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The pure Bose–Hubbard model, a staple of optical lattice-related research that describes bosonic con-
densation, is examined at finite temperatures. Advanced analytical methods are used, most importantly
path integrals and quantum rotors. A first-order trace approximation is commonly applied while in-
tegrating over bosonic fields to obtain a phase-only model. Here, a second-order trace approximation
is considered instead. This extension leads to an effective phase model with two types of superfluid,
i.e., standard Bose–Einstein condensation and additional temperature-driven bosonic pair condensa-
tion. This effective model is further treated with a self-consistent harmonic approximation in order to
compare the two superfluids. This analysis shows that the pairing mechanism strengthens the conden-
sate phase at finite temperatures.
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1. Introduction

The quantum phase transition between the two
ground states of the Bose–Hubbard (BH) model,
i.e., the superfluid (SF) state and the Mott insula-
tor (MI) state, is a staple of the study of strongly-
correlated systems in low temperatures [1–5], par-
ticularly on optical lattices. The transition to the
normal state is also observed at finite tempera-
tures [4–7].

Atom pairs have been observed in the depletion
of an equilibrium interacting Bose gas by Tenart
et al. [8], who used helium 4 and combined long
time-of-flight (TOF) with three-dimensional detec-
tion method.

Many-body correlations (MBCs) are always
present in optical lattice systems, even when only
the standard Hamiltonian is used to analyze exper-
imental data [9–11]. In the BH model with density-
induced tunnelling, MBCs lead to bosonic pair con-
densation [12]. However, MBCs are not the only
possible source of bosonic pairing.

We carry out a path integral analysis of the
Bose–Hubbard model, using the U(1) quantum ro-
tor method [3]. The usual strategy in quantum rotor
approaches is to reach a phase-only effective model
and perform Gaussian integration. The next step
is the series expansion of the Green’s function of
the effective model. This expansion is usually ap-
proximated to first-order terms only. We show that
temperature-driven pair condensation is anticipated
by this model, provided terms of higher order are
also preserved.

The self-consistent harmonic approximation [13]
is applied to the effective phase model. The order
parameters are calculated to map the transitions
between the normal phase and two others: single-
particle Bose–Einstein condensate (BEC) and pair
condensate. Introducing the density of states allows
us to analyse and compare the properties of this
model in different geometries, although here we fo-
cus on a simple cubic lattice. The methods used pro-
vide a natural way to analyze effective many-body
correlations.

2. Methods

The Hamiltonian of the Bose–Hubbard model is

H =
U

2

∑
i

ni (ni−1)−
∑
〈i,j〉

tija
†
iaj − µ

∑
i

ni,

(1)
with on-site repulsion U > 0, chemical potential µ,
hopping integral tij = t, and annihilation aj (cre-
ation a†i ) operator of a particle at j-th site. The path
integral partition function and the effective action
are, respectively,

Z =

∫
{DāDa} e−S[ā,a], (2)

and

S =
∑
i

β∫
0

dτ āi (τ)
∂ai (τ)

∂τ
+

β∫
0

dτ H (τ) . (3)

The Hubbard–Stratonovich and gauge transfor-
mations allow us to integrate over bosonic fields,
bringing us to a phase-only model with the follow-
ing partition function
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Z =

∫
Dϕ exp

[
−
∑
i


β∫

0

dτ

(
1

2U

(
ϕ̇i(τ)

)2
+

µ̄

iU
ϕ̇i(τ)

)
+ Tr

[
ln
(
G−1

) ]
]
, (4)

where
G−1 = G−1

0 − T = G−1
0 (1− TG0) , (5)

G−1
0 =

(
∂

∂τ
+ µ̄

)
δij , (6)

T = tij e− i (ϕi(τ)−ϕj(τ)). (7)

The trace can be approximated to the second order
as

Tr
[

ln
(
G−1

) ]
= −Tr

[
ln (G0)

]
− Tr

[
(TG0)

]
− 1

2U
Tr
[

(TG0)
2 ]
.

(8)
Further, G0 is expanded as the sum of two compo-
nents, i.e., the bosonic G0 and the imaginary time-
dependent G(τ), which after Fourier transform are

G0 = b20 =
2 (zt+ µ̄)

U
, (9)

Γ =
1

β

∑
n

− iωn + µ̄

ω2
n + µ̄2

. (10)

These transformations lead to an effective phase
model with

S [ϕ] =

β∫
0

dτ

U

∑
i

(
∂ϕi
∂τ

)2

+

β∫
0

dτ

−J∑
〈i,j〉

cos(ϕij)−J
′ ∑
〈i,j〉

cos(2ϕij)


(11)

and exact expressions for the two coefficients
J

t
=

2
(
zt+ 1

2U+µ
)

U
, (12)

J
′

t
=

t

U

[
2
(
zt+ 1

2U+µ
)

U

]2

+
t
U z

2 sinh2
(

1
2β
(

1
2U+µ

)) .
(13)

The interaction terms represent two different or-
dered phases, with two order parameters, namely
Ψϕ ≡ 〈cos(ϕi)〉 (single) and Ψ2ϕ ≡ 〈cos(2ϕi)〉
(pair). The imaginary time-dependent part of J

′

disappears in the zero temperature limit.
The self-consistent harmonic approximation is

applied, with the trial function

S0 [ϕ] =

β∫
0

dτ

 1

U

∑
i

(
∂ϕi
∂τ

)2

+
K

2

∑
〈i,j〉

ϕ2
ij

 .
(14)

According to the variational principle for free en-
ergy, one reads

F ≤ F̃ = F0 +
1

β

〈
S − S0

〉
. (15)

Minimising F̃ by requiring that δF̃ = 0 yields the
eponymous self-consistent equation for K

J e−
1
2Dij −K = 0, (16)

where Dij =
〈
ϕ2
ij

〉
. Summing over nearest neigh-

bours and introducing the density of states allows
us to obtain an analytical expression for Dij

Dij =
1

z

∫
dξ

√
(z−ξ)U

2K
coth

(
β

2

√
(z−ξ)KU

2

)
.

(17)

The single and pair order parameters

Ψ1 =
〈

cos(ϕi)
〉

= e−
1
2 〈ϕ2

i 〉, (18)

Ψ2 =
〈

cos(2ϕi)
〉

= e−2〈ϕ2
i 〉, (19)

can also be calculated. The use of the density of
states allows us to analyse their properties and crit-
ical behaviour both analytically and numerically,
in various geometries. The following results have
been generated for a three-dimensional simple cubic
lattice.

Fig. 1. The single Ψ1 and pair Ψ2 order parame-
ters on a simple cubic lattice for t/U = 0.085. (a)
Model without pair term. (b) Model with pair term.

158



Pairing Mechanism at Finite Temperatures in Bosonic Systems. . .

3. Results

Figure 1 shows a comparison of the temperature
dependence of order parameters in two models: (i)
single order parameter in the standard phase model,
without a pair term,

S [ϕ] =

β∫
0

dτ

 1

U

∑
i

(
∂ϕi
∂τ

)2

−J
∑
〈i,j〉

cos(ϕij)

 ,
(20)

and (ii) single and pair condensate order parameters
in the full version (11). The single hopping is t/U =
0.085 and the chemical potential is µ/U = 1.5. The
temperature is T ′ = T/U = 1/(βU).

In the extended phase model, the pair condensate
is generated by imaginary time dynamics. Similar
to pairing generated by density-induced tunnelling
(DIT) [12], the presence of the cos(2ϕij) pair term
in (11) strengthens the condensate phase, mean-
ing the superfluid survives in higher temperatures.
However, in this case, there is no phase separation;
the critical temperature is the same for single and
pair condensates.

Figure 2 shows the entropy

S = −∂F̃
∂T

, (21)

with and without the cos(2ϕij) term. The compari-
son is presented for two values of the single hopping,
t/U = 0.015 and t/U = 0.085.

Fig. 2. Dependence of entropy on temperature on
a simple cubic lattice in the single model (20) and
in the single + pair model (11) for (a) t/U = 0.015;
(b) t/U = 0.085.

4. Conclusions

The results shown in this work are obtained by
a quantum rotor path integral analysis of the Bose–
Hubbard model. The standard procedure is to ob-
tain phase-only effective models, perform Gaussian
integration, and series expansion of the result of this
integration. We expand on this procedure by includ-
ing higher-order terms in the effective action after
the series expansion. We show that temperature-
driven pair condensation is anticipated by one of the
second-order terms in this model. This finite tem-
perature pair condensation is driven by imaginary
time dynamics.

In addition to generating pair condensation,
bosonic pairing also strengthens the superfluid
phase, which means it survives at higher temper-
atures.
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