away. In this
regime, results depend on Ud, indicating that cor-
relations are here more important to describe low-
energy features close to the Fermi level.

Interestingly, the screening increases the density
of s electrons, and simultaneously the density in the
correlated band nd decreases, as in the undoped
case, the constraint nd + ns = 1 is satisfied. This
makes LHB less than half-filled, and considerable
spectral weight is transferred from UHB to the un-
occupied part of LHB (i.e., above the Fermi en-
ergy µ). The mechanism of such a spectral weight
transfer is well known in the partly filled Hubbard
model [27, 28] and explains why the weight of LHB
eventually exceeds 0.5 per spin. Here, doping in the
Mott insulator is mimicked by the partial filling of
the s band. The largest transfer of spectral weight
is found at Ud = 4.0 eV and α = 0.2 (see Table I).
UHB forms only in the correlated x2−y2 band, and
Hubbard subbands are absent within the s band
even at Ud = 8.0 eV.

The regimes of weak and strong screening differ
qualitatively. The number of correlated electrons nd
is close to nd = 0.5 for weak screening but decreases
rapidly for large screening. As a result, the total
weight in LHB wLHB increases somewhat above 0.7
for both Ud = 8.0 and Ud = 4.0, and the trans-
ferred weight is large (see Table I). The condition to
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Fig. 5. Phase diagram in (Ud, α) plane for increas-
ing Hund’s exchange, i.e., increasing ratio J0/Ud:
(a) J0/Ud = 0.15, and (b) J0/Ud = 0.25. An-
tiferromagnetism (AFM) is found only in (a) for
J0/Ud = 0.15 and Ud > 4 eV The pairing has s-
and d-wave symmetry, depending on the parame-
ters. Tendency towards triplet pairing is highlighted
by gray boxes; the points mark the parameters, at
which the calculations were performed.

activate spectral weight transfer between the Hub-
bard subbands is finite hole doping in LHB of the
correlated d band. Indeed, this hole doping nnd fi-
nite density within the s orbitals induces the spec-
tral transfer towards LHB in the correlated band.

Altogether, the densities of states D(ω) give
a metallic regime for intermediate (α = 0.5) and
strong (α = 0.2) screening of strongly correlated
x2− y2 states (see Fig. 3). A large gap between the
Hubbard subbands opens when Ud = 8 eV; this gap
is reduced to ∼ 0.5 eV when Ud = 4.0 eV. Neverthe-
less, the system still has an insulating gap that sep-
arates the Hubbard subbands. The electronic struc-
ture for the x2 − y2 band is typical for a doped
Mott insulator, with the weight of UHB reduced by
the kinetic processes in a doped system [41, 42]. In-
deed, the weight in LHB above the Fermi energy
increases by ∼ 2δ, where δ stands for the doping
of LHB, which would also be the weight transferred
from UHB to LHB by finite doping. In this regime,
the s band is only weakly correlated, and Hubbard
subbands are poorly visible.

3.3. Superconductivity in the two-band model

Finally, we investigate the nature of the SC state.
Therefore, we first compute the ground state of the
undoped two-band model on a finite square cluster,
i.e., for 8 electrons on an 8-site cluster via exact
(Lanczos) diagonalization. Next, the above cluster
model is doped by 2 holes (by removing 2 electrons),
and we look again at its ground state. After that,
pairing operators (for s- or d-wave) are applied on
the undoped ground state, and the overlap between
the two states is obtained. We consider SC states of
both symmetries by changing the Coulomb interac-
tion Ud and the screening α in Fig. 5.

For strong and unscreened Coulomb repulsion
Ud > 4.0 eV and weak Hund’s exchange coupling
(see Fig. 5a), one finds AFM order in the undoped

system with no sign of pairing. This regime resem-
bles the state of cuprates: the s-like band is empty,
while the strongly correlated x2 − y2 band is half-
filled and Mott insulating (see Fig. 2). This changes
for weaker correlations (intermediate screening),
where AFM order disappears and is replaced by
s-wave pairing (see Fig. 5b).

The presence of d-wave pairing known from
cuprates requires strong screening. In the regime
of strong screening, doped holes enter the x2 −
y2 band, and the model becomes similar to the
cuprate model. Altogether, Fig. 5 tells that stronger
Hund’s exchange promotes triplet pairing, re-
duces effective correlations, and suppresses AFM
order.

In the phase diagram in Fig. 5a, AFM phase
and s-wave or d-wave pairings are accompanied by
some indications of triplet pairing. As expected, the
latter is more pronounced at stronger Hund’s ex-
change coupling (see Fig. 5b). Energies obtained
for the doping with either one ↑ or one ↓ hole are
here degenerate with the energies obtained with two
↑ holes, indicating that the doped hole-pair is a
triplet. In order to check the stability of this re-
sult, we used TBC again. The degeneracy is then
lifted, and the Sz = 0 state has lower energy, sug-
gesting that triplet pairing might be a finite-size
effect. Finally, we remark that interaction screening
reduces the stability of AFM order in the corre-
lated band and broadens the range of stability of s-
wave and d-wave pairings (see Fig. 5). Moreover, the
needed Hund’s exchange to stabilize d-wave pairing
in a broad regime is rather large (J0/Ud & 0.25).

4. Conclusions

In summary, we have used exact diagonaliza-
tion to investigate an effective two-band model
for infinite-layer nickelates, where the band with
a strong Ni(dx2−y2) character can be expected to
be more correlated than the one with a rather ex-
tended s-like wave function of mostly rare-earth
character. We focused here on the interactions in
both bands, especially their relative strength, which
also tunes the interorbital interactions between
the two orbitals [20]. The latter give interband
interactions and could generate superconducting
pairing.

We have established that both the very strongly
correlated and the strongly screened regimes sup-
port the mapping of the two-band model onto a sin-
gle Hubbard-like band. For (unrealistically) strong
interaction Ud, we find an antiferromagnetic Mott
insulator without tendencies to superconductivity.
In the more realistic screened regime, the s-like
band takes up some of the charge carriers, and the
states from both bands contribute to the Fermi en-
ergy. In this way, the correlated x2−y2 band [17] is
partly filled, and the spectral weight may be trans-
ferred to the unoccupied part of the lower Hubbard
band [41].
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For intermediate screening, the model is very
rich, and the s-band hosts the doped holes form-
ing s-wave pairs. We point out that this situa-
tion broadly corresponds to a Kondo-lattice-like sce-
nario, with the caveat that the ’localized’ dx2−y2
spins can also move [4, 43, 44]. Hund’s exchange
coupling naturally yields ferromagnetic interaction
between itinerant s carriers and dx2−y2 spins, but
it is interesting to note that s-wave pairing at
stronger coupling was also obtained in a similar
effective model with AFM spin-spin coupling [44].
Altogether, this shows that the model investigated
here is very rich and predicts the pairing of different
symmetry.
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