# Structural, Elastic, Electronic and Optical Properties Study of Hexahalometallate Single Crystals $X_2SnBr_6$ (X = Rb, Cs)

L. KRACHE<sup>*a*</sup>, M.A. GHEBOULI<sup>*b,c*</sup>, B. GHEBOULI<sup>*d*</sup>, M. FATMI<sup>*c*,\*</sup>, T. CHIHI<sup>*c*</sup> AND S.I. AHMED<sup>*e*</sup>, or controls of the state o

<sup>a</sup> PQSD Laboratory, Department of Physics, Faculty of Science, University Ferhat Abbas of Setif 1, Setif, 19000, Algeria

<sup>b</sup>Department of Chemistry, Faculty of Technology, University of Mohamed Boudiaf, M'sila, 28000, Algeria

<sup>c</sup>Research Unit on Emerging Materials (RUEM), University Ferhat Abbas of Setif 1, Setif, 19000, Algeria

<sup>d</sup>Laboratory of Studies Surfaces and Interfaces of Solids Materials, Department of Physics, Faculty of Science, University Ferhat Abbas of Setif 1, Setif 19000, Algeria

<sup>e</sup>Department of Physics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Received: 22.10.2022 & Accepted: 26.12.2022

Doi: 10.12693/APhysPolA.143.3

\*e-mail: fatmi@usa.com

We carried out a theoretical study on hexahalometallate single crystals  $X_2 SnBr_6$  (X = Rb, Cs) with the density functional theory framework, using generalized gradient approximation of the Perdew, Burke, and Ernzerhof and Heyd–Scuseria–Ernzerhof hybrid functional. The lattice constant of the compounds  $Cs_2SnBr_6$  and  $Rb_2SnBr_6$  is consistent with the experimental data currently available, with an uncertainty of 0.04% and 0.07%, respectively. For the first time, the elastic moduli of  $Cs_2SnBr_6$  at equilibrium and under pressure effect were estimated. When fitted to the Birch–Murnaghan equation of state, the bulk modulus of  $Cs_2SnBr_6$  and  $Rb_2SnBr_6$  obtained using the generalized gradient approximation optimization is closer to the experimental one. The interatomic distances of  $Cs_2SnBr_6$  are greater than those of  $Rb_2SnBr_6$ , because these distances are proportional to the radius of Cs (1.73 Å) and Rb (1.64 Å). The direct band gap  $\Gamma - \Gamma$  of 1.272 eV and 1.1019 eV for, respectively,  $Cs_2SnBr_6$  and  $Rb_2SnBr_6$  explains their semiconducting character. The Sn-s state dominates in the conduction band minima, indicating that Sn and Br are in ionic connection in both  $Cs_2SnBr_6$  and  $Rb_2SnBr_6$ .

topics: hexahalometallate, band structure, band gap, absorption

# 1. Introduction

Inorganic halide perovskites attract researchers because of their application as light-absorbing materials in photovoltaic cells. This family of hexahalometallate materials usually crystallizes in the face-centered cubic of the antifluorite structure  $K_2$ PtCl<sub>6</sub> with the space group Fm3m. The formula  $X_2MA_6$  describes these materials, where X is an alkaline metal, A is a halogen, and M is a polyvalent or heavy transition metal. In the antifluorite structure, the M cation occupies one face of a centered cube and is surrounded by an octahedron by the A anion located at  $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4})a_0$  along the equivalent of six cubic axes. The X ion is arranged in eight-fold cubic coordination around the M cation located at  $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) a_0$ , and each X ion is shared into four M cations. The M cation is coordinated by 12 A anion, while the X ion presents a coordination number

of 24 by an A anion. The potential for these materials to be used as absorbent materials for solar cells is what sparks interest in study of hexahalometallate  $X_2SnBr_6$  (X = Rb, Cs) materials. This work uses the generalized gradient of the Perdew, Burke, and Ernzerhof (GGA-PBESOL) approximation and the Heyd–Scuseria–Ernzerhof (HSE) hybrid functional to derive sufficient physical parameters for  $X_2SnBr_6$  (X = Rb, Cs). For a study carried out by other researchers, the geometry of the double perovskite structure depends on the chemical composition, temperature, and pressure [1]. The transition point in hexahalometallate X<sub>2</sub>MA<sub>6</sub> semiconductors is shifted to lower temperatures (< 77 K) with increasing size of the central metal atom (M) and decreasing size of the halogen ligands (A) [2]. Due to their high absorption coefficient, low reflectivity, low cost, variable band gap and high conversion efficiency for solar applications [3-5], the

complex halides  $X_2 SnBr_6$  (X = Rb, Cs) are of interest to researchers as absorbent materials [6, 7]. Lead-free perovskites, based on inorganic halides  $X_2SnBr_6$  (X = Rb, Cs), are stable and absorb light in solar cells [8]. N. Wruk et al. [9] experimentally studied the elastic constants of Rb<sub>2</sub>SnBr<sub>6</sub> at ambient temperature and equilibrium pressure by measuring ultrasonic wave velocity and Brillouin scattering. The investigation carried out by Yong Tang et al. [10] evaluates that lead-free perovskite  $Rb_2SnBr_6$  has a small effective mass, a direct band gap, and a high optical absorption coefficient of  $10^5$  cm<sup>-1</sup>; hence, it may be a potential candidate for an excellent light absorbing material [10]. M. Razzaq and M. Tarikul [11] determined the elastic constants of Rb<sub>2</sub>SnBr<sub>6</sub> at 0 GPa and a direct band gap of 1.228 eV. The possibility to find suitable optoelectronic quantities such as band gap, absorption, reflectivity, refractive index, and dielectric constant motivated us to investigate hexahalometallate  $X_2SnBr_6$  (X = Rb, Cs) in a cubic structure using first-principles calculations.

#### 2. Method

We performed geometry optimization using the plane wave pseudopotential method as implemented in the CASTEP code [12]. The interaction between valence electrons and ion cores is represented by the ultra-soft type of Vanderbilt pseudopotential [13]. The exchange–correlation effect is described by GGA-PBESOL [14] and the HSE hybrid functional. The use of Monkhorst-Pack points on the grid  $8 \times 8 \times 8$  and the cut-off energy of 660 eV are necessary for both the best convergence of structures and energies [15]. Optical quantities must be calculated using a dense mesh made of evenly spaced  $20 \times 20 \times 20$  k-points. The Broyden-Fletcher-Goldfarb-Shanno minimization method [16] determines the structural parameters and offers a quick method to locate the lowest energy structure. The tolerance for geometry optimization was set as the difference of the total energy  $5 \times 10^{-6}$  eV/atom, the maximum ionic Hellmann– Feynman force  $10^{-2} \text{ eV}/\text{\AA}$  and the maximum stress  $2 \times 10^{-2} \text{ eV}/\text{Å}^3$ .

## 3. Results and discussions

#### 3.1. Study of internal structure

In Fig. 1, we display the crystal structure of Rb<sub>2</sub>SnBr<sub>6</sub>. We place the Sn atom in the middle of the Br octahedron, which is made up of four Br atoms. The Rb atom resides in interstitial sites. At ambient temperatures, X<sub>2</sub>SnBr<sub>6</sub> (X = Rb, Cs) adopts a cubic structure with the space group Fm3m. The locations of the X, Sn, and Br atoms are  $(0,0,0)a_0$ ,  $(0,x,0)a_0$ , and  $(0,x,x)a_0$ , respectively. Table I contains X<sub>2</sub>SnBr<sub>6</sub> (X = Rb, Cs) lattice constant, bulk modulus and its pressure

4



Fig. 1. Crystal structure of the double perovskite  $\mathrm{Rb}_2\mathrm{SnBr}_6$ .

TABLE I

The lattice constant (a), internal coordinate (x), bulk modulus  $(B_0)$  and its pressure derivative  $(B^{'})$  and elastic constants  $(C_{ij})$  for Cs<sub>2</sub>SnBr<sub>6</sub> and Rb<sub>2</sub>SnBr<sub>6</sub>. Notation:  $B_0^{**}$  — bulk modulus calculated from elastic constant,  $B_0^{*}$  — bulk modulus obtained from fit Birch.

|                                | This work   | Experimental | Other        |  |  |  |  |  |
|--------------------------------|-------------|--------------|--------------|--|--|--|--|--|
|                                | 1 IIIS WOLK | Experimentar | calculations |  |  |  |  |  |
| $\mathrm{Cs}_2\mathrm{SnBr}_6$ |             |              |              |  |  |  |  |  |
| a [Å]                          | 10.8415     | 10.837 [17]  | 10.863 [18]  |  |  |  |  |  |
|                                |             |              | 10.73 [19]   |  |  |  |  |  |
| x                              | 0.24215     | 0.245        | 0.24295 [19] |  |  |  |  |  |
| $B_0^*$ [GPa]                  | 11.16       | 11 [18]      |              |  |  |  |  |  |
| B' [GPa]                       | 7.168       |              |              |  |  |  |  |  |
| $C_{11}$ [GPa]                 | 11.49       |              |              |  |  |  |  |  |
| $C_{12}$ [GPa]                 | 6.90        |              |              |  |  |  |  |  |
| $C_{44}$ [GPa]                 | 6.17        |              |              |  |  |  |  |  |
| $B_0^{**}$ [GPa]               | 8.43        |              |              |  |  |  |  |  |
|                                | Rb          | $p_2 SnBr_6$ |              |  |  |  |  |  |
| a [Å]                          | 10.6322     | 10.64 [9]    | 10.75 [11]   |  |  |  |  |  |
| x                              | 0.24627     | 0.245        |              |  |  |  |  |  |
| $B_0^*$ [GPa]                  | 13.96       |              |              |  |  |  |  |  |
| B' [GPa]                       | 06.481      |              |              |  |  |  |  |  |
| $C_{11}$ [GPa]                 | 15.04       | 19.00 [9]    | 28.7 [11]    |  |  |  |  |  |
| $C_{12}$ [GPa]                 | 11.26       | 10.40 [9]    | 10.99[11]    |  |  |  |  |  |
| $C_{44}$ [GPa]                 | 8.63        | 8.40 [9]     | 13.2 [11]    |  |  |  |  |  |
| $B_0^{**}$ [GPa]               | 12.52       | 13.30 [9]    | 16.89 [11]   |  |  |  |  |  |

derivative. The lattice constant is closer to the experimental value and agree well with the theoretical one reported in the literature [8, 9, 11, 17–19], where the uncertainty is 0.04% and 0.07% (0.18% and 1.1%) for the case X = Rb and X = Cr, respectively. The bulk modulus of Cs<sub>2</sub>SnBr<sub>6</sub> calculated using the fit scheme  $P(V/V_0)$  agrees well with the available experimental data [18], where the uncertainty is 1.4%. We list the bond lengths of Rb<sub>2</sub>SnBr<sub>6</sub> and Cs<sub>2</sub>SnBr<sub>6</sub> at equilibrium in Table II.

Interatomic distances in  $Rb_2SnBr_6$  and  $Cs_2SnBr_6$ .

|                                | Br–Sn [Å] | Br–Br [Å] | Br–Rb [Å] | Rb–Sn [Å] | Rb–Rb [Å] | Br–Cs [Å] | Sn–Cs [Å] | Cs-Cs [Å] |
|--------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| $\mathrm{Rb}_2\mathrm{SnBr}_6$ | 2.61845   | 3.70304   | 3.75926   | 4.60388   | 5.31611   |           |           |           |
| $\mathrm{Cs}_2\mathrm{SnBr}_6$ | 2.62527   | 3.71269   |           |           |           | 3.83400   | 4.69451   | 5.42075   |



Fig. 2. Effect of pressure on bond lengths in double perovskites (a, c) Rb<sub>2</sub>SnBr<sub>6</sub> and (b, d) Cs<sub>2</sub>SnBr<sub>6</sub>.

The fact that the distances are related to the X radius explains why the bond lengths of  $Cs_2SnBr_6$  are longer than those of  $Rb_2SnBr_6$ . Additionally, the X–Br distances are wider than the Sn–X link ones.

The effect of pressure on bond lengths is visualized in Fig. 2. All bond lengths decrease monotonously with increasing pressure and become short during compression. Figure 3 represents the effect of pressure on the internal coordinate of the Br atom in  $Rb_2SnBr_6$  and  $Cs_2SnBr_6$ . The internal coordinate of the Br atom in  $Cs_2SnBr_6$  is lower than that of the Br atom in  $Rb_2SnBr_6$  and this can be explained by the fact that it is inversely proportional to Cs (1.73 Å) and Rb (1.64 Å) radius. We find that the internal coordinate x of the Br atom increases with increasing pressure. Figure 4 visualized the dependence of normalized volume to pressure for Rb<sub>2</sub>SnBr<sub>6</sub> and Cs<sub>2</sub>SnBr<sub>6</sub> as fitted to the Birch-Murnaghan equation of state. We report the bulk modulus and its pressure derivative with the previous results in Table I. The bulk modulus calculated from GGA-PBESOL is closer to the experimental value [18]. The bulk modulus (pressure derivative) of Cs<sub>2</sub>SnBr<sub>6</sub> and Rb<sub>2</sub>SnBr<sub>6</sub> are 11.16 GPa and 13.96 GPa (7.168 and 5.481), respectively. We note that the Birch fit of  $Cs_2SnBr_6$  is consistent with



Fig. 3. Internal coordinate of the Br atom in  $Rb_2SnBr_6$  and  $Cs_2SnBr_6$  versus pressure.

the experimental result [18]. The ultra-low value of the bulk modulus demonstrates the soft nature of  $Cs_2SnBr_6$  and  $Rb_2SnBr_6$ . The bulk modulus of  $Rb_2SnBr_6$  and  $Cs_2SnBr_6$  is weaker; normalized volume values smaller than 0.65 induce pressure higher than 20 GPa and other phases can be obtained. There is no experimental data for the left side of the minimum near equilibrium, therefore we only

#### TABLE III

The bulk modulus B [GPa], shear modulus G [GPa], Young's modulus  $E_H$  [GPa], Poisson's ratio, anisotropy factor  $A^U$  and  $B_H/G_H$  ratio for Rb<sub>2</sub>SnBr<sub>6</sub> and Cs<sub>2</sub>SnBr<sub>6</sub>.

| Material                       | B [GPa]     |             | G [GPa]     |             |             | $E_{II}$ [GPa] | σ.u    | $A^U$   | Bu/Gu      |      |
|--------------------------------|-------------|-------------|-------------|-------------|-------------|----------------|--------|---------|------------|------|
| Wateria                        | $B_{\rm V}$ | $B_{\rm R}$ | $B_{\rm H}$ | $G_{\rm V}$ | $G_{\rm R}$ | $G_{\rm H}$    |        | 0H      | 2 <b>1</b> |      |
| $\mathrm{Rb}_2\mathrm{SnBr}_6$ | 12.255      | 12.255      | 12.25       | 5.9345      | 3.5584      | 4.7465         | 12.642 | 0.33177 | 3.33865    | 2.58 |
| $\mathrm{Cs}_2\mathrm{SnBr}_6$ | 8.4368      | 8.4368      | 8.4368      | 4.6229      | 3.6796      | 4.1512         | 10.699 | 0.28865 | 1.28185    | 2.03 |

#### TABLE IV

The predicted maximum and minimum values of Young's modulus E [GPa], linear compressibility  $\beta$  [GPa], shear modulus [GPa], and Poisson's ratio  $\sigma$  for Cs<sub>2</sub>SnBr<sub>6</sub> and Rb<sub>2</sub>SnBr<sub>6</sub>.

| Material                       | Young's modulus |            | Linear compressibility |                | Shear modulus |            | Poisson's ratio   |                   |
|--------------------------------|-----------------|------------|------------------------|----------------|---------------|------------|-------------------|-------------------|
|                                | $E_{\min}$      | $E_{\max}$ | $\beta_{\min}$         | $\beta_{\max}$ | $G_{\min}$    | $G_{\max}$ | $\sigma_{ m min}$ | $\sigma_{ m max}$ |
| $Rb_2SnBr_6$                   | 5.4019          | 21.054     | 26.614                 | 26.614         | 1.8913        | 8.63       | 0.2926            | 0.9676            |
| $\mathrm{Cs}_2\mathrm{SnBr}_6$ | 6.3007          | 14.898     | 39.509                 | 39.509         | 2.2903        | 6.178      | 0.10097           | 0.66208           |



Fig. 4. Pressure dependence on the normalized volume for (a)  $Cs_2SnBr_6$  and (b)  $Rb_2SnBr_6$ .

used data for the right side. The pressure 20 GPa and the normalized volume 0.65 are closer to the experimental values located around 19 GPa and 0.66, respectively. This proves that the obtained values are reasonable.

## 3.2. Elastic constants and mechanical parameters

The elastic constants are calculated using the theoretical equilibrium volume. We summarize the computed elastic moduli of  $Cs_2SnBr_6$  and  $Rb_2SnBr_6$  at equilibrium in Table I. There are no experimental and theoretical data for the elastic constants of  $Cs_2SnBr_6$ , consequently, future experimental measurements will test our prediction computation. The elastic moduli of  $Rb_2SnBr_6$  are in reasonable agreement with the experimental values [9] and the theoretical data [11]. The elastic constants of  $Cs_2SnBr_6$  and  $Rb_2SnBr_6$  are smaller due to their larger reticular distances and therefore lower Coulomb binding forces. The elastic moduli of  $Cs_2SnBr_6$  and  $Rb_2SnBr_6$  satisfied the relationships mentioned below

$$0 < C_{11} + 2C_{12}, \quad 0 < C_{44}, \tag{1}$$

$$0 < C_{11} - C_{12}, \quad C_{12} < B < C_{11},$$

and thus we conclude that these moduli are elastically stable [20].

The computed bulk modulus using elastic constants is nearly identical to the value obtained by fitting  $P(V/V_0)$ . This demonstrates the precision of our computations. The dependency of elastic moduli on pressure for Cs<sub>2</sub>SnBr<sub>6</sub> and Rb<sub>2</sub>SnBr<sub>6</sub> is shown in Fig. 5. When the pressure increased, all estimated elastic moduli rise monotonically, but the increase in  $C_{44}$  is less sensitive to pressure. The reduced hardness of these compounds is explained by their weaker elastic constants. Table III contains a list of the mechanical characteristics (bulk modulus, shear modulus, Young's modulus, Poisson's ratio, universal anisotropy, and  $B_H/G_H$  ratio) determined using GGA-PBESOL and the Voigt [21], Reuss [22], and Hill [23] approximations. When the Poisson's ratio exceeds the threshold value of 0.25, these materials tend to have metallic bonding



Fig. 5. The dependence of elastic moduli on pressure for (a) Cs<sub>2</sub>SnBr<sub>6</sub> and (b) Rb<sub>2</sub>SnBr<sub>6</sub>.

characteristics. Interatomic forces are important, which is explained by the fact that the Poisson coefficient value is in the range 0.25–0.5. The universal anisotropy and  $B_H/G_H$  ratio show that these materials are ductile and anisotropic, with Rb<sub>2</sub>SnBr<sub>6</sub> having the strongest anisotropy.

For a cubic crystal, the Voigt and Reuss limit for the bulk and shear modulus are given [21–23] as, respectively,

$$B = \frac{B_R + B_V}{2} \tag{2}$$

and

$$G = \frac{G_R + G_V}{2}.$$
(3)

Young's modulus and Poisson's ratio can be obtained using the following relations

$$E = \frac{9GB}{3B+G} \tag{4}$$

and

$$\sigma = \frac{3B - 2G}{2(3B + G)}.\tag{5}$$

To see the previously mentioned parameters in 3D directions, we use the ELATE program [24]. For  $Rb_2SnBr_6$ , Fig. 6 shows how Poisson's ratio, Young's modulus, linear compressibility, and shear modulus vary in a given direction. Any deviation from the spherical shape of an isotropic



Fig. 6. The dependence on direction of (a) Poisson's ratio, (b) Young's modulus, (c) linear compressibility and (d) shear modulus of Rb<sub>2</sub>SnBr<sub>6</sub>.



Fig. 7. Band structures of  $Rb_2SnBr_6$  and  $Cs_2SnBr_6$  using (a) GGA-PBESOL and (b) the HSE hybrid functional..

substance denotes anisotropy. While linear compressibility is isotropic, Young's modulus, shear modulus, and Poisson's ratio are all anisotropic. Additionally, Table IV lists the expected maximum and minimum values of Young's modulus, linear compressibility, shear modulus, and Poisson's ratio L. Krache et al.

TABLE V

|                 | Material                                     | $E_{\Gamma-\Gamma}$ | $E_{\Gamma-X}$ | $E_{\Gamma-L}$ | $E_{X-X}$ | $E_{L-L}$ |
|-----------------|----------------------------------------------|---------------------|----------------|----------------|-----------|-----------|
|                 | GGA-PBESOL                                   |                     |                |                |           |           |
|                 | $E_0$ [eV]                                   | 1.11                | 2.48           | 2.15           | 2.5       | 2.45      |
| $Rb_2SnBr_6$    | $lpha 	imes 10^{-2} ~[{\rm eV/GPa}]$         | -8.90               |                |                |           |           |
| - •             | $\beta \times 10^{-3} ~[{\rm eV/GPa^2}]$     | 2.30                |                |                |           |           |
|                 | HSE03 hybrid                                 |                     |                |                |           |           |
|                 | $E_0$ [eV]                                   | 2.58                | 3.85           | 3.54           | 3.90      | 3.84      |
|                 | GGA-PBESOL                                   |                     |                |                |           |           |
|                 | $E_0$ [eV]                                   | 1.27                | 2.46           | 2.19           | 2.48      | 2.49      |
| $ m Cs_2SnBr_6$ | $lpha 	imes 10^{-2} ~[{\rm eV/GPa}]$         | -10.25              |                |                |           |           |
|                 | $\beta \times 10^{-3} \ [\mathrm{eV/GPa^2}]$ | 2.93                |                |                |           |           |
|                 | HSE03 hybrid                                 |                     |                |                |           |           |
|                 | $E_0$ [eV]                                   | 2.74                | 3.84           | 3.59           | 3.88      | 3.82      |
|                 | Other                                        |                     |                |                |           |           |
|                 | $E_0$ [eV]                                   | 4.492 [19]          |                |                |           |           |
|                 |                                              | 2.36[27]            |                |                |           |           |

1.4 Cs<sub>2</sub>SnBr<sub>6</sub> 1.2 Rb2SnBr6 Fundamental gap [eV] 1.0 0.8 0.6 0.4 0.2 10 15 0 5 20 Pressure [GPa]

The direct and indirect band gaps of Rb<sub>2</sub>SnBr<sub>6</sub> and Cs<sub>2</sub>SnBr<sub>6</sub>

Fig. 8. The pressure effect on fundamental band gap for  $Rb_2SnBr_6$  and  $Cs_2SnBr_6$ .

for  $Cs_2SnBr_6$  and  $Rb_2SnBr_6$ . These numbers support the anisotropy of the other characteristics and demonstrate the isotropic linear compressibility.

## 3.3. Electronic band structure

We will discuss the electronic band structure and the projected density of states. Figure 7 represents the band structure of Cs<sub>2</sub>SnBr<sub>6</sub> and Rb<sub>2</sub>SnBr<sub>6</sub> made with GGA-PBESOL and the HSE hybrid functional. Cs<sub>2</sub>SnBr<sub>6</sub> and Rb<sub>2</sub>SnBr<sub>6</sub> show a direct  $\Gamma-\Gamma$  band gap for GGA-PBESOL (1.27 eV and 1.10 eV) and the HSE hybrid functional (2.74 eV and 2.57 eV) and it explains their semiconducting character. The study conducted on the band structure of Rb<sub>2</sub>SnBr<sub>6</sub> by M. Razzaq, M. Tarikul [11] using the PBE potential indicates a direct band gap of 1.22 eV. Previously reported studies show that the GGA-PBESOL approach is in good agreement with the case of double perovskites [25, 26]. In Table V, we report the direct and indirect band gaps of  $Rb_2SnBr_6$  and  $Cs_2SnBr_6$  using GGA-PBESOL and the HSE hybrid functional. We give the theoretical value of the  $\Gamma-\Gamma$  band gap for  $Cs_2SnBr_6$  [19, 27]. Figure 8 displays the pressure effect on the fundamental direct band gap for  $X_2SnBr_6$  (X = Rb, Cs). The band gap decreases monotonously with increasing pressure for both compounds.

Figure 9 visualizes the partial and total densities of states for  $Rb_2SnBr_6$  and  $Cs_2SnBr_6$ . The Br-pstate mostly contributes to the upper valence band around the Fermi level. The Cs, Rb, and Sn sites are empty in the first conduction band; consequently, a transition occurs from the Br-p state to the Cs, Rb, or Sn sites. However, the Sn-s state is dominant at the conduction band minima, confirming that the Sn atom has an ionic bonding nature with the Br atom. The hybridization below the Fermi level located between -4 eV and -2.5 eV comes from Sn-p site and Br-p site, which explains the covalent bonding. Rb<sub>2</sub>SnBr<sub>6</sub> and Cs<sub>2</sub>SnBr<sub>6</sub> have symmetrically equivalent Sn sites in their unit cell. The flat band at 3 eV appears in GGA-PBESOL, corresponds to a band of Sn-s site, and it is confirmed by projected density of states (PDOS).

### 3.4. Optical characteristics

The crystalline structure of a material affects its optical characteristics. Isometric cubic crystal is optically isotropic. The reflectivity, absorption, and loss function spectra for  $Cs_2SnBr_6$  and  $Rb_2SnBr_6$  are shown in Fig. 10 as a function of wavelength. We distinguish a high-loss region having a wavelength located in the range of 42.4– 127.24 nm. The wavelength of the low loss function is less than 42.4 nm and greater than 127.24 nm. The maximum loss reaches the value 3.33 (3.12)

| Peaks           | $W \rightarrow L$                           | $L \to \Gamma$                              | $\Gamma \to X$                              | $X \to W$                   | $W \to K$                                  |  |  |  |
|-----------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------|--------------------------------------------|--|--|--|
| $Cs_2SnBr_6$    |                                             |                                             |                                             |                             |                                            |  |  |  |
| F = 2.64  eV    | $V_1 \to C_1, V_2 \to C_1,$                 | $V_5 \rightarrow C_1, V_6 \rightarrow C_1$  | $V_6 \to C_1, V_5 \to C_1,$                 |                             |                                            |  |  |  |
| E = 2.04  ev    | $V_3 \rightarrow C_1$                       |                                             | $V_3 \rightarrow C_1$                       |                             |                                            |  |  |  |
|                 | $V_1 \to C_3, V_2 \to C_3,$                 | $V_5 \rightarrow C_3, V_6 \rightarrow C_3,$ | $V_1 \to C_4, V_1 \to C_6,$                 |                             |                                            |  |  |  |
| E = 5.34  eV    | $V_3 \to C_3, V_4 \to C_3,$                 | $V_1 \to C_4,  V_3 \to C_4,$                | $V_3 \rightarrow C_6$                       |                             |                                            |  |  |  |
|                 | $V_6 \rightarrow C_3$                       | $V_1 \to C_6$                               |                                             |                             |                                            |  |  |  |
|                 | $V_3 \rightarrow C_4, V_4 \rightarrow C_4,$ | $V_6 \rightarrow C_7, V_6 \rightarrow C_5,$ | $V_6 \rightarrow C_7, V_5 \rightarrow C_7,$ |                             |                                            |  |  |  |
| E = 6.74  eV    | $V_5 \rightarrow C_4$                       | $V_5 \rightarrow C_7, V_5 \rightarrow C_6$  | $V_6 \to C_6, V_3 \to C_6,$                 |                             |                                            |  |  |  |
|                 |                                             |                                             | $V_3 \to C_5, V_1 \to C_6,$                 |                             |                                            |  |  |  |
|                 | $V_6 \to C_7, V_6 \to C_6,$                 |                                             | $V_6 \to C_7, V_4 \to C_7,$                 | $V_3 \to C_6, V_4 \to C_6,$ | $V_2 \rightarrow C_7, V_5 \rightarrow C_6$ |  |  |  |
| E = 7.47  eV    | $V_5 \rightarrow C_6, V_4 \rightarrow C_7,$ |                                             | $V_3 \rightarrow C_7$                       | $V_2 \rightarrow C_7$       |                                            |  |  |  |
|                 | $V_3 \rightarrow C_7$                       |                                             |                                             |                             |                                            |  |  |  |
| $ m Rb_2SnBr_6$ |                                             |                                             |                                             |                             |                                            |  |  |  |
| E = 2.54  eV    | $V_1 \to C_1, V_2 \to C_1,$                 | $V_5 \to C_1, V_6 \to C_1$                  |                                             | $V_1 \to C_1, V_2 \to C_1$  |                                            |  |  |  |
| L = 2.04  eV    | $V_3 \rightarrow C_1$                       | $V_3 \rightarrow C_1$                       |                                             |                             |                                            |  |  |  |
|                 | $V_1 \to C_3, V_2 \to C_3,$                 | $V_5 \to C_3, V_3 \to C_6,$                 | $V_1 \to C_3, V_1 \to C_6,$                 |                             |                                            |  |  |  |
| E = 5.13  eV    | $V_5 \to C_3, V_4 \to C_3,$                 | $V_1 \to C_4, V_3 \to C_4$                  | $V_1 \to C_4, V_3 \to C_4,$                 |                             |                                            |  |  |  |
|                 | $V_6 \rightarrow C_3$                       |                                             | $V_3 \rightarrow C_3$                       |                             |                                            |  |  |  |
|                 | $V_1 \to C_7, V_2 \to C_7,$                 | $V_6 \rightarrow C_7, V_6 \rightarrow C_5,$ | $V_1 \to C_6, V_4 \to C_5,$                 | $V_6 \to C_4, V_2 \to C_5$  |                                            |  |  |  |
| E = 6.5  eV     | $V_3 \to C_7, V_4 \to C_4$                  | $V_5 \rightarrow C_7, V_6 \rightarrow C_4$  | $V_3 \rightarrow C_6, V_6 \rightarrow C_7,$ |                             |                                            |  |  |  |
|                 | $V_5 \rightarrow C_4$                       |                                             | $V_5 \rightarrow C_7$                       |                             |                                            |  |  |  |

The main optical transitions and imaginary part peaks of  $\rm Cs_2SnBr_6$  and  $\rm Rb_2SnBr_6.$ 

## TABLE VI



Fig. 9. Total and partial densities of states of (a)  $Rb_2SnBr_6$  and (b)  $Cs_2SnBr_6$ .



Fig. 10. (a) Reflectivity, (b) absorption and (c) loss function of  $Rb_2SnBr_6$  and  $Cs_2SnBr_6$ .

at 58.24 nm (56.9 nm) for Rb<sub>2</sub>SnBr<sub>6</sub> (Cs<sub>2</sub>SnBr<sub>6</sub>). The photo transition energies from the maximum valence band to the minimum conduction band under intense ultraviolet light irradiation are responsible for the absorption peaks. For Cs<sub>2</sub>SnBr<sub>6</sub>, the high absorption value is 295074 cm<sup>-1</sup> (234133 cm<sup>-1</sup>) at 84.13 nm (64.2 nm) (Rb<sub>2</sub>SnBr<sub>6</sub>). In fact, Cs<sub>2</sub>SnBr<sub>6</sub> and Rb<sub>2</sub>SnBr<sub>6</sub> have a narrow band gap and absorb the most extreme ultraviolet (EUV) radiation. As a result, they are a strong contender for photocatalysis in this EUV light domain. Beginning at a wavelength of about 34.5 nm, the reflectance



Fig. 11. Refractive index of  $Rb_2SnBr_6$  and  $Cs_2SnBr_6$ .



Fig. 12. Imaginary part of dielectric function (right) and transition energy (left) of (a)  $Rb_2SnBr_6$  and (b)  $Cs_2SnBr_6$ .

of Rb<sub>2</sub>SnBr<sub>6</sub> (Cs<sub>2</sub>SnBr<sub>6</sub>) reaches a maximum value of 0.29 (0.36) at 60.85 nm (73.09 nm). In Fig. 11, we present the effect of photon energy on the refractive index. The static refractive index is 2.06 (2.05) for Rb<sub>2</sub>SnBr<sub>6</sub>(Cs<sub>2</sub>SnBr<sub>6</sub>). The experimental refractive index is 1.825 for Rb<sub>2</sub>SnBr<sub>6</sub> calculated by N. Wruk et al. [9]. It reaches the maximum value 2.56 (2.53) at 4.9 eV (4.87 eV) for Rb<sub>2</sub>SnBr<sub>6</sub>(Cs<sub>2</sub>SnBr<sub>6</sub>). The minimum value obtained is 0.38 (0.41) at 21.02 eV (17.52 eV) for Rb<sub>2</sub>SnBr<sub>6</sub>(Cs<sub>2</sub>SnBr<sub>6</sub>). The refractive index is more important when the photons move through the material, because it is proportional to the electron density and is greater when the bonds between the atoms are covalent.

We display the imaginary part of the dielectric function  $C_j - V_i$  and the transition energy  $E(k) = E_{C_j}(k) - E_{V_i}(k)$  for both Rb<sub>2</sub>SnBr<sub>6</sub> and Cs<sub>2</sub>SnBr<sub>6</sub> in Fig. 12. The first two excitonic states with strong oscillator strength appeared at 2.64 eV and 5.34 eV (2.54 eV and 5.13 eV) for  $Cs_2SnBr_6(Rb_2SnBr_6)$ . These peaks mainly originate from the optical transitions between points Wand L in the Brillouin zone (BZ). In Table VI, we summarize that  $Rb_2SnBr_6$  and  $Cs_2SnBr_6$  are the major contributions to the optical transitions from the six top valence bands to the seven lower conduction bands. The use of Cs<sub>2</sub>SnBr<sub>6</sub> and Rb<sub>2</sub>SnBr<sub>6</sub> as windows and lenses is made possible by their optical properties. Cs<sub>2</sub>SnBr<sub>6</sub> and Rb<sub>2</sub>SnBr<sub>6</sub> are suitable candidates for photovoltaic applications due to the band gap size in the region of 1 to 2 eV utilizing GGA-PBESOL and the amount of EUV light absorption.

## 4. Conclusion

We studied the hexahalometallate Rb<sub>2</sub>SnBr<sub>6</sub> and  $Cs_2SnBr_6$  using the plane wave pseudopotential, within GGA-PBESOL and the HSE hybrid functional. The internal coordinate of the Br atom in  $Cs_2SnBr_6$  is lower than that of the Br atom in Rb<sub>2</sub>SnBr<sub>6</sub> because it is inversely proportional to the radius of Cs and Rb. The elastic constants of Rb<sub>2</sub>SnBr<sub>6</sub> and Cs<sub>2</sub>SnBr<sub>6</sub> are significantly smaller due to their lower Coulomb forces and therefore they are fairly soft. The linear compressibility of Rb<sub>2</sub>SnBr<sub>6</sub> and Cs<sub>2</sub>SnBr<sub>6</sub> is isotropic, while Young's modulus, shear modulus and Poisson's ratio are anisotropic, and anisotropy is more pronounced in Rb<sub>2</sub>SnBr<sub>6</sub>. The band gap size and the amount of absorption in EUV light suggest that Rb<sub>2</sub>SnBr<sub>6</sub> and Cs<sub>2</sub>SnBr<sub>6</sub> are good candidates for photovoltaic applications. The hybridization from the Sn-p and Br-pp states below the Fermi level explains their covalent bonding. It turns out that the lower electronegativity of Cs compared to the electronegativity of Rb, the higher band gap of  $Rb_2SnBr_6$  compared to that of  $Cs_2SnBr_6$ . The refractive index is more important for covalent atomic bonds.

## Acknowledgments

The authors acknowledge Taif University Research Supporting Project number (TURSP-2020/66), Taif University, Taif, Saudi Arabia.

### References

- A.S. Verma, A. Kumar, J. Alloys Compd. 541, 210 (2012).
- [2] K. Rössler, J. Winter, Chem. Phys. Lett. 46, 566 (1977).

- [3] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).
- [4] L. Krache, M.A. Ghebouli, B. Ghebouli, S. Alomairy, M. Reffas, M. Fatmi, T. Chihi, *Phys. Status Solidi B* 259, 2200042 (2022).
- [5] X. Huang, T.R. Paudel, P.A. Dowben,
   S. Dong, E.Y. Tsymbal, *Phys. Rev. B* 94, 195309 (2016).
- [6] G.E. Eperon, G.M. Paterno, R.J. Suttonn, A. Zampetti, A.A. Haghighirad, F. Cacialli, H.J. Snaith, *J. Mater. Chem. A* 3, 19688 (2015).
- [7] M.A. Ghebouli, B. Ghebouli, L. Krache, S. Alomairy, M. Fatmi, T. Chihi, M. Reffas, *Bull. Mater. Sci.* 45, 1 (2022).
- [8] M.G. Ju, M. Chen, Y. Zhou, H.F. Garces, J. Dai, L. Ma, N.P. Padture, X.C. Zeng, ACS Energy Lett. 3, 297 (2018).
- [9] N. Wruk, J. Pelzl, G.A. Saundersn, T. Hailing, J. Phys. Chem. Solids 46, 1235 (1985).
- [10] Y. Tang, J. Zhang, X. Zhong, Q. Wang, H. Zhang, C. Ren, J. Wang, *Solar Energy* 190, 272 (2019).
- [11] M. Razzaq, M. Tarikul, Global J. Mater. Sci. Eng. 2, 1 (2020).
- [12] M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. Condens. Matter 14, 2717 (2002).
- [13] D. Vanderbilt, *Phys. Rev. B* 41, 7892 (1990).
- [14] J.P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* 77, 3865 (1996).

- [15] H.J. Monkhorst, J.D. Pack, *Phys. Rev. B* 13, 5188 (1976).
- [16] T.H. Fischer, J. Almlof, J. Phys. Chem. 96, 9768 (1992).
- [17] A. Kaltzoglou, M. Antoniadou, A.G. Kontos, C.C. Stoumpos, D. Perganti, E. Siranidi, V. Raptis, K. Trohidou, V. Psycharis, M.G. Kanatzidis, P. Falaras, J. *Phys. Chem. C* **120**, 11777 (2016).
- [18] G. Yuan, S. Huang, J. Niu, S. Qin, X. Wu, H. Ding, A. Lu, *Solid State Commun.* 275, 68 (2018).
- [19] Y. Chang, T. Yoon, T. Lim, P. Koh, M. Tuh, J. Alloys Compd. 779, 497 (2019).
- [20] G.V. Sin'ko, N.A. Smirnov, J. Phys. Condens. Matter 14, 6989 (2002).
- [21] W. Voigt, *Lehrbuch der Kristallphysik*, Teubner, Leipzig 1928.
- [22] A. Reuss, Z. Angew, Math. Mech. 9, 49 (1929).
- [23] R. Hill, Proc. Phys. Soc. London A 65, 349 (1952).
- [24] R. Gaillac, P. Pullumbi, F. Coudert, J. Phys. Condens. Matter. 28, 275201 (2016).
- [25] M. Pazoki, T.J. Jacobsson, A. Hagfeldt,
   G. Boschloo, T. Edvinsson, *Phys. Rev. B* 93, 144105 (2016).
- [26] M.R. Filip, F. Giustino, *Phys. Rev. B* 90, 245145 (2014).
- [27] H. Huang, Z. Jiang, S. Luo, *Chinese Phys. B* 26, 096301 (2017).