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In this work, we analyze the impact of non-adiabatic effects on the superconducting energy gap in
hole-doped graphene. By using the Eliashberg formalism beyond Migdal’s theorem, we present that
non-adiabatic effects strongly influence the superconducting energy gap in the exemplary boron-doped
graphene. In particular, non-adiabatic effects, as represented by the first-order vertex corrections to
the electron–phonon interaction, supplement the Coulomb depairing correlations and suppress the su-
perconducting state. In summary, the obtained results confirm previous studies on superconductivity
in two-dimensional materials and show that the corresponding superconducting phase may be notably
affected by non-adiabatic effects.
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1. Introduction

The discovery of graphene has led to the ever-
growing interest in its electronic properties [1].
Among the various electronic aspects, notable at-
tention was given to the induction of the conven-
tional superconducting state in this material. In this
respect, one of the most promising scenarios were re-
alized via doping graphene with foreign atoms [2–5].
In general, there are two main routes to enhance
the graphene’s electron–phonon coupling (λ). The
first is the so-called surface functionalization, where
metal atoms are deposited on the surface of the
monolayer [2, 6, 7]. Unfortunately, in this approach,
the resulting critical temperature of the supercon-
ductive state (TC) is rather low. However, the sec-
ond strategy aims at introducing impurities that
act like electron or hole dopants and lead to much
higher TC values [3, 4, 8].

Along with relatively high TC values of sub-
stitutionally doped graphene, such material ex-
hibits a shallow conduction band [3, 4], similarly
to fullerenes and fullerides [9–12]. This leads to
a significant value of the ratio of the phonon to
electron energy scales (ωD/EF, where ωD is the
Debye’s frequency and EF denotes Fermi energy),
which cannot be neglected in the framework of
Migdal’s theorem [13]. Such behavior results in non-
adiabatic effects strongly influencing the supercon-
ducting phase [14, 15]. As suggested in [14, 16],
non-adiabatic effects may have nontrivial impact

on the electron–phonon interaction, as can be ob-
served from the behavior of the order parameter.
For example, the proper characterization of these
effects in graphene has recently been described for
the electron-doped graphene structures in [8]. To be
specific, the authors of [8] showed that the contribu-
tion of non-adiabatic effects rises upon the increase
of the Coulomb interaction.

With respect to the above, we investigate non-
adiabatic effects in the case of hole-doped graphene
to determine their impact on the order param-
eter and the TC value. To do so, we employ
the Eliashberg equations [17] with the first or-
der vertex-corrections [11, 15, 18]. Calculations are
made for the 50% boron-doped graphene struc-
ture (h-CB) under biaxial tensile strain ε = 5%
and at a moderate level of dopant electrons (n =
−0.2|e|/unit cell) [4].

2. Theoretical model

As already mentioned, the present analysis is
based on the Eliashberg formalism [17, 19]. Con-
ventionally, this formalism is employed within the
adiabatic regime, i.e., by assuming Migdal’s theo-
rem [13]. However, to analyze the non-adiabatic ef-
fect the Eliashberg equations are additionally gen-
eralized here by considering the first-order ver-
tex corrections to the electron–phonon interac-
tion [14, 18, 20].
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Specifically, we assume that the adiabatic Eliash-
berg equations on the imaginary axis have the
form

φn = πkBT

M∑
m=−M

[
Kn,m − µ? θ(ωc − |ωm|)

]√
ω2
mZ

2
m + φ2

m

φm,

(1)

Zn = 1 + πkBT

M∑
m=−M

Kn,m√
∆2
m + ω2

m

ωm
ωn

Zm. (2)

where φn = φ(iωn) denotes the order parame-
ter function and Zn = Z(iωn) is the renormaliza-
tion factor of the wave function. In what follows,
kB is Boltzmann’s constant, T denotes temperature,
and ωn represents the n-th Matsubara frequency
(ωn = πkBT (2n+ 1)). In this framework, M is the
cut-off value for calculations and is equal to 1100, so
the numerical calculations are stable for T > 5 K.
Moreover, µ?n = µ? θ(ωc−|ωn|) is the Coulomb pseu-
dopotential that models the depairing correlations,
where θ is the Heaviside function and ωc represents
the cut-off frequency.

In the above equations, the electron–phonon pair-
ing kernel is expressed as

Kn,m ≡ 2

ωD∫
0

dω ω

4π2k2
BT

2(n−m)2 + ω2
α2F (ω),

(3)

where α2F (ω) denotes the Eliashberg function for
a given ω phonon energy

α2F (ω) =
1

2πρ (EF)

∑
qν

δ(ω − ωqν)
γqν
ωqν

, (4)

whereas

γqν = 2πωqν

∑
ij

∫
d3k

ΩBZ

∣∣gqν(k, i, j)
∣∣2

× δ(Eq,i − EF) δ(Ek+q,j − EF). (5)
In (5), ωqν gives the phonon energies values and
γqν denotes the phonon linewidth. In this context,
the electron–phonon coefficients are represented by
gqν(k, i, j) and Ek,i stands for the electron band en-
ergy. Note that higher order corrections are not in-
cluded in (3) and that the momentum dependence
of the electron–phonon matrix elements has been
neglected in (6) and (7) (according to the local ap-
proximation). Therefore, the order parameter can
be written as ∆n(T, µ?) = φn/Zn. Finally, note that
for the purpose of our research, we use the Eliash-
berg function given in [4]. It is important to re-
mark, that the resulting cutoff frequency in (1) is
ωC = 10ωmax with the maximum phonon frequency
equal to ωmax = 124.47 meV.

With respect to the presented adiabatic equa-
tions, the introduction of the first-order vertex cor-
rection terms leads to the non-adiabatic Eliashberg
equations (N-E) of the following form [8, 20]

φn = πkBT

M∑
m=−M

Kn,m − µ?m√
ω2
mZ

2
m + φ2

m

φm − β
π3 (kBT )

2

4EF

×
M∑

m=−M

M∑
m′=−M

Kn,mKn,m′√
(ω2
mZ

2
m + φ2

m) (ω2
m′Z2

m′ + φ2
m′)

(
ω2
−n+m+m′Z2

−n+m+m′ + φ2
−n+m+m′

)
×
(
φmφm′φ−n+m+m′ + 2φmωm′Zm′ω−n+m+m′Z−n+m+m′ − ωmZmωm′Zm′φ−n+m+m′

)
, (6)

and

Zn = 1 +
πkBT

ωn

M∑
m=−M

Kn,m√
ω2
mZ

2
m + φ2

m

ωmZm − β
π3 (kBT )

2

4EF ωn

×
M∑

m=−M

M∑
m′=−M

Kn,mKn,m′√
(ω2
mZ

2
m + φ2

m) (ω2
m′Z2

m′ + φ2
m′)

(
ω2
−n+m+m′Z2

−n+m+m′ + φ2
−n+m+m′

)
×
(
ωmZmωm′Zm′ω−n+m+m′Z−n+m+m′ + 2ωmZmφm′φ−n+m+m′ − φmφm′ω−n+m+m′Z−n+m+m′

)
.

(7)

Note that when the vertex-corrections contribution
terms are neglected, the above Eliashberg equations
take the adiabatic form of (1) and (2).

3. Results and discussion

We begin our discussion by noting that the adi-
abatic (A-E) and the non-adiabatic (N-E) equa-
tions presented in the previous section allow us to

obtain the order parameter dependence on temper-
ature in the form ∆n(T, µ?) = φn/Zn. This is done
by using numerical techniques presented originally
in [20–22]. In such an analysis, special attention is
paid to the maximum value of the order parameter
∆m=1(T, µ?), which is equal to zero when T = TC
and µ? = µ?C . In other words, it allows us to deter-
mine the critical value of temperature for a given
critical value of the Coulomb pseudopotential (µ?C),
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Fig. 1. The temperature dependence of the order parameter for selected µ values. The adiabatic Eliashberg
solutions are marked by purple symbols whereas the non-adiabatic results by gray ones. Solid lines are guides
to an eye.

which is considered here as a free parameter. The
latter was assumed due to the fact that in the lit-
erature there are no experimental predictions of TC
for hole-doped graphene.

Specifically, our analysis is constrained to three
different values of µ?C . In this way, we can span
a relatively wide range of the µ? values, allowing
future comparisons with the existing literature on
graphene-based superconductors [22–24] or with ex-
perimental estimates. Figure 1 depicts the results
of the numerical analysis for three different val-
ues of µ?. Adiabatic solutions are represented by
purple symbols, while gray symbols correspond to
non-adiabatic Eliashberg equations associated with
vertex corrections. The presented results exhibit
the conventional behavior for superconductors with
electron–phonon pairing mechanism, where ∆m=1

has plateau at lower temperatures and decreases
quickly for higher temperatures.

However, the main observation can be made
when comparing adiabatic and non-adiabatic re-
sults. Namely, the inclusion of vertex corrections
in the theoretical framework leads to the decrease
of the ∆m=1 parameter for the entire range of
T and µ?. Thermodynamic properties originat-
ing from this fact may be observed in the ex-
periment. To be specific, lower ∆m=1 for non-
adiabatic equations leads to TC ∈ 〈54.4, 36.6〉 K
compared to the values obtained for the adia-
batic scenario TC ∈ 〈55.8, 37.9〉 K. Therefore, non-
adiabatic effects slightly lower the critical temper-
ature by ∼ 1%. We note that upon comparison
with electron-doped graphene [8], the decrease of
TC is smaller. For the h-CN structure, changes
are actually noticeable. To be specific, in the non-
adiabatic framework, the critical temperature de-
creases by about 30%. Henceforth, non-adiabatic
effects in hole-doped graphene are more favorable
from the standpoint of keeping the nominal TC as

high as possible. The influence of non-adiabatic ef-
fects is another suppressor of high TC values next to
the Coulomb pseudopotential. The implications of
non-adiabatic effects can also be seen at the origin
of the temperature axis. In particular, ∆m=1 for T0,
which corresponds to the half-width of the super-
conducting gap (∆), is also lower for non-adiabatic
solutions than in the adiabatic case. Upon the in-
crease of µ?, ∆ ∈ 〈10.3, 6.7〉 meV for the adiabatic
case and ∆ ∈ 〈9.6, 6.0〉 meV for the non-adiabatic
case. Hence, the inclusion of the vertex corrections
decreases the values of ∆ by ∼ 5% and ∼ 10%,
respectively. By comparison with the twin h-CN
material, the results of these corrections are signif-
icantly smaller [8]. In fact, non-adiabatic effects in
the electron-doped graphene reduce the value of the
order parameter by about 40%.

From the perspective of future experimental
search, the obtained values of ∆ and TC param-
eters may not insufficient for the identification of
non-adiabatic effects in hole-doped graphene. Thus,
one should calculate the characteristic ratio for the
order parameter [19]

R∆ ≡
2∆(0)

kBTC
. (8)

In fact, (8) originates from the BCS theory [25, 26]
and as a dimensionless parameter it is impor-
tant from the perspective of experiments conducted
in the future. Here, using (8) we obtain R∆ ∈
〈4.08, 3.79〉 and R∆ ∈ 〈4.28, 4.09〉. Again, non-
adiabatic effects lead to the reduction of the ther-
modynamic parameter value. It is important to
note that for both types of the Eliashberg equa-
tions, the R∆ parameter values are higher than the
standard BCS value of 3.53 [19, 25, 26]. Moreover,
the difference between the non-adiabatic and adia-
batic values of the characteristic ratio R∆ is much
smaller than the ratio encountered in the case of its
nitrogen-doped counterpart [8]. From the analysis
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TABLE I

The thermodynamic quantities of hole-doped
graphene calculated in the present paper: critical
temperature TC , superconducting gap half-width
(∆), and characteristic ratio R∆. Results are ob-
tained for the adiabatic (A-E) and non-adiabatic
(N-E) Eliashberg approach.

µ?
TC (A-E)

[K]
TC (N-E)

[K]
∆ (A-E)
[meV]

∆ (N-E)
[meV]

R∆

(A-E)
R∆

(N-E)
0.1 55.8 54.4 10.3 9.6 4.27 4.08
0.2 44.1 43.1 8.1 7.3 4.16 3.96
0.3 37.9 36.6 6.7 6.0 4.09 3.79

presented above, one can also conclude that the re-
tardation effects and strong coupling affect super-
conducting state in hole-doped graphene.

4. Conclusions

We have tackled theoretical and numerical analy-
sis within the Eliashberg theory to discuss the pos-
sible impact of non-adiabatic effects on the thermo-
dynamic properties of the superconducting state in
hole-doped graphene (h-CB). Our analysis has been
performed to analyze the behavior of the critical
temperature (TC), the superconducting gap half-
width (∆), and the dimensionless BCS-ratio for the
order parameter (R∆). The values of these param-
eters for adiabatic and non-adiabatic equations are
summarized and presented in Table I. Is it clear that
the inclusion of non-adiabatic effects via vertex cor-
rections to the electron–phonon interaction reduces
the values of the thermodynamic parameters. It is
also worth noticing that for the stronger electron-
coupling, displayed by higher values of µ?, the non-
adiabatic effects become slightly stronger. In other
words, the Coulomb interaction is supplemented by
non-adiabatic effects. Moreover, these effects are
significantly smaller than in the case of the electron-
doped graphene analyzed in [8]. This means that
hole-doped graphene is more robust against non-
adiabatic effects since these effects minimally lower
its critical temperature (TC).

Finally, the results presented here supplement
the observations conducted for the electron-doped
graphene structure [8]. Compared to the electron-
doping, the hole-doped structure is more robust
against the non-adiabatic effects [8]. However, the
superconducting properties will still be reduced in
the framework of the vertex-corrected Eliashberg
equations. In general, hole-doped graphene may be
a still interesting choice for phonon-induced super-
conducting material.
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