
ACTA PHYSICA POLONICA A No. 2 Vol. 143 (2023)

Proceedings of the 20th National Conference on Superconductivity “New Phases, Concepts and Advances”

Brief Perspective of High-Temperature Superconductivity
in the Cuprates: Strong Correlations Combined

with Superexchange Match Experiment

J. Spałek∗

Institute of Theoretical Physics, Jagiellonian University, Łojasiewicza 11, PL-30348 Kraków,
Poland

Doi: 10.12693/APhysPolA.143.169 ∗e-mail: jozef.spalek@uj.edu.pl

High-temperature superconductivity encompasses the cuprates, nickelates, iron pnictides, and LaHx
compounds. The first three groups of compounds involve in the pairing electrons, which are strongly to
moderately correlated, whereas in the last class of systems specific phonon excitations. In this overview,
we concentrate first on the (semi)quantitative theory of high-TC superconductivity in the cuprates
based on our original vibrational approach beyond the renormalized mean-field theory. The model we
mainly explore is the t–J–U model containing superexchange (kinetic exchange) combined with strong
interelectronic correlations. Selected equilibrium and dynamic–excitation properties are analyzed briefly.
General questions regarding the pseudogap and two-dimensional character of those systems are raised.
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1. Introduction

Originally, by high-temperature (high-TC) su-
perconductivity we understood that discovered 35
years ago in Lax−1BxTiOy, Lax−1SrxCuOy, and
YBa2Cu3O7−δ systems. Later, the iron pnictide and
chalogenide systems such as LaFeAsO1−xFx and
FeSe have been discovered. Recently, the nickelates
LaNiO2 and related compounds have been stud-
ied intensively. A separate class is formed by the
LaH10+x, for which the critical temperature has
reached 250 K or even higher value, but for the
latter case, an intensive debate concerning repro-
ducibility of some results takes place. The principal
difference between the hydrogen-rich and remaining
systems is that in the case of LaH10+x, the pairing of
electrons seems to be caused by phonons, whereas
in the cuprates, nickelates, and iron pnictides the
strong to moderate interelectronic correlations play
a decisive role. The aim of this brief overview is
to compare our theoretical results for the cuprates
with the principal experimental results in a consis-
tent and quantitative way.

The structure of this brief review is as follows. In
Sect. 2, we discuss the principal characteristics of
the cuprates. In Sect. 3, we overview the qualitative
features of our theory, whereas in Sect. 4, we provide
explicit examples of a quantitative comparison of
our results with experimental data. A brief outlook
is deferred to Sect. 5. This paper aims to specify and
summarize the most important results elaborated in
a recent extensive topical review [1].

2. Principal characteristics of the cuprates

2.1. Structural and electronic specific features
of the cuprates

The most striking structural property of the high-
temperature superconducting cuprates and pnic-
tides is their quasi-two-dimensionality, composed
in the simplest situation of well-separated CuO2

planes. This is the case for, e.g., La1−δSrδCuO4 or
Bi2Sr1.6La0.4CuO6−δ mixed compounds. This sim-
plifying assumption induced a series of studies of
strictly two-dimensional models of high-TC super-
conductivity, even though it is not exactly clear
whether, strictly speaking, a spatially homogeneous
two-dimensional transition to a superconducting
state is possible at nonzero temperature (T > 0).
The evidence for such an ordering is supported by
the results for a single plane of FeSe [2].

The second most important feature is that the
carriers in the CuO2 plane are holes in the doped
Mott insulator. The situation is schematically de-
picted in Fig. 1. Note that only Cu2+ ions are
shown for the sake of clarity. Virtual hopping pro-
cesses, also specified there, lead to the antiferromag-
netic kinetic exchange representing the superex-
change, whereas the real hopping processes provide
the charge transport of single carriers and their pair-
ing in both hole- and electron-doped case situations.
Note a gradual character of transformation from
an antiferromagnetic Mott insulator to a strongly
correlated metal with doping. At this point, it is
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Fig. 1. Schematic representation of the particle
dynamics in terms of hopping processes (dashed
arrows) in the Mott-insulating state (a) and the
strongly-correlated metal phase (b). Virtual hop-
ping involves two consecutive back and forth di-
rect hopping processes and occurs in both cases, (a)
and (b). The direct hopping results in real motion
of holes and occurs only in the strongly-correlated
metal phase (b). In the strong-correlation regime,
the direct hopping processes via doubly occupied
configurations |↑↓〉 are precluded. In the last, case
we speak about extremely strong correlations. The
arrows surrounding the hole (red circle) mark pos-
sible real hoppings around it.

fair to say that, so far, it is not clear whether this
changeover from the Mott insulator to the strongly
correlated metal is a real quantum phase transition
with an incipient quantum critical point, blurred by
the substitutional disorder (e.g., Sr for La), taking
place in La–Sr–O insulating planes, sandwiching the
periodic arrangement of the CuO2 planes, where the
action takes place.

Another striking feature is the circumstance that
the CuO2 planes may be represented originally by
the atomic 3dx2−y2 states, representing the high-
est positioned electron of nominally 3d9 shell of
Cu2+ ion, hybridized with two 2px and 2py states
of nominally O2− ions. The situation is depicted
schematically in Fig. 2a. This 3-orbital periodic
structure, arranged into a square lattice, leads to
the three bands specified in Fig. 2b; the tαβ param-
eters are the hopping integrals between the specified
orbitals. The sign convention reflects the antibond-
ing character of resulting p–d states.

Now, if the CuO2 system is regarded as effec-
tively a single-band system composed of 3dx2−y2 or-
bitals dressed with 2px,y orbitals, in which the latter
states play only a passive role [3], then such a single-
band Mott insulator is represented by a singly oc-
cupied set of Cu2+ ions. This situation, depicted
in Fig. 1, where the ↑ and ↓ arrows specify the
spins of the ninth electrons per site, may be re-
garded as the model of the Mott–Hubbard insu-
lator. The doping δ ≡ 1 − n represents then the
average number of hole carriers counted per site. If,
however, one takes the three-orbital 3dx2−y2–2px,y
model, then the corresponding Mott–Hubbard in-
sulator (called, in that case, the charge-transfer in-
sulator) contains 5 electrons per Cu2+O2−

2 cluster
(two 2p electrons per oxygen and one electron per
copper). In that situation, the hole doping may be

defined as δ ≡ 5 − n, where n in both situations is
the number of electrons per fundamental unit, Cu
or CuO2, respectively.

The fourth principal assumption is that the orig-
inal microscopic parameters, such as the hoppings
tαβ or interaction strength, do not vary essentially
in the whole doping range where the superconduc-
tivity appears, i.e., for 0 . δ . 1

3 . Those bare
parameters do vary from system to system, but
mainly due to interelectronic correlations which in-
duce their strong doping dependent renormaliza-
tion. They complement the bare one-electron struc-
ture. Effectively, one should regard the single-band
model description as that referring to the situation
of the antibonding band (see Fig. 2b), containing
effectively 1− δ electrons per copper. This point is
to be verified later.

The final structural feature of the system is
the experimental observation that the electronic
properties in the normal state are those of prac-
tically two-dimensional metal, with the resistivity
in plane/across plane ρ‖/ρ⊥ ∼ 105 in the opti-
mal situation, and with metallic/semiconducting
behavior of ρ‖/ρ⊥, respectively. The superconduct-
ing phase, on the contrary, is three-dimensional.
This means that there is D = 2 to D = 3 di-
mensional changeover at the critical temperature.
In other words, the interplanar coherence appears
in the condensed state. This can be clearly shown
when examining systematically single- versus multi-
planar systems critical temperature TC as a func-
tion of the number of closely spaced planes [4].

2.2. Theoretical models of strongly correlated
square planar structure of the cuprates

In our group, we have concentrated on study-
ing two theoretical models, namely the (extended)
single-band Hubbard model under the acronym of
t–U–J–V model (see Appendix) and the three-band
3d–2px,y model. In the latter situation, also its
similarity to the one-band case under special cir-
cumstances has been explored [3]. The former rep-
resents the most general single-band model with
short-range intersite interactions (and correlations),
which reduces to either t–J or Hubbard model in
proper limits. The three-band model, in turn, al-
lows for an explicit discussion of the role of oxygen
in particle dynamics and ordering, particularly in
the metallic state. We overview each of them sep-
arately in the context of concrete results and com-
pare them with the experiment.

3. The method and its qualitative
interpretation

3.1. The method: Single-band model

The most general single-band model of correlated
electrons has been discussed briefly in Appendix.
In this section we limit ourselves to the so-called
t–J–U–V model in the form [5]
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Fig. 2. Bare (without interaction) three-band structure in the tight binding approximation. (a) Definition of
the hopping parameters between the px, py, and dx2−y2 orbitals, with the sign convention for the antibonding
orbital structure. This structural unit forms a basis of three-band model of the CuO2 plane in the cuprates.
(b) The band structure of the d–p model with microscopic parameters: tpd ' 1.13 eV, tpp ' 0.49 eV, and
εpd ' 3.57 eV. The Fermi energy is taken as the reference value and corresponds to the filling n = 5 per
Cu2+O2−

2 complex, corresponding to half-filled antibonding band. This partially filled band is split off by
about εpd from the remaining filled bands and reflects a single-hybridized (bare) band, the horizontal line
marks the position of the Fermi energy for n = 5 electrons per CuO2 unit [2]. In the strong correlation limit
the antibonding band (and the other two) is split into two Hubbard subbands.

Ĥ =
∑′

ijσ

tij â
†
iσâjσ + U

∑
i

n̂i↑n̂i↓

+
∑′

ij

JijŜiŜj +
1

2

∑′

ij

(
Vij −

1

2
Jij

)
n̂in̂j .

(1)

The parameters and consecutive terms are de-
fined and explained in Appendix. The Hamiltonian
(1) is used as a starting point for further anal-
ysis and solution for many-particle states. In our
comprehensive review [1], we selected the approach
based on a trial variational wave function and subse-
quently constructed a systematic diagrammatic ex-
pansion for the Gutzwiller-type wave function (DE-
GWF) which in the lowest order gives a renor-
malized mean-field theory (RMFT) in the form
of statistically consistent Gutzwiller approximation
(SGA) [6]. In general, the approach is based on a se-
lection of the ground-state many-particle wave func-
tion |ψG〉 in the form

|ψG〉 ≡ P̂ |ψ0〉, (2)
where |ψ0〉 represents an uncorrelated (single-
particle) state, to be defined later in the process of
solving the model in a self-consistent manner. The
nontrivial projection operator P̂ is given by [7]

P̂ ≡
∏
i

P̂i =
∏
i

λiΓ |Γ 〉i i〈Γ| (3)

with the wave function variational parameters
λi,Γ ∈ {λi,0, λi,↑, λi,↓, λi,↑↓}, corresponding to the
local (lattice site i) states |Φ〉, |↑〉i, |↓〉i, and |↑↓〉i,
respectively. The consecutive states represent the
empty, singly occupied states with spin quantum
number ↑ and ↓, and doubly occupied states, all on
the site i. For such a choice of the site representa-
tion, the λi,Γ parameters weight the relative prob-
ability amplitudes of local occupancies appearance

for each site. In the limit of large Coulomb repul-
sion (U � W , where W is the bare bandwidth)
the double occupancies are absent. Additionally,
we consider here translationally invariant param-
agnetic state for which λi↑ = λi↓ = λi.

The ground state energy is determined by min-
imizing the variational expression for the ground
state energy

EG ≡ 〈Ĥ〉G =
〈ΨG|Ĥ|ΨG〉
〈ΨG|ΨG〉

=
〈Ψ0|P̂ ĤP̂ |Ψ0〉
〈Ψ0|P̂ 2|Ψ0〉

.

(4)

It turns out that, by introducing the following ad-
ditional ansatz for the P̂i operator [7]

P̂ 2
i ≡ 1 + xdHFi , (5)

where x is yet another variational parameter, and
by defining the quantities

dHFi ≡ n̂HFi↑ n̂HFi↓ ,

n̂HFiσ ≡ n̂iσ − 〈n̂iσ〉 ≡ n̂iσ − n0,
(6)

with n0 ≡ 〈ψ0|n̂iσ|ψ0〉, we can perform a systematic
expansion of the functional (4) (for details see [1, 3])
and obtain explicitly the interesting physical prop-
erties in the correlated state which are determined
through corresponding quantities in the uncorre-
lated state. Before detailed physical discussion, we
should mention the method of defining the uncorre-
lated wave function ψ0. Namely, in our approach, it
is determined from another variational principle [8]

δ

δ〈ψ0|

[
F − λ

(〈
ψ0|ψ0

〉
− 1
)]

= 0, (7)

where F ≡ 〈Ĥ〉G expressed in terms of uncorrelated
correlation functions. In effect, there are two inter-
site functions

Pij ≡ 〈ĉ†iσ ĉjσ〉, and Sij ≡ 〈ĉ†i↑ĉ
†
j↓〉0 (8)
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that represent averages of local hopping and pairing
correlations in an uncorrelated state, respectively.
The variational parameter λ is introduced to ensure
that the wave function is normalized. The procedure
of solving (7) is equivalent to Bogoliubov-type di-
agonalization of the effective Hamiltonian

Ĥeff ≡
∑
ijσ

tij â
†
iσâjσ+

∑
ij

(
∆ij â

†
i↑â
†
j↓+∆∗jiâi↓âj↑

)
,

(9)where

teffij ≡
δF
δPij

, (10)

and

∆eff
ij ≡

δF
δSij

. (11)

In effect, the determination of the uncorrelated
properties reduces to the diagonalization of the
Bardeen–Cooper–Schrieffer-type (BCS) Hamilto-
nian, and this in turn to the determination of the
properties in the correlated state. As the averages
in that state are factorized in terms of uncorrelated
Sij and Pij , the latter procedure completes the de-
termination of the wave function in the correlated
state |ψG〉, provided that the remaining variational
parameters are also determined [1, 3].

3.2. Three-band model: A brief perspective

As said above, strictly speaking, the elementary
structural unit in two dimensions contains a single
3dx2−y2 orbital due to the ninth electron of Cu2+

ions and two 2px and 2py orbitals, each filled with
two electrons in the parent (undoped) situation.
Therefore, one has to formulate a three-band model
to see at least, what is its connection to the widely
used t–J–U–V single-band models, which should be
regarded as a particular case of the present one. For
that purpose, one starts from the Hamiltonian

Ĥ =
∑
ij]′ασ

tppij p̂
†
iασp̂jασ + εdp

∑
iσ

d̂†iσd̂iσ

+
∑′

ijασ

tpdij (d̂†iσp̂iασ + h.c.)

+ Ud
∑
i

n̂di↑n̂di↓ + Up
∑
i

n̂piα↑n̂piα↓.
(12)

In this version of the model the bare p–p hop-
ping is assumed as nonzero only between nn–2p
electrons, where tpp ' 0.5–1 eV, tpd ' 1.1–1.3 eV
is the single-particle hybridization between 3d and
2p states that induces an effective d–d hopping in
the higher order for the relevant antibonding states,
and εd − εp'3.5 eV — the so-called p→d charge
transfer energy. The relevant intra-atomic p–p and
d–d interactions have magnitudes Upp ' 4–5 eV and
Udd ' 8–1 eV. The other interactions term such as,
e.g., that ∼ Upd are neglected, which is probably
an oversimplified feature of our model.

The question is to what extent results of the one-
band model represented by (1) and that starting
from (12) are principally equivalent. A simple an-
swer to this question is provided by inspection of

the results in Fig. 2b and by noting that in the
doped systems the interesting regime is then for
δ . 1/3. This, in effect, means that in the present
version of the model, the holes are located in the an-
tibonding band, since the p–d charge transfer gap
εpd = εd−εp is quite large on the scale of all parame-
ters except Udd. This bare-band picture persists also
upon inclusion of interaction as the neglected Upd
enlarges the charge transfer gap and Udd does not
reverse the trend, when nd . 1. The variational pro-
cedure presented in Sect. 3.2 is more involved [3] so
it will not be presented in this minireview. Perhaps,
it is worth showing explicitly the comparison of the
doping dependence of the d–d gap (see Fig. 2a) in
the three-band model with that of the single band
model (see Fig. 2b); the consecutive components
∆(i) represent those between i-th neighbors (i-th co-
ordination sphere). The component ∆(2) is absent
for the d-electrons, since the nearest neighbor d–d
correlations are strongly antiferromagnetic, induc-
ing the effective spin–triplet correlations between
the second neighbors. This exclusion does not ap-
pear for d–p and p–p pairing components; but they
are of rather minor importance [3]. The two figures
in the panel illustrate to what extent two models
(1- vs 3-bands) may be regarded as equivalent.

3.3. The main qualitative features of the approach

First of all, the two energy scales appear in
a natural way, i.e., those described by |ψG〉 and
|ψ0〉, respectively, as exemplified by the physical
gap ∆G and the pseudogap ∆eff . The question is
whether those separate scales can be seen in the
actual correlated state. To illustrate the two faces
of the correlated fermionic liquid we have com-
pared first the doping dependence of the so-called
pseudogap and the superconducting gap, ∆eff and
∆dd, respectively. Those values have been compared
with exemplary experimental results in Fig. 3a, b
(see also [9]). The amplitude ∆eff is obtained
from the single-particle Hamiltonian (12), whereas
∆dd ≡ ∆G is from solving the full expression 〈H〉G.
Both gaps have the d-wave symmetry ∆G,eff (k) =
∆G,eff (cos(kx) − cos(ky)). The SGA approach in
one-band case leads only to a qualitative agreement
with the data. The actual doping dependence of
SGA gap in the Γ–X direction is shown in Fig. 4a, b
for the two values of the hopping amplitude. We see
that the agreement of our theory (SGA) with exper-
iment is rather qualitative, as only the trend of the
data is reproduced. However, we believe that inclu-
sion of correlations (see Sect. 5) may improve the
results exhibited in Fig. 4a essentially. Obviously,
it is still to be carried out in the future (see also
Fig. 3b).

As the second test of the two energy scales,
we consider the single-electron dispersion rela-
tion obtained from the angle-resolved photoemis-
sion spectroscopy (ARPES) experiment. The ex-
emplary comparison of our modified approach [10]
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Fig. 3. (a) Plot of the experimentally observed pseudogap (points) as compared to theoretical results obtained
from DE-GWF approach for the effective single-particle gap ∆eff obtained within the three-band model. The
Hamiltonian parameters are Ud = 11 eV, Up = 4.1 eV, εdp = 3.2 eV, tpp = 11 eV. The critical doping levels and
the Mott-insulator boundary are also marked. (b) Relative correlated d-wave gap component with intersite
Coulomb interaction of magnitude Vdd = 0.7 eV. Experimental data sets 1 and 2 are taken from [2]. For
a brief discussion of the role of quantum fluctuations in bringing the theoretical results to those obtained from
experiment, see Sect. 6.

to experiment is shown in Fig. 5b (see also [11–13]).
We see the comparison of the shift by ∆k0 of the
linear dispersion relation for the correlated parti-
cles (the part below the kink) with respect to that
close to the Fermi energy. Note that ∆k ≡ k − kF

is the wave vector measured with respect to the
Fermi surface point (k = kF) in the nodal direc-
tion. In Fig. 5b, we show the spectral two Fermi
velocities veffF,low and vcorrF , together with the renor-
malization factor Znodal in the latter case (see the
corresponding dependence in Fig. 5c). Remaining
labeling on those curves is self-explanatory [10]. Fi-
nally, in Fig. 5d the (weak) doping dependence of
the Fermi wave vector is shown to agree with the
experimental values.

The basic question to be asked is whether such
a division into effective Landau quasiparticles and
correlated particles of this quantum liquid (parti-
cles above and below the kink) is physically fea-
sible. Our interpretation is that excitations at the
Fermi level (in the nodal direction) can be regarded
as true quasiparticles in the Landau sense, albeit
renormalized differently, since our starting interac-
tion comprises all relevant itinerant electrons and
is short-range and strong in real space. On the
contrary, the single-electron excitations from the
region deeper below the Fermi level (with energy
∆ε ≡ |ε − εF | & 0.1 eV) are dressed with the full
interaction, in which the Hubbard term plays pre-
dominant role. Obviously, this division of a single
quantum liquid of indistinguishable quantum par-
ticles into two parts is qualitative in nature and
signals (by the kink’s existence) a crossover behav-
ior from a liquid of diluted quasiparticles to their
truly correlated counterparts as one probes deeper
into the Fermi sea. Such an interpretation requires
further tests (see also further evidence in the next
section). The division is coded in the selection of

Fig. 4. Doping dependencies of the SC gap
∆eff (k) at k = (π, 0) for different approximation
schemes [6], curves 1–6, and for t′/t = −0.27 and
J/|t| = 0.3. Large filled circles represent experimen-
tal data. Two values of t have been selected.

the wave function in the form (2), which contains
a nonunitary projector P̂ , and is amplified by the
fact that the starting (uncorrelated) wave function
|ψ0〉 also has nontrivial nature and is determined in
a self-consistent manner that encompases also the
states with broken symmetry from the start. We
should note at the end that such a mixed Fermi–
non-Fermi liquid properties have been also observed
in the transport properties [14].

4. Detailed testing of the theory:
Equilibrium properties

In this section we discuss selected detailed char-
acteristic of high-temperature superconductors ob-
tained within our real-space pairing among all itin-
erant electrons in our two-dimensional system.
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Fig. 5. (a) Experimental energy dispersion along
the nodal direction for La1.9Sr0.1CuO4 extracted
from [11, 12]. The slopes of solid lines are obtained
theoretically from the effective Hamiltonian (red)
and first moment of the electron spectral function
(red) for δ = 0.1. (b) Doping-dependence of quasi-
particle characteristic velocities above and below
the kink (green and blue squares, respectively). Cor-
responding green and blue lines represent calculated
effective- and correlated velocities calculated using
k-DE-GWF method. The red line is the correlated
velocity multiplied by the calculated quasiparticle
weight Zk. (c) Calculated Zk as a function of dop-
ing (black points and lines), compared with experi-
mental data for Bi2Sr2CaCu2O8+x (red points, ex-
tracted from [13]). (d) Calculated Fermi wave vec-
tor along the nodal direction compared with data
for La2−xSrxCuO4 for the same parameter values
as those used in fitting curves in panels (a)–(c),
see [10].

4.1. Inadequacy of the renormalized
mean-field theory

Our work started with the analysis of the so-
called renormalized mean-field theory (RMFT),
which has been very popular in the first
decade after the discovery of superconductivity
in the nonstochiometric oxide La2−xBaxCuO4−δ

Fig. 6. Doping dependence of Fermi velocity in
the nodal [(0, 0) → (π, π)] direction. Experimen-
tal data (see [6]) are marked by diamonds for
YBa2Cu3O7−δ (YBCO), squares (LSCO), and solid
circles (BSCCO). Two t values have been selected.

and YBa2Cu3O7−δ. The approach was originally
based on an improved version of the Gutzwiller
approximation [15]. In our case, it takes the form
of statistically consistent Gutzwiller approximation
(SGA) [6]. In this approximation, the regime of dop-
ing, where the superconductivity exists is shown
in Fig. 4a, b. The presence of antiferromagnetism
at low doping can be reproduced qualitatively only
after a careful selection of the carried out detailed
SGA approximation scheme [16]. Furthermore, both
the dependences of the (correlated) superconduct-
ing gap (see Fig. 4a) and particularly, of the disper-
sion relation of the single-particle excitations ob-
tained from ARPES (see Fig. 5a, b) are not repro-
duced correctly. Explicitly, as we can see from the
data included in Fig. 6b and on the basis of our later
analysis based on the full DE-GWF (see Fig. 5), the
Fermi velocity is rather flat, whereas the theoretical
results shown in Fig. 6a, b exhibit the Fermi-liquid
type of relative energy, diminishing steadily with
decreasing doping. These results forced us to look
for a theory, in which the SGA (or RMFT) results
can be corrected in an essential way. In Sect. 4.2
we provide selected principal results illustrating the
usefulness of our DE-GWF approach.

4.2. Additional results: Beyond mean-field theory
and comparison with experiment

The most striking result to a theorist may be the
fact, discovered experimentally some time ago [17],
that the transition to the superconducting state,
particularly in the regime of low doping, δ . 0.1,
takes place with the kinetic energy of the system
getting lowered by the transition from the para-
magnetic to superconducting phase. This is shown
in Fig. 7a, where the results (squares with the error
marked) have been plotted against the relative dop-
ing δ − δopt, where δopt is the optimal doping. Our
theoretical curves require a more detailed explana-
tion. Namely, the full curves represent our DE-GWF
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Fig. 7. Selected superconducting properties. (a)
Kinetic energy gain ∆Ekin vs relative hole dop-
ing δ − δopt (δopt is the optimal doping). The mi-
croscopic parameters are J = 0.2|t|, U = 22.6|t|
(for blue solid lines) and J = 0.2|t|, U = 16|t|
(for red solid lines); the experimental points are
taken from [5]. For comparison, the results obtained
with SGA method (gray dashed line) and those
for the t–J model (J = 0.25|t|) in DE-GWF ap-
proximation (dash-dotted line) are also included.
Note that only the t–J–U model solution describes
the data in a quantitative manner. (b) Correlated-
gap magnitude ∆G and (c) the condensation energy
∆EC = ESCG − EPMG , both vs δ, are also shown for
the respective values of microscopic parameters and
models.

solutions for two slightly different values of param-
eters within the t–J–U model [3]. The other two
(dashed and dot-dashed) curves represent the SGA
and the t–J model (beyond-SGA) solutions, respec-
tively. None of the latter two solutions reproduces
the singular behavior at low doping, at least for the
type of detailed approach chosen. Parenthetically,
the fact that only the t–J–U model, combined ad-
ditionally with the DE-GWF, reflects the data in
a quantitative manner, tells us that in order to re-
produce them fully, one is forced to go beyond either
the Hubbard or the t–J model. In such a situation,
we interpret the simultaneous presence of both the
Hubbard term with realistic values of U ' 8–10 eV
and the kinetic exchange with its superexchange
magnitude J ' 0.1 eV, as an implicit influence of
the anionic 2px,y bands, not included in the stan-
dard one-band model, and producing the exchange
interaction of desired magnitude, while keeping the
Hubbard U in the realistic range at the same time.

Fig. 8. The phase diagram comprising various
charge-density-wave states: (a) theory and (b) ex-
periment [3, 18–20]. For detailed discussion of vari-
ous order-parameter components see [3]. Note that
the onset of pair-density wave (PDW) induces also
a small s-wave type of ordering in the system with
the primary d-wave SC ordering. Pure d-wave su-
perconducting phase appears only at and above the
optimal doping, as observed.

In Fig. 7b and c we show the correlated gap mag-
nitude of the d-wave solution and the condensation
energy, respectively (the curve labelling and their
meaning is the same as that in Fig. 7a). Note that
∆G ' 0.03–0.05 = 15 meV ' 160 K which is of
the order of experimental value of TC , but is sub-
stantially higher. This last fact is understandable as
we do not account for thermodynamic and quantum
fluctuations. Also, the condensation energy, i.e., the
difference between the ground-state energies in nor-
mal and SC states is of the same magnitude and
is strongly, but systematically, decreasing with in-
creasing δ. Comparing Fig. 7a and Fig. 7c we see
that surprising lowering with diminishing δ is re-
lated to the corresponding kinetic-energy decrease.
Such difference in behavior may be the sign of the
quantum spin–liquid effects, which are interrupted
by the carrier localization. For detailed discussion
of phase diagram and associated with it crossover
from non-BCS to BCS-like see [3].
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In the last decade, the presence of the charge-
order presence has been intensely discussed, also
in the context of the appearance of hidden charge
density-wave quantum critical point at the optimal
doping [17]. Leaving detailed discussion aside, we
have analyzed the effect of finite-range correlations
within our DE-GWF method [3] on the appearance
of the charge-density-wave-type (CDW) state also
with possible pair-density-wave (PDW) presence.
We plotted in Fig. 8a the theoretical results and
compared them with experimental data [3, 18–20].
Note the qualitative agreement between the two. In
theory, the most remarkable is the charge-splitting
analog to the Fulde–Ferrell state in the split elec-
tronic structure, which seems to reflect the experi-
mental shape of the phase diagram. In passing, one
can note the astonishing richness of phases for the
two-dimensional structure of this model. The rela-
tion of those features to the persistence of the van
Hove singularity in the correlated state should per-
haps be discussed in more detail.

To illustrate further the relevance of our results,
we have calculated, for the (approximately) same
values of the microscopic parameters, the selected
single-particle characteristics in the correlated state
and within the three-band model [3]. They are quite
similar to those obtained within the single-band
model [9]. Explicitly, in Fig. 9 we display the doping
dependence of the Fermi velocity (a), Fermi wave
vector (b), and effective mass (c). What is surpris-
ing, is a rather weak δ dependence throughout the
metallic phase. The dotted line represents our the-
oretical results, in the case (c) for two systems:
La–Sr–Cu–O (LSCO) and Y–Ba–Cu–O (YBCO),
respectively. Therefore, it is tempting to say that
a nonmonotonic dependence of the critical temper-
ature (TC) or the correlated superconducting gap
magnitude ∆G is induced mainly by the competing
character of the kinetic, exchange, and intraatomic
Hubbard interactions. An analogical situation arises
in the systems near the Mott–Hubbard insulator–
metal transition [21].

At the end, one should note that a discussion
of the onset on nemacity appears also in the sys-
tems, and was discussed within DE-GWF [22]. All
in all, these results demonstrate the usefulness and
effectiveness of the DE-GWF method, which rep-
resents a systematic approach beyond the mean-
field type approach for these strong correlated sys-
tems. The whole approach bases on finite but large
U (U & W ) combined with strong superexchange
interactions.

5. Extension: Paramagnons and plasmons
dynamic excitations

So far, the whole DE-GWF analysis was based
on taking into account the static intersite corre-
lations of increased range [1], starting from SGA.
We have extended this analysis to collective dy-
namic excitations (paramagnons and plasmons) by

Fig. 9. The basic characteristics calculated for the
three-band model. (a) Fermi velocity vF, (b) Fermi
wave-vector kF, and (c) effective mass enhancement
meff/me as a function of hole doping δ. The param-
eters are: tpd = 1 eV, tpp = 0.4 eV, εpd = 3.2 eV,
Ud = 11 eV, and Up = 4.1 eV. Note a quite
smooth δ dependence of all the single-electron
parameters.

starting again from SGA and including long-range
quantum fluctuations in the lowest order within
1/N expansion [22–25]. Here, we summarize briefly
only the results for spin fluctuations spectrum in
the Gaussian approximation. The results are sum-
marized in the panels composing Fig. 10. The the-
oretical results are marked by the color scale (on
the right side of the panels) and by the broken
curves in Fig. 10a–c. The curves in Fig. 10f and g
compare the theoretical results explicitly with ex-
periment, as well as show the differences for the
doping δ = 1−n = 0.12 between those obtained in
random phase-approximation (RPA) and those ob-
tained in SGA (i.e., without correlations included).
Only the full theory SGA+1/N compares excel-
lently with experiment. A similar theory can be
formulated for the plasmon excitations [22–25] (see
also the relevant contribution to this volume [26]).
One should mention that in describing the exhibited
paramagnon-excitation characteristics, a standard
damped oscillator representation of the theoretical
results was involved. This approximate (Lorentzian)
representation of the excitation spectrum should be
considered carefully, and perhaps, a more general
approach is required. We should see a progress along
this line in the near future.
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Fig. 10. Imaginary parts of transverse dynamical spin susceptibility for obtained within one-orbital Hubbard
model with nearest- and next-nearest-neighbor hopping integrals included, and comparison with experiment
for La2−δSrδCuO4 (LSCO). The model parameters are t = −0.34 eV, U = 7|t|. Panels (a) and (b) represent
magnetic response at half filling (n = 1) in the antiferromagnetic state, obtained within SGAx+1/Nf and RPA,
respectively. The spectra are similar and both of them match neutron scattering data for LSCO (red circles).
The dashed lines are the paramagnon energies obtained from theoretical intensities using damped harmonic
oscillator model. Panels (c) and (d) result from the same analysis, but for hole-doped system (n = 0.88) in the
paramagnetic state. Here, the differences are qualitative, i.e., the SGAx + 1/Nf method yields propagating
magnetic excitations along Γ–M line, whereas within RPA one obtains overdamped dynamics (see dashed
curves and was discussion in the text). The agreement of the SGA+1/N with RIXS data (diamonds) is semi-
quantitative. Panel (e) shows SGAx + 1/Nf results in the antiferromagnetic phase at lower temperature. In
(f)–(g) we compare the theoretical RPA and SGAx + 1/Nf paramagnon dispersion with experiment, see [22].

6. Conclusions

We have overviewed here selected basic char-
acteristics of high-temperature superconducting
cuprates. This paper summarizes some of the main
results elaborated in detail in a comprehensive re-
view [1]. The principal results and their favor-
able (semi)quantitative comparison with experi-
ment support the fundamental concept of strong
correlations combined with superexchange (kinetic
exchange in one-band version of the theory) as the
mechanism of the spin–singlet d-wave pairing in the
cuprates. As we showed in [1] and also here, it is in-
dispensable to formulate the theory beyond any ver-
sion of the (renormalized) mean-field theory. What
is still lacking is the incorporation of the quantum
spin and charge fluctuations in the single-particle
description of the normal-state properties to repro-
duce (or correct) the properties such as the lin-
ear electrical resistivity or pseudogap presence, to
obtain a more complete quantitative picture. We
should be able to see a progress along these lines
in the near future. Also, the form of a single-band
starting Hamiltonian relation to its more general
three-band formulation, with an explicit inclusion
of the superexchange in the metallic phase, should
be reanalyzed carefully. Finally, the role of the third
dimension is still to be incorporated into our theory

to see explicitly the correction (if any) of the apical
(interplane) oxygen may have in the formation of
the 3d superconducting state.

Parenthetically, this article concludes the series
of the minireviews published in the present journal
over the years [27, 28].
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Appendix: From classical Coulomb
repulsion to extended Hubbard model

The classical repulsive Coulomb interaction be-
tween two charges is long-range, changing with their
mutual distance |ri − rj | as

V12 ≡ V (ri − rj) =
1

κ

q1q2

|ri − rj |
. (13)

177



J. Spałek

For continuous charge densities n(ri) and n(rj), it
takes the static Lenard–Wiechert form

V12 =
e2

κ

∫
d3r d3r′

n(r)n(r′)

|r − r′|
. (14)

For ni(r) = δ(r−ri), (14) reduces to (13). In turn,
in wave mechanics, the interaction between two
charges is

V12 =
e2

κ

∫
d3r d3r′

|φ1(r)|2|φ2(r′)|2

|r − r′|
, (15)

where now |φi(r)|2 is the probability density for the
i-th particle. Finally, in quantum field theory, the
static interaction for indistinguishable particles is of
the following operator form

V̂ =
1

2

∑
ijkl

∑
σσ′

Vijkl â
†
iσâ
†
jσ′ âlσ′ âkσ, (16)

with

Vijkl=

∫
d3rd3r′ φ∗iσ(r)φ∗j (r

′)
e2

κ|r−r′|
φk(r)φl(r

′).

(17)
The indices (i, j, k, l) run over all possible single-
particle states φiσ(r)i=1,2,...,N , and (σ, σ′) are spin
quantum numbers for particular fermions char-
acterized by (i, j, k, l). We see that in (17), the
probability densities |φi(r)|2 and |φj(r′)|2 are re-
placed by quantities φ∗i (r)φj(r

′) and φk(r)φl(r
′),

respectively. We may say that they express roughly
overlap functions, but strictly speaking, the states
φi(r) and φj(r) are usually orthogonal, i.e.,∫

d3rφ∗i (r)φ∗j (r) = δij .

The question we are interested in is what hap-
pens if the wave functions φi(r) are close to their
atomic counterparts. In that limit, (i, j, k, l), when
selected as the parent atomic-state site positions,
are far enough from each other that the largest con-
tribution to (17) comes from the term i = j = k = l,
i.e.,

Viiii =
e2

k

∫
d3r d3r′

|φi(r)|2|φi(r′)|2

|r − r′|
. (18)

We call this term a director Coulomb interaction
term and this form of potential effectively has (15)
(also (14)). Now, (16) in the second quantization
reduces to the Hubbard interaction term if we take
only (18) out of all the terms appearing in (17).
Hence,

V̂ (1) ≡ 1

2

∑
iσ

Viiii n̂iσn̂iσ̄ ≡ U
∑
i

n̂i↑n̂i↓. (19)

In other words, this term predominates over all re-
maining terms if the overlap functions φ∗i (r)φj(r

′)
are the only relevant quantities for i = j, so the
neighboring atomic states φi(r) and φj(r) are well
separated. This assumption is the fundamental con-
cept validating Hubbard’s model, which represents
a particular limit of (16), namely

Ĥ =
∑
ijσ

tij â
†
iσâjσ + U

∑
i

n̂i↑n̂i↓. (20)

This (still unsolved) model applies to many physical
systems, albeit often only semiquantitatively.

In the present analysis, the nearest-neighbor
Coulomb interactions are also important. Then, we
are dealing with two-state (two-site) terms, namely

V̂ (2) =
1

2

∑
ij

′
Kij n̂in̂j −

1

2

∑
ij

′
JHij

(
ŜiŜj −

1

4
n̂in̂j

)
+

1

2

∑
ijσ

′
Vij
′(n̂iσ + n̂jσ)(â†iσ̄âjσ̄ + â†jσ̄âiσ̄)

+
∑
ij

′
J ′ij(â

†
i↑â
†
i↓âj↓âj↑ + h.c.),

(21)
where the first term is the direct Coulomb intersite
term, the second represents the direct (Heisenberg)
exchange interaction, the third is the so-called cor-
related hopping, and the last term is the pair hop-
ping term (for details see [1]). The first two terms,
when added to (20), give the extended Hubbard
model. Note that the exchange term (second term)
contains also the effective kinetic exchange inter-
action, hence, Jij becomes negative. In effect, by
redefining the constants Jij ≡ JHij − Jkex (where
”kex” labels kinetic exchange contribution), Vij =
1
2Kij + 1

4Jij , we obtain the t–U–J–V model in the
form

Ĥ =
∑′

iσ

tij â
†
iσâiσ + U

∑
i

n̂i↑n̂i↓

+
∑′

ij

JijŜiŜj +
1

2

∑′

ij

Vij n̂in̂j .

(22)
The results obtained with this model and its par-
ticular versions are discussed in detail in the main
text.
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