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We carry out a systematic study of collective spin and charge excitations for the canonical single-
band Hubbard, t–J–U , and t–J models of high-temperature copper-oxide superconductors, both on
electron- and hole-doped side of the phase diagram. A recently developed variational wave function
approach, combined with the expansion in the inverse number of fermionic flavors, is employed. All
three models exhibit a substantial electron–hole asymmetry of magnetic excitations, with a robust
paramagnon emerging for hole-doping, in agreement with available resonant inelastic X-ray scattering
data for the cuprates. The t–J model yields additional high-energy peak in the magnetic spectrum that
is not unambiguously identified in spectroscopy. For all considered Hamiltonians, the dynamical charge
susceptibility contains a coherent mode for both hole- and electron doping, with overall bandwidth
renormalization controlled by the on-site Coulomb repulsion. Away from the strong-coupling limit,
the antiferromagnetic ordering tendency is more pronounced on the electron-doped side of the phase
diagram.

topics: strongly-correlated electrons, paramagnons, charge fluctuations, cuprates

1. Introduction

High-temperature superconductivity in layered
copper oxides may be induced by either hole (h)
or electron (e) doping of the parent antiferro-
magnetic (AF) insulating state [1]. Nonetheless,
the equilibrium phase diagrams of e- and h-doped
cuprates exhibit substantial asymmetry, one of the
most evident manifestations of which is a broader
regime of the AF-phase appearance on the e-
doped side [2]. Thanks to developments in spec-
troscopic techniques, particularly resonant inelas-
tic X-ray scattering (RIXS), this static picture has
been recently supplemented with a detailed account
of non-equilibrium properties, including collective
excitation spectra [3–32]. The low-energy dynam-
ics of the parent AF state is dominated by spin
waves of localized spins, evolving with doping into
broadened magnetic excitations of the paramag-
netic state (paramagnons). Counter-intuitively, the
paramagnons appear to be more robust on the h-
doped side, where the AF phase is rapidly sup-
pressed away from half-filling. RIXS has been also
utilized to probe collective charge (plasmon) ex-
citations that are observed in both hole- [27–29]
and electron-doped [30–32] cuprates. Since mag-
netic and charge fluctuations have been considered
candidates for the pairing mechanism in high-Tc

superconductors (see, e.g., [3, 33–35]), identification
of a microscopic origin of their distinct degree of e–h
asymmetry is now in demand.

Parent compounds of high-Tc copper-oxides are
not canonical Mott insulating systems, since they
may be regarded as charge transfer insulators within
the Zaanen–Sawatzky–Allen scheme [36]. In effect,
the e–h asymmetry manifests itself directly at the
atomic-orbital level. Nominally, the doped electrons
position on the copper 3dx2−y2 states, while holes
locate predominantly on 2pσ oxygen orbitals. Yet,
there is a systematic variation of d–p-electron re-
distribution between different cuprate families [37].
Whereas minimally, the d–p model of the CuO2

plane is needed to address those orbital-selective ef-
fects [38–41], doping dependence of the principal
experimental equilibrium properties and their e–h
asymmetry is reproduced already within the effec-
tive single-band picture [42–45]. The latter model is
also appropriate for studies of the correlated state
dynamics following interaction quench [46, 47]. The
single-band Hamiltonians remain thus a common
starting point for describing the physics of high-Tc
cuprates and related materials.

Here we carry out a study of the e–h asymme-
try of collective magnetic and charge excitations
for the canonical Hubbard, t–J–U , and t–J mod-
els of high-Tc copper-oxide superconductors, which
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allows us to single out the microscopic parameters
controlling relevant aspects of their many-particle
dynamics. The recently introduced concept of ef-
fective exchange interaction [48] is invoked to re-
late all three Hamiltonians in proper limits so that
their collective excitations can be directly compared
and analyzed on equal footing. In order to account
for the effects of strong electronic correlations, we
supplement the variational wave function (VWF)
approach with the expansion in the inverse num-
ber of fermionic flavors (1/Nf ), which results in
the VWF+1/Nf scheme [49]. The latter has been
demonstrated to be effective in semi-quantitative
analysis of the observed spin and charge dynam-
ics of h-doped cuprates, and to compare favorably
with other computational techniques, including de-
terminant quantum Monte Carlo [1, 48, 50, 51].

For the cases of Hubbard and t–J–U models up
to moderately large value of on-site interaction,
we find that intense dispersive peak in magnetic
spectrum persists along the anti-nodal (Γ–X) Bril-
louin zone direction down to heavily h-overdoped
regime, whereas the paramagnons along the nodal
(Γ–M) line are rapidly suppressed. On the other
hand, spin excitations are shifted to larger energies
with e-doping and become less coherent away from
half-filling. These findings indicate a substantial e–h
asymmetry at the dynamical level and are in agree-
ment with available RIXS data for the cuprates.
Moreover, we find that the magnetic spectra calcu-
lated in the strong-coupling limit (t–J model) dif-
fer significantly from those obtained for the Hub-
bard and t–J–U Hamiltonians, and exhibit charac-
teristics that are not observed experimentally. This
might suggest that the t–J model overestimates lo-
cal electronic correlations, as has been also noted
within former theoretical survey of equilibrium and
single-particle quantities [1].

For completeness, we also address the doping
evolution of collective charge excitations that are
demonstrated to persist on both h- and e-doped
sides of the phase diagram. The dynamical charge
response unambiguously separates into the incoher-
ent continuum part and a coherent charge mode.
With increasing on-site Coulomb repulsion U , the
collective mode energy undergoes a systematic
downward renormalization. Thus, the electronic
band-narrowing effects are instrumental for the
charge sector, whereas the magnetic part remains
primarily sensitive to effective exchange interaction,
Jeff . Remarkably, within the t–J–U model, the pa-
rameters U and Jeff remain independent and may
be simultaneously tuned to match the experiment.
This is not possible within the Hubbard and t–J
models. Such flexibility is needed to account for
non-trivial superexchange pathways via oxygen in
a charge-transfer insulator, which affects the corre-
spondence between kinetic exchange and U [42].

Finally, we carry out an analysis of the lead-
ing ordering instabilities of the paramagnetic state
against both spin and charge fluctuations. For the

Hubbard and t–J–U models, we find that the static
magnetic susceptibility at the M Brillouin zone
point is enhanced for e-doping relative to the h-
doped side, implying a stronger tendency towards
antiferromagnetism. This reflects the experimen-
tally observed e–h asymmetry of the equilibrium AF
order.

2. Model and method

We employ a generic square-lattice t–J–U model
of the copper-oxygen plane, given by the Hamilto-
nian
Ĥ =

∑
i 6=j

tij â
†
iσâjσ+J

∑
〈i,j〉

Ŝi · Ŝj+U
∑
i

n̂i↑n̂i↓,

(1)
where âiσ (â†iσ) are annihilation (creation) opera-
tors of spin-σ electrons on site i, n̂iσ ≡ â†iσâiσ, and
Ŝi ≡ (Ŝxi , Ŝ

y
i , Ŝ

z
i ) denotes local spin operator. Out

of the hopping integrals, tij , we retain only those
connecting nearest- and next-nearest neighbors, t ≡
−0.35 eV and t′ ≡ 0.25|t|, respectively. It should
be remarked that, within the t–J–U model, the de-
gree of e–h asymmetry is controlled exclusively by
the magnitude of next-nearest neighbor hopping,
t′. Up to a trivial energy and chemical potential
shift, the remaining terms remain unchanged after
application of the e–h transformation in the usual
form

a†iσ → aiσ · (−1)i, aiσ → a†iσ · (−1)i, (2)

with (−1)i being phase factor alternating between
neighboring sites. The electronic interactions are
governed by the magnitude of on-site Coulomb re-
pulsion U and by nearest-neighbor AF exchange in-
tegral J .

The t–J–U Hamiltonian (1) may be regarded as
a generalization of the Hubbard and t–J models
and encompasses both of them as particular cases.
The Hubbard model is obtained for U > 0 and
J = 0, whereas the t–J model — for U = ∞ and
J > 0. In order to analyze all three Hamiltonians on
equal footing, we refer to the concept of effective ex-
change interaction Jeff ≡ J + 4t2

U that combines di-
rect Heisenberg-type interaction with second-order
kinetic exchange [48]. Hereafter its value is set to
Jeff ≡ 2

3 |t|, which has been used previously to study
collective dynamics in the paramagnetic state of
h-doped cuprates [51]. The selected representative
parameter values are: U = 6|t|, J = 0 (Hubbard
model), U = 12|t|, J = 1

3 |t| (t–J–U model), and
U =∞, J = 2

3 |t| (t–J model).
We employ the VWF+1/Nf approach in the

local-diagrammatic variant (LDf + 1/Nf in the
notation of [49]), which allows us to study col-
lective excitations around the strongly correlated
ground state. The saddle-point reference point is
constructed based on the variational wave function∣∣Ψvar

〉
≡

P̂
∣∣Ψ0

〉∣∣∣∣P̂ |Ψ0〉
∣∣∣∣ , (3)
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where |Ψ0〉 represents a Slater determinant, and P̂
is an operator introducing correlations into the trial
state (the so-called correlator). The denominator
in (3) is needed for normalization since P̂ is not
unitary in general. We take P̂ ≡

∏
i P̂i with

P̂i ≡ λ0
i |0〉ii〈0|+

∑
σσ′

λσσ
′

i |σ〉ii〈σ′|+ λdi |d〉ii〈d|,
(4)

where states |0〉i, |↑〉i, |↓〉i, |d〉i ≡ |↑↓〉i span
the local Hilbert space for the lattice site i,
and σ, σ′ =↑, ↓ enumerate spin configurations. At
zero temperature, both the variational parameters
λ =

⋃
i{λ0

i , λ
↑↑
i , λ

↑↓
i , λ

↓↑
i , λ

↓↓
i , λ

d
i } and wave func-

tion |Ψ0〉 are determined by optimization of the
energy functional Evar(|Ψ0〉,λ) ≡ 〈Ψvar|Ĥ|Ψvar〉,
subjected to the requirement of fixed total parti-
cle number and other constraints. Here we actu-
ally employ a thermal generalization of this varia-
tional scheme based on free energy functional [49],
with temperature set to kBT = 0.42|t| in order to
stay clear of density-wave orders. The stability of
the paramagnetic state for all considered parame-
ter sets is demonstrated in Appendix A, where we
also identify leading ordering tendencies. It should
be remarked that transformation (2) preserves the
variational space spanned by the parameters of the
correlator (4). The present methodology is thus un-
biased and suitable for the analysis of intrinsic e–h
asymmetry of collective excitations, as detailed in
Appendix B.

In essence, the VWF+1/Nf approach relies
on promoting all the variational parameters to
imaginary-time dynamical quantities, extending the
number of fermionic families from one to Nf ,
and subsequently expanding the variationally de-
termined free energy functional in the powers
of 1/Nf . We emphasize that, even in the em-
ployed here large-Nf approximation, the resid-
ual interactions between the Landau quasiparti-
cles are incorporated. The latter are instrumental
for a proper description of collective paramagnon
and plasmon excitations in the strong-coupling
regime.

Finally, we note that the strong-coupling limit
(U = ∞, J > 0) is described within our formalism
on the same footing as the finite-U case. The ex-
clusion of doubly occupied sites at the dynamical
level is achieved by imposing the local constraint
λdi (τ) ≡ 0, where τ denotes imaginary-time. Since
the e-doped side of the phase diagram is inaccessi-
ble within the low-energy sector of the t–J model,
in this regime, we actually carry out the analysis
for the h-doped system with the inverted sign of
next-nearest hopping, t′, as dictated by e–h trans-
formation (2).

We calculate the (imaginary-time) dynamical sus-
ceptibilities in the form χs(τ,k) ≡ 〈Tτ Ŝzk(τ)Ŝz−k〉
and χc(τ,k) ≡ 〈Tτ n̂k(τ)n̂−k〉. The results have
been obtained for a 300 × 300 square lattice
with periodic boundary conditions, and analytic

continuation of the Fourier transformed suscep-
tibilities, χs/c(iωn,k), is performed as iωn →
ω + 0.02|t|, where ωn are bosonic Matsubara
frequencies.

3. Results

3.1. Hubbard model

We start the discussion of the e–h asymmetry
of collective excitations with the Hubbard model
case (U = 6|t|, J = 0). In Fig. 1, the calcu-
lated VWF+1/Nf dynamical spin (panels (a)–(d))
and charge (panels (e)–(h)) susceptibilities for hole
(electron) doping levels δh(δe) = 0.1, 0.2, 0.3, 0.4 are
displayed along the high symmetry X-Γ-M Bril-
louin zone contour. The color map represents sus-
ceptibility magnitude, with blue and white colors
corresponding to low- and high-intensities, respec-
tively. Relevant model parameters are given inside
the panels.

In the case of h-doping (see Fig. 1a–d), an in-
tense and disperse signal emerges throughout the
entire phase diagram along the anti-nodal (Γ–X)
direction. This peak is interpreted as a robust para-
magnon in high-Tc literature. On the other hand,
the spectrum remains highly incoherent along the
nodal (Γ–M) line. Such a directional anisotropy of
spin excitations is in agreement with RIXS data col-
lected for hole-doped copper oxides [52].

We now proceed to compare the h- and e-side
of the phase diagram. As follows from Fig. 1e–
h, a clear resonant peak appears for e-doping
only along the Γ–X direction and for δe = 0.1
(panel (e)). Yet, it is less intense than the corre-
sponding feature on the h-side (panel (a)). With
the increase in electron concentration, the mag-
netic spectral weight shifts to larger energies and
rapidly becomes incoherent. Such a hardening ef-
fect has been reported experimentally for e-doped
cuprates [8, 9]. The substantial e–h asymmetry of
spin excitations is thus reproduced already within
the single-band Hubbard model.

For completeness, in Fig. 1i–p, we also compare
the h- and e-doping evolution of charge excitations.
The spectrum unambiguously separates into the in-
coherent continuum part and sharp dispersive col-
lective mode. The latter remains gapless at the Γ
point, since the long-range Coulomb interactions
are not included in the Hamiltonian (1). Contrary
to the spin part, the charge modes emerge for both
e- and h-doping, which is also backed by RIXS ex-
periments [27–32].

3.2. Analysis of t–J–U model

We now proceed to analysis of the t–J–U model
(U = 12|t| and J = |t|

3 ). In Fig. 2, we display the
calculated imaginary parts of dynamical spin and
charge susceptibilities for h- and e-doping. The re-
sults are organized in the same manner as those
in Fig. 1. The dispersive magnetic peak appears on
the h-doped side along the Γ–X line, whereas Γ–M
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Fig. 1. Calculated VWF+1/Nf collective excitation spectra for the Hubbard model (t = −0.35 eV, t′ =
0.25|t|, U = 6|t|, J = 0) along the high-symmetryX–Γ–M Brillouin zone contour. Imaginary parts of respective
dynamical susceptibilities are represented as a color map, with blue and white colors corresponding to low-
and high-intensity, respectively. The color scale is used consistently, so the intensities can be compared. Panels
(a)–(d) and (e)–(h) show the magnetic excitations for the hole- and electron-doped system, respectively. Panels
(i)–(p) illustrate the charge response, calculated for the same model parameters. The h- and e-doping levels
(δh and δe), detailed inside the plot, are measured relative to half-filling.

Fig. 2. Summary of calculated VWF+1/Nf collective excitation spectra for the t–J–U model (t = −0.35 eV,
t′ = 0.25|t|, U = 12|t|, J = 1

3
|t|). The plot is arranged in the same way as in Fig. 1 and the color scale is

consistent among panels.
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Fig. 3. Summary of calculated VWF+1/Nf collective excitation spectra for the strong-coupling (t–J model)
limit (t = −0.35 eV, t′ = 0.25|t|, U =∞, J = 2

3
|t|). The plot is arranged in the same way as in Fig. 1 and the

color scale is consistent among panels.

excitations are highly incoherent (panels (a)–(d)).
Also, the magnetic mode rapidly dissolves in the
continuum on the e-doped side for both analyzed
high-symmetry Brillouin zone directions (panels
(e)–(h)). All those features of the calculated spec-
tra are qualitatively consistent with those obtained
for the Hubbard model, which indicates an essen-
tially universal manifestation of the e–h asymmetry
in magnetic dynamics.

The advantage of the t–J–U model over both the
Hubbard and t–J models is that the scale of local
correlations and kinetic exchange interactions are
independently controlled by microscopic Hamilto-
nian parameters. Due to the same adopted value
of Jeff , the t-J-U model dispersion of the coherent
magnetic peak closely follows that of the Hubbard
model (see Fig. 1a–d), even though the on-site in-
teraction U is larger by the factor of two. The phys-
ical consequence of increased on-site interaction is
a substantial narrowing of the continuum part of
the spectrum and a reduction of the charge-mode
bandwidth, particularly close to half-filling.

3.3. The t–J model as strong-coupling limit

Finally, we address the strong-coupling limit by
setting U = ∞ and J = 2

3 |t|. Figure 3 summa-
rizes the calculated imaginary parts of the spin
and charge dynamical susceptibilities. A disper-
sive paramagnon-like peak with similar character-
istics to those of Hubbard and t–J–U models is
visible only for the Γ–X direction and h-doping
(panels (a)–(d)). Interestingly, the magnetic spectra

on the e-doped side (panels (e)–(h)) are more ro-
bust and intense than those obtained for finite-U
models.

The principal qualitative feature of the t–J
model, absent for weak- and intermediate-coupling,
is the emergence of sharp peaks at the magnetic con-
tinuum threshold, both along the Γ–X and Γ–M di-
rections. Those are not unambiguously seen in spec-
troscopy, which suggests that the t–J model might
overestimate electronic correlations in the context
of high-Tc cuprates. The latter finding is also in-
dependently supported by former studies, showing
that the t–J–U model yields better overall agree-
ment with the experiment for those materials [42].

The charge-excitation spectra, displayed
in Fig. 3i–p, are renormalized with respect to
Hubbard and t–J–U models, yet no qualitatively
new behavior is observed.

3.4. Structure of the paramagnon peaks

The relation between Hubbard, t–J–U , and t–J
models may be further characterized by comparing
the energy profiles of the collective magnetic excita-
tion spectra. This is carried out in Fig. 4, where we
display the imaginary part of dynamical spin sus-
ceptibility, plotted for all three models as a func-
tion of energy. Several representative doping levels
and wave vectors are selected, with top and bottom
panels corresponding to the anti-nodal and nodal
directions, respectively (parameters are detailed in-
side the plot).
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Fig. 4. Energy profiles of the imaginary part of the dynamical spin susceptibility, χ′′
s (ω,k), obtained for the

Hubbard, t-J-U , and t–J models. The data are plotted for representative wave vectors, both on the h- and
e-doping sides of the phase diagram. The parameters and models are indicated inside the panels (wave vectors
are listed in the units 2π

a
with a being lattice spacing).

As noted above, paramagnon-like peaks emerge
only for h-doping along the Γ–X line (panels
(a), (c), and (e)). However, their lineshapes vary
substantially depending on the on-site interaction
strength, U . The magnetic peak contains a cusp
for the t–J model up to δh . 0.2 (blue and or-
ange curves in Fig. 4e) and t–J–U model up to
δh . 0.1 (blue line in Fig. 4c). This non-analytic fea-
ture is reminiscent of a Van Hove singularity in two-
particle density of states, and thus is not of reso-
nant origin. Disentanglement of the resonant (para-
magnon) part of the spectrum from non-resonant
(continuum) excitations thus poses a major chal-
lenge in the strong-coupling regime. Those aspects
will be addressed in detail elsewhere [53].

4. Conclusions

In Sect. 3, we presented the VWF+1/Nf char-
acteristics of the collective spin and charge excita-
tions for the Hubbard, t–J–U , and t–J models of
high-Tc copper oxides, both on h- and e-doped side
of the phase diagram. The microscopic parameters
of those three Hamiltonians have been related to
each other with the help of the effective exchange
concept [48] so that Figs. 1–3 can be directly com-
pared.

The main finding of the present analysis is that
a robust paramagnon peak emerges in the magnetic
spectrum only along the anti-nodal Γ–X direction
for h-doping, whereas e-doped systems exhibit hard-
ening of spin excitations and less coherent dynam-
ics. On the other hand, coherent charge mode is
found on both sides of the phase diagram. Those
results are consistent among all models analyzed
and remain in agreement with RIXS experiments
for multiple copper-oxide families.

We also recall that the only term explicitly break-
ing the e–h symmetry in the Hamiltonian (1) is
the next-nearest-neighbor hopping ∝ t′ which con-
trols single-particle excitations and is necessary to
match the high-Tc copper oxide fermiology. Indi-
rectly, t′ also impacts the structure of continuum
particle-hole excitations that contribute to the mag-
netic response. Thus, the obtained universal e–h
asymmetry of the paramagnon-like spectrum for
a wide range of interaction parameters suggests
that this particular effect is governed predominantly
by single-particle kinematics rather than by multi-
particle correlations.

We have also identified several principal differ-
ences between the spectra of the Hubbard, t–J–U ,
and t–J models. As demonstrated in Sect. 3, contin-
uum spin excitations undergo a substantial renor-
malization with increasing value of the on-site in-
teraction U . Moreover, in the strong-coupling (t–J
model) limit, an additional sharp peak in the mag-
netic response appears at the continuum thresh-
old. There are also more subtle differences in the
spectral lineshapes. We observe that, on approach-
ing the strong-coupling limit, the magnetic peaks
evolve into cusp-like structures characterized by the
discontinuous first derivative of magnetic intensity.
This, in turn, points towards a non-negligible contri-
bution of incoherent continuum excitations to mag-
netic intensity.

We now comment on the apparently opposite ef-
fect of the e–h asymmetry on the collective spin ex-
citations and static magnetic order. In Appendix A,
we have presented the VWF+1/Nf static suscep-
tibilities. The magnetic response attains a maxi-
mum at the antiferromagnetic M point for both
h- and e-doping, and is systematically larger on
the e-side for the Hubbard and t–J–U models.
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Fig. 5. Calculated static spin and charge susceptibilities for the Hubbard, t–J–U , and t–J models, both on
the h- and e-doped side of the phase diagram. The relevant parameters are detailed inside the panels. The
obtained susceptibilities remain positive along the high-symmetry X–Γ–M contour which signals stability of
the high-temperature paramagnetic state against fluctuations.

This signals an enhanced tendency towards AF or-
dering for e-doping, as seen in the experiment de-
scribed in [2] (interestingly, this hierarchy is re-
versed in the strong-coupling limit). Our present
analysis of non-equilibrium quantities may be rec-
onciled with the above result by noting that robust
magnetic excitations emerge only along the Γ–X
direction, and thus AF order and the paramagnons
are governed by distinct regions of the Brillouin
zone.

Finally, we note that electronic correlations be-
yond mean-field theory must be incorporated in
order to accurately describe the magnetic dynam-
ics, even for relatively small values of U . This has
been demonstrated for the Hubbard model case by
comparison of the VWF+1/Nf and random-phase-
approximation dynamical spin susceptibilities, and
subsequently relating them both to experiment
and quantum Monte Carlo simulations [49, 50].
The present analysis suggests that both these
correlation-related effects and non-resonant (inco-
herent) contributions are needed to consistently de-
scribe the magnetic spectra throughout the high-Tc
phase diagram.
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Appendix A: Stability
of the paramagnetic state

Here, we analyze the stability of the high-
temperature paramagnetic state against both spin
and charge fluctuations for the models considered
in the main text. In Fig. 5, we display calculated
X–Γ–M scans of spin (panels (a)–(f)) and charge
(panels (g)–(k)) static susceptibilities, χs(ω = 0,k)
and χc(ω = 0,k), respectively. The doping levels
and models are indicated inside the panels, whereas
the remaining parameters are the same as those
taken in Sect. 3. Both spin and charge static sus-
ceptibilities remain positive in the entire doping
regime, showing that the paramagnetic ground state
is stable against fluctuations on both h- and e-doped
sides of the phase diagram.

Several additional remarks might be made based
on the analysis of Fig. 5. First, for the Hubbard and
t–J–U models, the tendency towards antiferromag-
netic ordering is stronger for e-doping, as evidenced
by a larger value of static spin susceptibility close
to the M point (see panels (a)–(d)). This is quali-
tatively consistent with the experimental asymme-
try of the equilibrium magnetic phase diagram of
the cuprates, with the AF state being more robust
on the e-doped side. Interestingly, the t–J model
yields the opposite result (panels (e)–(f)), which fa-
vors finite-U Hamiltonians for quantitative studies
of high-Tc systems. Second, for the t–J–U model,
the largest spin susceptibility magnitude is obtained
for intermediate doping levels, so that the ordering
tendency is shifted away from half-filling.

On the other hand, charge susceptibility remains
fairly featureless for all models and doping levels
exceeding 0.1. The enhancement of static charge
response around the Γ point should be regarded
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as an unphysical feature since the Hamiltonian (1)
does not include long-range Coulomb interactions.
The algebraic tail of the Coulomb potential is sin-
gular at k → 0, which is known to suppress the
magnetic response in the vicinity of the Brillouin
zone center [1].

Appendix B: Electron–hole symmetry
of the variational space

Here, we show that the correlator (4) defines
a variational space that is e–h symmetric. As a con-
sequence, the obtained asymmetry of the collec-
tive excitations is an intrinsic feature of the t–J–U
model and is not induced by the particular choice
of the trial wave function.

We proceed by rewriting the correlator terms in
second-quantization language
|0〉ii〈0| = (1− n̂i↑)(1− n̂i↓), (5)

|σ〉ii〈σ| = n̂iσ(1− n̂iσ̄), (6)

|σ〉ii〈σ̄| = â†iσâiσ̄, (7)

|d〉ii〈d| = n̂i↑n̂i↓, (8)
where σ̄ =↓ (↑) for σ =↑ (↓). By applying the pre-
scription (2) and noting that n̂iσ → 1 − n̂iσ, one
arrives at
P̂i → λ0

i |d〉ii〈d|+
∑
σσ′

σσ′λσσ
′

i |σ̄〉ii〈σ̄′|+ λdi |0〉ii〈0|.
(9)

The transformed correlator (9) may be now brought
to its original form (4) by rearranging the varia-
tional parameters as λ0

i → λdi , λσσ
′

i → σσ′ · λσ̄σ̄′

i ,
and λdi → λ0

i , which concludes the reasoning.
Note that the transformation rules for the single-
particle part of the correlator, λσσ

′

i , could be sim-
plified by supplementing the usual e–h transforma-
tion with the spin-flip operation and including the
spin-dependent phase factor in (2).
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