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We theoretically investigate a second-order optomechanically induced transparency process of a cigar-
shaped dual-species Bose–Einstein condensate with nonlinear collisions trapped inside an optomechan-
ical cavity. We find that atomic collisions provide linear couplings, which facilitate the mechanical
mixing of the dual-species Bose–Einstein condensate. We derive analytical expressions of the output
transmission intensity of the probe field and the dimensionless amplitude of the second-order sideband.
The numerical results show that the transmission intensity and the dimensionless amplitude of the
second-order sideband can be controlled by the control field intensities, the effective detuning, and the
effective coupling strength of the Bogoliubov mode of the dual-species Bose–Einstein condensate and
optical mode. Furthermore, the interspecies and intraspecies interactions are also used to control the
transmission intensity and the dimensionless amplitude of the second-order sideband.
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1. Introduction

Cavity optomechanical systems (COMS) have
attracted considerable attention and are develop-
ing rapidly, and the mechanical effects of light on
both mesoscopic and macroscopic mechanical os-
cillations have been described [1–4]. In the field
of COMS, there has been a great surge of inter-
est in various systems, such as an optical field with
a movable end mirror [5–8], nanomechanical can-
tilevers [9, 10], a micro-mechanical membrane os-
cillating [11, 12], vibrating microtoroids [13, 14],
atomic ensembles [15–18], and a Bose–Einstein con-
densate (BEC) inside two fixed cavities [19–21]. Re-
cently, much attention is also focused on the stud-
ies of the hybrid COMS with atomic ensembles or
BEC, in which the excitation of a collective mode
of the cold atomic ensembles or BEC (the so-called
Bogoliubov mode) plays the role of the vibrational
mode of the moving mirror [22–24].

Moreover, a lot of interesting phenomena have
been proved theoretically and experimentally in
the hybrid COMS, such as optomechanically in-
duced transparency (OMIT) [25–27], normal mode
splitting [28, 29], optomechanical storage [30, 31],
quantum-coherent coupling [31–34], quantum en-
tanglement generation [35–38], the second-order
sideband (SS) or even higher-order sidebands (HS)
effect [39–44], and so on. Furthermore, one of the

most important features of this hybrid COMS is in-
herent nonlinearity, which is caused by the mutual
interaction between the cavity field and the mat-
ter inside (the atomic ensemble or the Bogoliubov
mode) [45, 46]. In addition, there is also another
nonlinearity induced by an atom–atom interaction
in hybrid COMS containing the cold atomic ensem-
ble or BEC [47, 48]. In recent years, the hybrid
COMS could be used to study a variety of exotic
effects due to the nonlinear nature of interactions,
especially OMIT and the SS effect. However, even
though the nonlinear SS effect is much weaker in
comparison with the probe field, the generation of
nonlinear OMIT effects and the SS signals is use-
ful for more flexible control of light in the hybrid
COMS.

Motivated by these exciting features, we consider
a cigar-shaped dual-species Bose–Einstein conden-
sate (DBEC) trapped in an optical cavity [49–56].
In addition to considering the interspecies and in-
traspecies interaction, we give the full model of
a DBEC cavity optomechanical system, which is
driven by an external laser. There are many ad-
vantages of using DBEC trapped inside an op-
tomechanical cavity. Firstly, it changes the effec-
tive oscillation frequencies of both the cavity mode
and the Bogoliubov mode of DBEC and also af-
fects their relaxation times [52–54]. Furthermore,
the coupling interaction and interspecies and in-
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traspecies interaction strengths can use Feshbach
resonances to realize [55, 56]. More importantly, it
can make the system controllable to obtain OMIT
and the SS effects.

In this paper, we consider a cigar-shaped DBEC
coupled with an optical cavity, and, taking into ac-
count the discrete mode approximation, we give
an effective COMS model with the collective DBEC
modes playing the role of mechanical oscillators in
Sect. 2. We give the analytic expression of the trans-
mission intensity |tp|2 of the probe field and the
dimensionless amplitude ηs of SS by the quantum-
Langevin equations. Based on the analytical expres-
sions, the numerical results in Sect. 3 show that the
effect of the transmission intensity and the dimen-
sionless amplitude of SS can be controlled effectively
by the control cavity field intensities, the effective
detuning, the effective coupling strength of the opti-
cal field with the Bogoliubov mode of the collective
oscillation of the dual-species BEC, and interspecies
and intraspecies interaction strengths. Finally, we
give a summary in Sect. 4.

2. The model of the system

The cavity optomechanical system we considered
is shown schematically in Fig. 1, and consists of
a cigar-shaped DBEC inside a single-mode, high-
finesse Fabry-Pérot cavity with length L, both mir-
rors or which are fixed. The effective Hamiltonian of
DBEC and cavity in the frame rotating at a driving
field frequency ωpu is [55–57]

Ĥ =

2∑
i,j 6=i

~
[
ωi
2

(
P̂ 2
i + Q̂2

i

)
+ UiiQ̂

2
i +

Uij
2
Q̂iQ̂j

]

+ ~
2∑
i=1

ξi ĉ
†ĉ Q̂i + ~∆

′

c ĉ
†ĉ+ i~ εpu

(
ĉ† − ĉ

)
+ i~ εpr

(
ĉ† e− iδt − ĉ e iδt

)
.

(1)
Here, Q̂i and P̂i represent two mechanical oscilla-
tors’ position and momentum operators; P̂ 2

i + Q̂2
i

represent the energy of independent oscillators;
Q̂2
i is the energy of the intraspecies oscillator;

Q̂iQ̂j is the energy of the interspecies oscilla-
tor in the first term. The second term represents
the nonlinear COMS interactions between DBEC
and cavity field with the optomechanical coupling
strength ξi; ∆

′

c = ωc
′−ωpu is the effective optical

detuning between COMS and pump laser field, and
∆ = ωpr−ωpu is the detuning between probe laser
field and external pump laser field. The second line
of (1) describes the energy of the cavity field, the
strong pump laser field, and the weak probe laser
field. The classical light inputs with frequency ωpu
and ωpr, and εpu and εpr are related to the laser
power. The Hamiltonian (1) corresponds to a two-
mode COMS; (P̂1, Q̂1) is the first mechanical mode,
and (P̂2, Q̂2) is the second mechanical mode. In this
form of the Hamiltonian, the effect of intraspecies

Fig. 1. The hybrid optomechanical system con-
sisting of an ultracold dual-species Bose–Einstein
condensate trapped inside an optical cavity. The
cavity is driven by a strong pump laser with fre-
quency ωpu and a weak probe laser with frequency
ωpr.

oscillator coupling and interspecies oscillator cou-
pling interaction is implied in both frequencies ωi
of the Bogoliubov modes. In (1), the effective reso-
nance frequencies and oscillator couplings are

ωi =
2~k2

mi
+

2

L
NiU

′

ii +
1

L
NjU

′

ij , (2)

Uii =
2

L
NiU

′

ii, (3)

Uij =
2

L

√
NiNj U

′

ij , (4)

ω
′

c = ωc +
1

2

∑
i=1,2

NiUi. (5)

Here mi is the atomic mass; k = 2π
λ is the wave

vector; Ni is the atom number; U
′

ii is intraspecies
oscillator coupling; U

′

ij is the interspecies oscillator
coupling; ωc is the central frequency of the cavity
field (ωc = nπc

L ) and 1
2NiUi is the frequency shift of

the empty cavity resonance induced by the conden-
sate of species i; Ui = gi/(ωc−ω

′

i), where gi is the
single photon Rabi frequency and ω

′

i is the atomic
resonance frequency.

Adding the damping terms, the coupled quantum
Langevin equations can be obtained as
dĉ

dt
= −(κ+i∆

′

c)ĉ− iξ1Q̂1ĉ− iξ2Q̂2ĉ

+εpu + εpr e− iδt, (6)

dQ̂1

dt
= ω1P̂1 − γ1Q̂1, (7)

dQ̂2

dt
= ω2P̂2 − γ2Q̂2, (8)

dP̂1

dt
= −(ω1+2U11)Q̂1 − U12Q̂2 − ξ1ĉ†ĉ− γ1P̂1,

(9)

dP̂2

dt
= −(ω2+2U22)Q̂2 − U12Q̂1 − ξ2ĉ†ĉ− γ2P̂2.

(10)
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The nonlinear (6)–(10) can be linearized via rewrit-
ing each mean value of the Heisenberg operator as
its steady state value plus an additional perturba-
tion correction, i.e., 〈c〉 = c0+δc, 〈Qi〉 = Qi0+∆Qi
and 〈Pi〉 = Pi0 + ∆Pi. The steady-state solution of
the system can be obtained as

c0 =
εpu√
κ2 + ∆2

, (11)

Q10 = −ξ1|c0|
2 + U12Q20

ω1 + 2U11 +
γ2
1

ω1

, (12)

Q20 = −ξ2|c0|
2 + U12Q10

ω2 + 2U22 +
γ2
2

ω2

(13)

with ∆ = ∆
′

c + ξ1Q10 + ξ2Q20 as the effective de-
tuning. Note that c0, Q10 and Q20 are the static
solution of the intracavity field and the DBEC dis-
placement, respectively. Next, we consider the per-
turbation made by the probe field — the linearized
equations can be written as

dδc

dt
= −(i∆ + κ)δc− iξ1(c0δQ1 + δcδQ1)

− iξ2
(
c0δQ2 + δcδQ2

)
+ εpr e− iδt, (14)

dδQ1

dt
= ω1δP1 − γ1δQ1, (15)

dδP1

dt
= −(ω1 + 2U11)δQ1 − U12δQ2

−ξ1
(
c∗0δc+ c0δc

∗ + δcδc∗
)
− γ1δP1, (16)

dδQ2

dt
= ω2δP2 − γ2δQ2, (17)

dδP2

dt
= −(ω2 + 2U22)δQ2 − U12δQ1

−ξ2
(
c∗0δc+ c0δc

∗ + δcδc∗
)
− γ2δP2. (18)

Considering SS but ignoring the HS, the pertur-
bation of (14)–(18) can be written as
δc = c−1 e− iδt+c+1 e iδt+c−2 e−2 iδt+c+2 e2 iδt, (19)

δQ1 = Q−11 e− iδt+Q+
11 e iδt+Q−12 e−2 iδt+Q+

12 e2 iδt,

(20)

δP1 = P−11 e− iδt+P+
11 e iδt+P−12 e−2 iδt+P+

12 e2 iδt,

(21)

δQ2 = Q−21 e− iδt+Q+
21 e iδt+Q−22 e−2 iδt+Q+

22 e2 iδt,

(22)

δP2 = P−21 e− iδt+P+
21 e iδt+P−22 e−2 iδt+P+

22 e2 iδt.

(23)
These parameters can be obtained by substituting
(19)–(23) into (14)–(18) and comparing the coeffi-
cients of the same order. We can obtain the first-
order sideband equations as

(κ+i∆− iδ)c−1 = − iξ1c0Q
−
11 − iξ2c0Q

−
21 + εpr,

(24)

(κ+i∆+iδ)c+1 = − iξ1c0Q
+
11 − iξ2c0Q

+
21, (25)

− iδQ−11 = ω1P
−
11 − γ1Q

−
11, (26)

iδQ+
11 = ω1P

+
11 − γ1Q

+
11, (27)

− iδP−11 = −(ω1 + 2U11)Q−11 − U12Q
−
21 − γ1P

−
11

−ξ1
(
c∗0c
−
1 +c0c

+∗
1

)
, (28)

iδP+
11 = −(ω1 + 2U11)Q+

11 − U12Q
+
21 − γ1P

+
11

−ξ1
(
c∗0c

+
1 +c0c

−∗
1

)
, (29)

− iδQ−21 = ω2P
−
21 − γ2Q

−
21, (30)

iδQ+
21 = ω2P

+
21 − γ2Q

+
21, (31)

− iδP−21 = −(ω2 + 2U22)Q−21 − U12Q
−
11 − γ2P

−
21

−ξ2
(
c∗0c
−
1 +c0c

+∗
1

)
, (32)

iδP+
21 = −(ω2 + 2U22)Q+

21 − U12Q
+
11 − γ2P

+
21

−ξ2
(
c∗0c

+
1 +c0c

−∗
1

)
. (33)

Based on the steady-state solutions (11)–(13),
we find the first-order sideband analytical expres-
sions

c−1 =

(
1 + if1(δ)|c0|2

)
εpr

κ+ i∆− iδ − 2∆f1(δ)|c0|2
, (34)

Q−11 =
A1(δ)c∗0εpr

κ+ i∆− iδ − 2∆f1(δ)|c0|2
, (35)

Q−21 =
A2(δ)c∗0εpr

κ+ i∆− iδ − 2∆f1(δ)|c0|2
, (36)

with
λ1(δ) =

ω1

ω1

(
ω1+2U11

)
+
(
γ1− iδ

)2 , (37)

λ2(δ) =
ω2

ω2

(
ω2+2U22

)
+
(
γ2− iδ

)2 , (38)

A1(δ) =
−λ1(δ)ξ1 + ξ2U12λ1(δ)λ2(δ)

1− λ1(δ)λ2(δ)U2
12

, (39)

A2(δ) =
−λ2(δ)ξ2 + ξ1U12λ1(δ)λ2(δ)

1− λ1(δ)λ2(δ)U2
12

, (40)

f1(δ) =
ξ21λ1(δ) + ξ22λ2(δ)− 2ξ1ξ2U12λ1(δ)λ2(δ)(

κ− i∆− iδ
)(

1−λ1(δ)λ2(δ)U2
12

) .

(41)
Then, we can get the SS equations as

(κ+i∆−2iδ)c−2 = − iξ1(c0Q
−
12+c−1 Q

−
11)

− iξ2(c0Q
−
22 + c−1 Q

−
21), (42)

(κ+i∆+2iδ)c+2 = − iξ1
(
c0Q

+
12+c+1 Q

+
11

)
− iξ2

(
c0Q

+
22 + c+1 Q

+
21

)
, (43)
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−2iδQ−12 = ω1P
−
12 − γ1Q

−
12, (44)

2iδQ+
12 = ω1P

+
12 − γ1Q

+
12, (45)

−2iδP−12 = −(ω1 + 2U11)Q−12 − γ1P
−
12 − U12Q

−
22

−ξ1
(
c∗0c
−
2 +c0c

+∗
2 +c−1 c

+∗
1

)
, (46)

2iδP+
12 = −(ω1 + 2U11)Q+

12 − γ1P
+
12 − U12Q

+
22

−ξ1
(
c∗0c

+
2 + c0c

−∗
2 +c+1 c

−∗
1

)
, (47)

−2iδQ−22 = ω2P
−
22 − γ2Q

−
22, (48)

2iδQ+
22 = ω2P

+
22 − γ2Q

+
22, (49)

−2iδP−22 = −(ω2 + 2U22)Q−22 − γ2P
−
22 − U12Q

−
12

−ξ2
(
c∗0c
−
2 + c0c

+∗
2 + c−1 c

+∗
1

)
, (50)

2iδP+
22 = −(ω2 + 2U22)Q+

22 − γ2P
+
22 − U12Q

+
12

−ξ2
(
c∗0c

+
2 + c0c

−∗
2 + c+1 c

−∗
1

)
. (51)

We find the SS analytical expressions and obtain c−2
as follows

c−2 =
− if1(2δ)c0

(
iξ1Q

−
11+iξ2Q

−
21

)2
+
(
(2∆−δ)f1(2δ)− 1

)(
iξ1c

−
1 Q
−
11− iξ2c

−
1 Q
−
21

)
κ+ i∆− 2iδ + 2∆f1(2δ)

(
κ− i∆− iδ

) , (52)

with
λ1(2δ) =

ω1

ω1

(
ω1+2U11

)
+
(
γ1− i2δ

)2 , (53)

λ2(2δ) =
ω2

ω2

(
ω2+2U22

)
+
(
γ2− i2δ

)2 , (54)

A1(2δ) =
−λ1(2δ)ξ1 + ξ2U12λ1(2δ)λ2(2δ)

1− λ1(2δ)λ2(2δ)U2
12

,

(55)

A2(2δ) =
−λ2(2δ)ξ2 + ξ1U12λ1(2δ)λ2(2δ)

1− λ1(2δ)λ2(2δ)U2
12

,

(56)

f1(2δ) =
ξ21 |c0|2A1(2δ) + ξ22 |c0|2A2(2δ)(
κ− i∆−2iδ

)(
κ− i∆− iδ

) . (57)

Next, we use the input-output relation
cout(t) = cin(t)−

√
2κ c(t), (58)

where cin and cout are the input and output op-
erators. For our hybrid COMS, we can obtain the
output field
cout(t) = (εpu/

√
2κ−
√

2κ c0)e− iωput

+ (εpr/
√

2κ−
√

2κ c−1 )e− i (ωpu+δ)t

−
√

2κ c+1 e− i (ωpu−δ)t −
√

2κ c−2 e− i (ωpu+2δ)t

−
√

2κ c+2 e− i (ωpu−2δ)t,
(59)

where cout(t) is the output field operator in the orig-
inal frame.

The terms (εpu/
√

2κ−
√

2κc0)e− iωput and
(εpr/

√
2κ−
√

2κc−1 )e− i (ωpu+δ)t describe the output
fields with the frequencies of the driven field
ωpu and the probe field ωpr, respectively. The
transmission of the probe field is defined as
tp =

εpr/
√
2κ−
√
2κ c−1

εpr/
√
2κ

, with the optical transmission
strength

|tp|2 =

∣∣∣∣∣εpr/
√

2κ−
√

2κ c−1
εpr/
√

2κ

∣∣∣∣∣
2

. (60)

The term
√

2κc+1 e− i (ωpu−δ)t describes the
Stokes process at the frequency 2ωpu−ωpr
in (59). The terms −

√
2κ c−2 e− i (ωpu+2δ)t and

−
√

2κ c+2 e− i (ωpu−2∆)t individually describe the
sideband process of upper and lower SS with
frequency 2ωpr − ωpu and 3ωpu − ωpr.

The amplitude of the input probe light is εpr,
while the amplitude of the output field with the
second-order sideband

√
2κc−2 e− i (ωpu+2δ)t. In order

to analyze the upper SS in our system, we introduce
the dimensionless quantity

ηs =

∣∣∣∣∣−
√

2κ c−2
εpr

∣∣∣∣∣ (61)

to describe the efficiency of the upper SS process.

3. Results and discussion

In order to better understand the transmission
intensity of the probe field and the dimension-
less amplitude of SS in the DBEC optomechani-
cal system, we choose the realistic parameters of
the hybrid COMS as follows [19, 53]. We consider
N1,2 = 1.2×105 DBEC inside an optical cavity with
length L = 178 µm, driven by single mode external
field with laser wavelength λ = 500 nm and the
intra-cavity optical mode with decay rate κ. Fur-
ther, the parameters of stable (87Rb–41K) DBEC
are m1 = 87µ0, m2 = 41µ0, µ0 ' 1.7 × 10−27 kg;
the frequency shifts are ω1 = 91 kHz = 7κ and ω2 =
117 kHz = 9κ with damping γ1 = γ2 = 0.001κ. The
results are based on some conditions; the first one
is the resolved sideband condition ωi � κ to ensure
that we can distinguish the normal mode splitting;
the second one is that the cavity is driven by the
red detuned cavity field ∆ = 1

2 (ω1 + ω2) = ω̄.
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Fig. 2. (a) Frequency spectrogram of transmission
spectra in the present system in DBEC optome-
chanical system. There is the upper SS generation
at the frequency 2∆ in a frame rotating at ωpu. (b)
Schematic of the energy-level diagram in the cavity
optomechanical system, where |N〉, |n1〉 and |n2〉
denote the number states of the cavity photon, and
two effective movable mirrors phonons, respectively.

Physically, we can explain the possible processes
in our system using a level diagram as shown
in Fig. 2. From the frequency spectrogram in
Fig. 2a, it can be seen that the output field of the
frequencies of the probe field ωpr and the upper
SS generation has the frequency of ωpu + 2∆. In
the energy-level diagram in Fig. 2b, |N,n1, n2〉 ↔
|N + 1, n1, n2〉 and |N + 1, n1, n2〉 ↔ |N + 2, n1, n2〉
transitions change the cavity field, |N+1, n1, n2〉 ↔
|N,n1 + 1, n2〉 and |N + 1, n1, n2〉 ↔ |N,n1, n2 + 1〉
transitions are caused by the radiation pressure cou-
pling, and |N,n1 + 1, n2〉 ↔ |N,n1, n2 + 1〉 transi-
tion is induced by the effective intraspecies inter-
action strengths. Such a nonlinear output field is
generated mainly by the combination of the four-
wave mixing process |N,n1, n2〉 → |N+1, n1, n2〉 →
|N + 2, n1, n2〉 → |N + 1, n1 + 1, n2〉 → |N,n1, n2〉
and the anti-Stokes process |N,n1, n2〉 → |N +
1, n1, n2〉 → |N + 1, n1 + 1, n2〉 → |N,n1, n2〉 me-
diated by |N,n1 + 1, n2〉 and |N,n1, n2 + 1〉, as de-
picted in Fig. 2b. The destructive interference has
two paths when the frequencies of the two reso-
nances ω1 6= ω2. The coupling between the oscil-
lator resonance frequency ω1 and ω2 not only adds
a new level but also breaks down the symmetry of
the OMIT interference, as shown in Fig. 2, which
means that the single OMIT window can split into
two OMIT windows. Due to the radiation pres-
sure, the coherent-induced splitting of OMIT of our
COMS is similar to driving a hyperfine transition
in an atomic Λ-type three-level system [58].

Fig. 3. (a) the transmission intensity |tp|2 and (b)
the dimensionless amplitude of the second-order
sideband ηs vary with ∆/ω̄ for different control
field intensities: (i) εpu = 0.03ω2 (the black dot-
ted line), (ii) εpu = 0.3ω2 (the yellow line), (iii)
εpu = 0.6ω2 (the blue dot line). The other param-
eters are: N1,2 = 1.2 × 105, ω1 = 2π × 91 kHz,
ω2 = 2π × 117 kHz, κ = 2π × 1.3 × 104 Hz, and
γ1 = γ2 = 0.001κ.

In order to modulate DBEC in the hybrid COMS,
we analyze the influences of the transmission inten-
sity and the dimensionless amplitude of SS on the
COMS parameters, including the control field inten-
sities, the effective detuning, the effective coupling
strength of the optical field with the Bogoliubov
mode of the collective oscillation of DBEC, and in-
terspecies and intraspecies interaction strengths in
Figs. 3–8.

First, we show the transmission intensity |tp|2 and
the dimensionless amplitude ηs of SS as function
of the normalized detuning ∆/ω̄ in the DBEC op-
tomechanical system for different control field inten-
sities: (i) εpu = 0.03ω2 (the black dotted line), (ii)
εpu = 0.3ω2 (the yellow line), (iii) εpu = 0.6ω2 (the
blue dotted line) in Fig. 3. Like the typical COMS,
there are two obvious phenomena, one is that the
efficiency of the transmission intensity generation
experiences an evident enhancement with the in-
crease of the control field intensities, another one
is that the width of transparency window is fur-
ther and further apart with the increase of the con-
trol field intensity in Fig. 3a. Moreover, we can also
clearly see that the dimensionless amplitude of the
SS generation experiences an obvious enhancement
with the increase of the control field intensities; the
asymmetric splitting effect of the SS peak appears
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Fig. 4. Calculation results of the transmission intensity |tp|2 and the dimensionless amplitude of the second-
order sideband ηs vary with ∆/ω̄ for different effective coupling between the Bogoliubov mode of the collective
oscillation of DBEC and optical mode: (i) ξ1 = 0.05ω2 (black dashed line), (ii) ξ1 = 0.1ω2 (yellow line), (iii)
ξ1 = 0.2ω2 (blue dashed line). The other parameters are the same as those of Fig. 3.

in Fig. 3b. The physical effect can be explained by
the fact that the number of photons in the cavity in-
creases as the strength of the control field increases,
and the SS effect will be induced due to the strong
photon pressure on the resonator enhancing the am-
plitude of the Bogoliubov mode of the collective os-
cillation of DBEC. As the power of the control field
becomes larger, SS experiences the conversion from
a weakness to an enhancement. As seen from the re-
sults obtained in Fig. 3, the transmission intensity
and the dimensionless amplitude of the SS genera-
tion can be effectively controlled by adjusting the
control field intensities.

Second, in order to see the effective coupling
strength of the optical field with the Bogoliubov
mode on the transmission intensity |tp|2 and the di-
mensionless amplitude ηs of SS, we plot the trans-
mission intensity and the dimensionless amplitude
as a function of the probe-pump detuning ∆/ω̄
for different effective coupling strengths: (i) ξ2 =
0.05ω2 (in panels (a) and (d)), (ii) ξ2 = 0.1ω2

(in panels (b) and (e)), (iii) ξ2 = 0.2ω2 (in pan-
els (c)and (f)) in Fig. 4. There are three obvi-
ous phenomena. First of all, it was discovered that
when the effective coupling between the Bogoliubov
mode of DBEC and optical mode are equal, i.e., (i)
ξ1 = ξ2 = 0.05ω2 (Fig. 4a black dashed line), (ii)
ξ1 = ξ2 = 0.1ω2 (Fig. 4b yellow line), and (iii)
ξ1 = ξ2 = 0.2ω2 (Fig. 4c blue dashed line), the
transmission intensity has two symmetrical OMIT
windows, the splitting effect of the SS peak appears,
and the peak on the left is higher than the peak
on the right. Secondly, when the effective coupling
between the Bogoliubov mode of DBEC and opti-
cal mode are not equal, i.e., (i) ξ1 = 0.05ω2 (black
dashed line), (ii) ξ1 = 0.1ω2 (yellow line), and (iii)
ξ1 = 0.2ω2 (blue dashed line) at the same coupling

intensity ξ2 = 0.05ω2 in panels Fig. 4a and Fig. 4d,
it can be clearly seen that symmetrical two OMIT
windows become asymmetrical, the splitting effect
of the SS peak appears on the left, and a single res-
onance peak appears on the right. Thirdly, as the
effective coupling strength increases, i.e., ξ2 = 0.1ω2

in Fig. 4b and e and ξ2 = 0.2ω2 in Fig. 4c and f,
the splitting effect of the SS peak appears on the
left and right. Figure 4 shows that the transmission
intensity and the SS effects can be achieved in such
COMS as expected. The nature of this phenomenon
can be understood as follows — concurrently with
the increase of the effective coupling between the
Bogoliubov mode of DBEC and the optical mode ξ1
and ξ2, the photon density in the cavity increases
greatly, which will induce strong photon pressure on
the Bogoliubov mode of DBEC. As a result, con-
trolling the effective coupling strength allows us to
change the transmission intensity |tp|2 and the di-
mensionless amplitude ηs of SS.

Moreover, effective detuning ∆ is an important
parameter used for modulating the transmission in-
tensity |tp|2 and the dimensionless amplitude ηs of
SS. Considering ∆ = ω1, ∆ = ω̄, and ∆ = ω2

in the calculation, we have plotted the transmis-
sion intensity |tp|2 (see Fig. 5a–c) and the dimen-
sionless amplitude ηs of SS (see Fig. 5d–f) vary-
ing with the effective detuning ∆/ω̄. There are two
very significant phenomena in Fig. 5 that will be
slightly different from those above for ∆ = ω̄. As
is shown in Fig. 5b and e, when the effective de-
tuning ∆ = ω̄, the transmission intensity |tp|2, and
the dimensionless amplitude ηs of the SS genera-
tion present a symmetrical profile with two split-
ting peaks. However, when ∆ = ω1 and ∆ = ω2 are
tuned not to be equal with ω̄, the symmetrical two
OMIT windows become asymmetrical, which can
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Fig. 5. Calculation results of the transmission intensity |tp|2 and the dimensionless amplitude of the second-
order sideband ηs vary with ∆/ω̄ for the three different effective atom-pump detuning: (i) ∆ = ω1, (ii) ∆ = ω̄,
(iii) ∆ = ω2. The other parameters are the same as those of Fig. 3.

Fig. 6. Calculation results of the transmission intensity |tp|2 and the dimensionless amplitude of the second-
order sideband ηs vary with ∆/ω̄ for different interspecies oscillator couplings: (i) U11 = 0 (black dashed line),
(ii) U11 = 0.1ω2 (yellow line), (iii) U11 = 0.2ω2 (blue dashed line); meanwhile in (a, d) U22 = 0, in (b, e)
U22 = 0.1ω2, in (c, f) U22 = 0.2ω2. The other parameters are the same as those of Fig. 3.

be seen in Fig. 5a and c. When ∆ = ω1 is tuned to
be less than ω̄, the right peak of the effective am-
plitude ηs profile is enhanced remarkably, and the
symmetry of two splitting peaks is broken, which
can be seen in Fig. 5d. When ∆ = ω2 is larger than
ω̄, the left peak of the dimensionless amplitude ηs
profile is amplified significantly, and the symmetry
of two splitting peaks is also broken, which can be
seen in Fig. 5f. Thus, adjusting the effective detun-
ing will affect the transmission intensity of probe
field and the dimensionless amplitude of SS.

Furthermore, the transmission intensity |tp|2 and
the dimensionless amplitude ηs of SS as a func-
tion of the normalized detuning ∆/ω̄ for different
intraspecies oscillator couplings: U11 = 0 (black

dashed line), U11 = 0.1ω2 (yellow line), U11 = 0.2ω2

(blue dashed line), and (a, d) U22 = 0, (b, e)
U22 = 0.1ω2, (c, f) U22 = 0.2ω2. This is shown
in Fig. 6. There are two obvious phenomena ob-
served. First one is when the interspecies oscilla-
tor coupling U22 is fixed, while U11 varies (U11 =
{0, 0.1ω2, 0.2ω2}). By comparing the corresponding
three different color curves in panels Fig. 6a and d, it
can be concluded that with the increase of the inter-
species oscillator coupling strength U11, the width
between the two peaks about OMIT and the ampli-
tude of SS become narrower and narrower. The one
is when the interspecies oscillator coupling U11 is
fixed, while U22 varies (for example, the blue dashed
line in Fig. 6). By comparing the blue dashed lines
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Fig. 7. Calculation results of the transmission intensity |tp|2 and the dimensionless amplitude of the second-
order sideband ηs vary with ∆/ω̄ for different interspecies oscillator coupling: (i) U12 = 0ω2 (black dashed line),
(ii) U12 = 0.1ω2 (yellow line), (iii) U12 = 0.2ω2 (blue dashed line) and (iv) U12 = 0.3ω2 (red line), meanwhile,
in panels (a) and (c), we use U11 = 0; in panels (b) and (d), we use U11 = 0.1ω2. The other parameters are
the same as those of Fig. 3.

Fig. 8. Contour maps of the transmission intensity |tp|2 including (a)–(c) and the dimensionless amplitude
of the second-order sideband ηs including (d)–(f) as a function of the effective atom-pump detuning ∆/ω̄
and the control field detuning ∆/ω̄ with different interspecies oscillator coupling and the interaction coupling
strengths. (i) U11 = 0 and U12 = 0 (a), (d), (ii) U11 = 0ω2 and U12 = 0.1ω2 (b), (e), and (iii) U11 = 0.1ω2 and
U12 = 0.1ω2 (c), (f). The other parameters are the same as those of Fig. 3.

in Fig. 6a–c and Fig. 6d–f, it can be concluded that
with the increase of the interspecies oscillator cou-
pling strength U22, the two peaks about OMIT and
the dimensionless amplitude of the SS shift to the
right, and at the same time, the width between the
two peaks becomes larger and larger. The reason
for this can be explained by the coefficient of the
analytical expressions for the output transmission
intensity and the dimensionless amplitude of SS

λi(∆) =
ωi

ωi(ωi+2Uii) + (γi− i∆)2
(62)

and
λi(2∆) =

ωi
ωi(ωi+2Uii) + (γi− i2∆)2

, (63)

where i = 1, 2. As follows from (62)–(63), first of
all, in our model we use ω1 < ω2, then notice the
expression in the denominator ω1(ω1 + 2U11) and
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ω2(ω2 + 2U22), by controlling the interspecies os-
cillator coupling, the frequency difference between
ω1(ω1 + 2U11) and ω2(ω2 + 2U22) break down the
symmetry of the OMIT interference and the dimen-
sionless amplitude of SS, and then symmetrical win-
dows become asymmetrical. These results confirm
that the interspecies oscillator coupling plays an im-
portant role in the transmission intensity and the
dimensionless amplitude of the SS generation.

In addition, the transmission intensity |tp|2 and
the dimensionless amplitude ηs of SS as a function
of the normalized detuning ∆/ω̄ for different in-
terspecies oscillator coupling: (i) U12 = 0 (black
dashed line), (ii) U12 = 0.1ω2 (yellow line), (iii)
U12 = 0.2ω2 (blue dashed line), and (iv) U12 =
0.3ω2 (red line) in the presence of the intraspecies
interaction, are shown in Fig. 7. There are two very
significant phenomena shown in Fig. 7. First one is
that when there are no interspecies and intraspecies
interactions in Fig. 7a and c (the black dashed line),
it can be clearly seen that symmetrical two OMIT
windows and the SS generation present a profile
with two splitting peaks. While in the presence of
the intraspecies interaction, but in the absence of
the interspecies interaction, as shown in Fig. 7a
and c (the yellow line, the blue dashed line, and the
red line), it can clearly be seen that symmetrical two
OMIT windows become asymmetrical, the splitting
effect of the SS peak appears on the right, and a sin-
gle resonance peak appears on the left with increase
the intraspecies interaction. The second one is that
when in the presence of the intraspecies interaction
and the interspecies interaction, as shown in Fig. 7b
and d, the two peaks about OMIT and the dimen-
sionless amplitude of the SS shift to the right, and
at the same time, the width between the two peaks
becomes larger and larger.

Finally, in order to see the effective detuning and
the effect of interspecies and intraspecies interac-
tion strengths on the transmission intensity |tp|2
and the dimensionless amplitude ηs of SS, we plot
the transmission intensity of probe field |tp|2 and
the dimensionless amplitude ηs of SS varying with
probe-pump detuning ∆/ω̄ and the effective de-
tuning ∆/ω̄ for three different interspecies and in-
traspecies interaction values: U11 = 0 and U12 = 0
(Fig. 8a, d), U11 = 0ω2 and U12 = 0.1ω2 (Fig. 8b, e),
and U11 = 0.1ω2 and U12 = 0.1ω2 (Fig. 8c, f). For
the three cases of |tp|2 (Fig. 8a–c) and ηs (Fig. 8d–
f), one can find that the transmission intensity |tp|2
and the dimensionless amplitude ηs of the SS de-
pends highly on the effective detuning ∆. Moreover,
with the interspecies and intraspecies interaction in-
creasing, the local maximums of |tp|2 and ηs have
a giant enhancement at the off-resonance position of
the probe-pulsed detuning. Physically, the detuning
management of nonlinear response plays an impor-
tant role in optical nonlinear modulation. This im-
plies that the frequency detuning between the cavity
field and control field changes the optical nonlinear
strength of COMS and affects the dimensionless am-

plitude of the SS output. Comparing |tp|2 in Fig. 8a–
c with ηs in Fig. 8d–f, for a fixed probe-pump de-
tuning, the maximums of |tp|2 and ηs are always
located in the extremely narrow frequency ranges,
where their corresponding transmission intensities
|tp|2 and the dimensionless amplitude ηs of SS show
an asymmetric dip, as shown in Figs. 6 and 7.

4. Conclusions

In conclusion, we have theoretically investigated
the efficient generation of the optical SS in a cigar-
shaped DBEC inside a single-mode, high-finesse
Fabry–Pérot cavity, both mirrors of which are fixed.
We show that the hybrid cavity photomechani-
cal system is different, mainly in the optomechan-
ical coupling between the cavity photons and the
two fictitious mirrors. We investigate the matter-
wave analog of OMIT and the dimensionless am-
plitude of SS under different parameter regimes.
First of all, we show that atomic collisions pro-
vide linear couplings between fictitious condensate
oscillators, which facilitates the mechanical mixing
of DBEC. We derive analytical expressions of the
output transmission intensity and the dimension-
less amplitude of SS. The numerical results show
that the transmission intensity and the dimension-
less amplitude of SS can be controlled by the inter-
species and intraspecies interaction. Furthermore,
the transmission intensity and the dimensionless
amplitude of SS can be controlled by the control
field intensities, the effective detuning, and the ef-
fective coupling strength of the Bogoliubov mode of
DBEC and the optical mode. We believe that this
new method of SS generation proposed here will be
implemented by current experiments in the future.
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