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Doping is one of the most prominent techniques to alter the properties of a given material. Herein, the
influence of the electron- and hole-doping on the selected superconducting properties of graphene are
considered. In detail, the Migdal–Eliashberg formalism is employed to analyze the specific heat and
the critical magnetic field in the representative cases of graphene doped with nitrogen or boron. It is
found that electron doping is much more favorable in terms of enhancing the aforementioned properties
than its hole counterpart. These findings are appropriately summarized by means of the dimensionless
thermodynamic ratios, familiar in the Bardeen–Cooper–Schrieffer theory. To this end, the perspectives
for future research on superconductivity in graphene are drawn.
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1. Introduction

The two-dimensional carbon allotrope known as
graphene became one of the most important ma-
terials in nanoscience due to its wide range of in-
triguing properties [1–3]. In particular, much effort
has been devoted to the exploration of superconduc-
tivity in various graphene-based structures [4–10].
Since superconductivity in pure graphene is ab-
sent, doping it with non-carbon elements turned out
to be an efficient approach toward the induction
of the discussed phase [4–6, 11, 12]. Such promis-
ing behavior led to many considerations over re-
cent years. In general, graphene modifications were
proposed to induce not only conventional but also
unconventional superconductivity [7–10], with the
former phase being more anticipated because of
its strong theoretical foundations. Strictly speak-
ing, the conventional (phonon-mediated) supercon-
ductivity can be induced in graphene by increasing
the electron-phonon coupling parameter (λ). This
can be done by doping graphene with electrons
or holes. A prominent example of such a process
is lithium-decorated graphene [4], graphane [5], or
nitrogen/boron-doped graphene [6].

In the context of the above developments,
nitrogen/boron-doped graphene [6] appears as
an exemplary material to study the low-dimensional
superconducting phase of interest. This is due

to the fact that both of the mentioned materi-
als exhibit relatively high superconducting proper-
ties and allow comparing the two doping strate-
gies on the same footing. Therefore, we attempt
to investigate the hitherto not discussed thermo-
dynamic properties of the boron- and nitrogen-
doped graphene. In particular, we use the Eliash-
berg formalism to analyze the critical magnetic
field and the specific heat. Such analysis is con-
ducted for the 50% nitrogen/boron-doped graphene
structure (h-CN/h-CB) under biaxial tensile strain
(ε = 15.6%/ε = 5%) and at the moderate doping
level of holes/electrons (p = 0.4|h|/unit cell/n =
−0.2|e|/unit cell) [6]. Our work is organized as fol-
lows: in Sect. 2, we describe the theoretical model of
the Migdal–Eliashberg equations. Next, in Sect. 3,
we discuss the specific heat and related quantities
obtained from the numerical analysis of the theo-
retical model. This study is concluded with a sum-
mary and remarks regarding future perspectives in
Sect. 4.

2. Theoretical model

In order to describe the thermodynamic proper-
ties of the electron- (h-CN) and hole-doped (h-CB)
graphene, we adopt the isotropic approximation
of the Migdal–Eliashberg equations [13–15]. From
the obtained solutions of the Migdal–Eliashberg
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Fig. 1. The free energy difference (panels (b) and (d)) and the critical magnetic field (panels (a) and (c)) as
a function of temperature for the selected µ∗ values in (a)–(b) the electron- (h-CN) and (c)–(d) hole-doped
graphene (h-CB).

equations on the imaginary axis, we are able to de-
termine the order parameter (∆n = ∆(iωn)) with
the associated wave function renormalization factor
(Zn = Z(iωn)), given as
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(2)
where β = 1/(kBT ) denotes inverse temperature,
with kB being the Boltzmann constant. In what
follows, the Matsubara frequency can be writ-
ten as ωn = (π/β) (2n−1). Moreover, K(z) =
2
∫ ωmax

0
d(α2F (ω)ω)

[
(ωn−ωm)2 + ω2

]
and stands

for the electron–phonon paring kernel. Note that
the α2F (ω) function, conventionally referred to as
the Eliashberg function, is adopted from the study
of Zhou et al. [6]. Therein, this function was cal-
culated for all cases of interest within the den-
sity function theory, as implemented in the Quan-
tum ESPRESSO package. To this end, in (2), the
electron–electron depairing interactions are mod-
eled by the Coulomb pseudopotential (µ?) parame-
ter, defined as µ? ≡ µ? θ(ωc−|ωm|), where θ is the
Heaviside function.

The introduced Eliashberg equations are solved
here by using the self-consistent iterative proce-
dures developed previously in [16]. The stability of
the numerical procedures is reached at around the
2201 Matsubara frequencies, assuming T0 = 2 K
and the phonon frequency cut-off (ωc) equal to
10ωmax, where ωmax = 132.6 meV (h-CN) and

ωmax = 124.5 meV (h-CB) and denotes the max-
imum value of the phonon frequency defined by
the adopted α2F (ω) function. Finally, µ? is set to
0.1–0.3, as suggested by Ashcroft [17].

3. Results and discussion

We are starting the description of the selected
thermodynamic characteristics by recalling the free
energy difference between the normal and supercon-
ducting state (∆F )

∆F

ρ(0)
= −2π

β

M∑
m=1

(√
ω2
m + ∆2

m − |ωm|
)

×
(
ZSm −

|ωm|√
ω2
m + ∆2

m

ZNm

)
,

(3)
with the renormalization factors ZSm and ZNm for
the superconducting (S) and normal (N) state. In
panels (b) and (d) in Fig. 1, we have presented
the dependence of the ∆F/ρ(0) on the temperature
for both considered structures. We remark that the
negative values of the considered function confirm
the thermodynamic stability of the superconducting
phase for the h-CN (a, b) and h-CB (c, d). More-
over, it is observed that the increase of the Coulomb
pseudopotential leads to the decrease of the ∆F (0)
parameter, since[

∆F (0)
]
µ∗=0.3[

∆F (0)
]
µ∗=0.1

≈ 0.63 (4)

and[
∆F (0)

]
µ∗=0.3[

∆F (0)
]
µ∗=0.1

≈ 0.44, (5)
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Fig. 2. The specific heat for the superconducting and normal state as a function of the temperature for the
selected µ∗ values in (a) the electron- (h-CN) and (b) hole-doped graphene (h-CB). The specific heat jump at
the critical temperature is marked by the solid vertical line.

for h-CN and h-CB, respectively (assuming
F (0) = F (T0)). Clearly, the free energy difference
for the boron-doped graphene is less robust towards
an increase of µ∗. Next, by using the ∆F/ρ(0) func-
tion, the magnetic critical field can be obtained from
the formula

HC√
ρ(0)

=

√
(−8π)

∆F

ρ(0)
. (6)

The panels (a) and (c) in Fig. 1 represent the
thermal behavior of the critical magnetic field
for the selected values of the parameter µ∗. It
can be observed that the HC/

√
ρ(0) function de-

creases with the increase in temperature. More-
over, the value of the critical field strongly di-
minishes upon the increase of the Coulomb pseu-
dopotential. This fact can be seen from the ra-
tios obtained for the electron- and hole-doping case,
respectively,[

HC(T0)
]
µ∗=0.3[

HC(T0)]µ∗=0.1

≈ 0.8 (7)

and[
HC(T0)

]
µ∗=0.3[

HC(T0)
]
µ∗=0.1

≈ 0.66. (8)

From the values of these ratios, one can conclude
that the superconducting state for the h-CN is more
stable under the change of the Coulomb pseudopo-
tential.

Accordingly, the thermal characteristics of the su-
perconducting phase CS from the difference in the
specific heat between the superconducting and nor-
mal state (∆C = CS − CN ) takes form

∆C

kBρ(0)
= − 1

β

d2
∣∣∆F/ρ(0)

∣∣
d(kBT )2

, (9)

where the specific heat of the normal state has
been obtained from the formula

CN

kBρ(0) = γ
β , (10)

with the Sommerfeld constant given as
γ ≡ 2π2

3 (1+λ). The detailed derivation of (9)
and (10) can be seen in [15, 18]. In Fig. 2, we have
presented the thermal behavior of the specific heat
CN and CS for the h-CN and h-CB materials,
respectively. Both functions increase with the
increase in temperature: for the superconducting
state, CS changes exponentially at low tempera-
tures, while for the normal state, the increase of
the values is linear. Moreover, the specific heat of
the superconducting phase is also affected by the
increase of the Coulomb pseudopotential, as can
be seen from the analysis for µ∗ ∈ {0.1, 0.2, 0.3}. Is
it worth noting that a characteristic jump in the
CS occurs for T = TC , and the value of the specific
heat jump is lowered by the depairing electron
correlations in the h-CN and h-CB structures. In
fact,[

∆C(TC)
]
µ∗=0.3[

∆C(TC)
]
µ∗=0.1

≈ 0.67 (11)

and[
∆C(TC)

]
µ∗=0.3[

∆C(TC)
]
µ∗=0.1

≈ 0.55 (12)

for the electron- and hole-doped graphene, respec-
tively. It is important to notice that the described
behavior matches the expected characteristics
for phonon-mediated superconductivity, as stated
in [15]. Hence, it can be stated that the results
presented in Figs. 1 and 2 are consistent with
the electron-phonon pairing mechanism of the
discussed graphene structures.
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TABLE I

Values of the thermodynamic parameters of the su-
perconducting state for the h-CN and h-CB.

h-CN h-CB
λ 3.35 1.34
ωmax [meV] 132.6 124.5
ωc [meV] 10ωmax 10ωmax

µ? 〈0.1, 0.2, 0.3〉 〈0.1, 0.2, 0.3〉
TC [K] 〈105.6, 92.2, 83.8〉 〈55.9, 44.9, 38.1〉
2∆(0) [meV] 〈47.95, 41.36, 37.22〉 〈20.59, 16.09, 13.43〉
R∆ 〈5.27, 5.21, 5.16〉 〈4.27, 4.16, 4.09〉
RC 〈2.87, 2.72, 2.28〉 〈2.41, 2.39, 1.74〉
RH 〈0.128, 0.125, 0.125〉 〈0.138, 0.140, 0.144〉

To this end, we note that our previous analysis
allows us to calculate the dimensionless thermody-
namic parameters:

RH =
TC C

N (TC)

H2
C

, RC =
∆C(TC)

CN (TC)
,

(13)
and

R∆ =
2∆(0)

kBTC
,

values of which are presented in Table I. The esti-
mated values are different from their counterparts
obtained within the Bardeen–Cooper–Schrieffer
(BCS) theory: [RH ]BCS = 0.168, [RC ]BCS = 1.43,
and [R∆]BCS = 3.53 [19, 20]. Therefore, the anal-
ysis presented here suggests the pivotal role of the
retardation and strong coupling effects in the con-
sidered graphene structures.

4. Conclusions

In this work, we have extended previous inves-
tigations of the superconducting state in the h-
CN and h-CB allotropes, initiated originally in [6],
based on the combination of the density functional
theory and the Allen–Dynes modified McMillan for-
mula [21]. Herein, we have conducted the analy-
sis within the Migdal–Eliashberg formalism in or-
der to account for the strong-coupling and phonon-
mediated character of the superconducting phase
in these graphene structures. In this manner, the
presented study complements not only the work by
Zhou et al. [6] but also our previous investigations
of the conventional superconductivity in graphene-
[11, 12, 22, 23] or generally carbon-based struc-
tures [24–26]. This is to say that the presented dis-
cussion constitutes a contribution to the wider re-
search domain aimed at the search for a strong con-
ventional superconducting phase in low-dimensional
carbon structures.

To be specific, the presented analysis involved
a description of the thermodynamic critical field,
the free energy difference, and the specific heat for
the superconducting state in both scenarios. In or-
der to be as general as possible, our analysis has

been performed for the three different values of
the Coulomb pseudopotential µ∗ ∈ {0.1, 0.2, 0.3}.
It was shown that doping graphene with electrons
seems to be more favorable in terms of enhancing its
superconducting properties than in the case of the
hole-doping procedure. Our analysis also confirmed
the strong-coupling behavior of the considered ma-
terials. The dimensionless ratios (R∆, RC , RH), as
presented in Table I, clearly reinforce this statement
since each one of them notably exceeds the limits
of the Bardeen–Cooper–Schrieffer theory [19, 20].
This is due to the fact that Eliashberg equations
are considered to provide quantitative rather than
qualitative results for the strong-coupling supercon-
ductors (λ > 0.5) [15, 27]. Such quantitative eluci-
dation is somewhat confirmed by the TC values ob-
tained within the Eliashberg formalism (again, see
Table I), which are predicted to be higher than the
values calculated based on the Allen–Dynes modi-
fied McMillan formula, as shown in [6]. Note that
such a trend was observed previously in terms of
other strong-coupling and phonon-mediated super-
conductors, with the related Eliashberg estimates
being in close agreement with the experimental pre-
dictions (see, e.g., studies on Ba1−xKxBiO3 [28]
or Pb [29]).
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