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We consider a nondegenerate three-level laser in which the three-level atoms are in a cascade config-
uration, the laser cavity contains a degenerate parametric oscillator, and one of the cavity modes is
driven by coherent light. We have analyzed the effects of the degenerate parametric oscillator and the
driving coherent light on the laser using the expectation values of the cavity mode variables at a steady
state. The results show that the two-mode light produced by the system under consideration exhibits
quadrature squeezing. The presence of nonlinear crystal in the laser cavity generates a single-mode
squeezed light and also enhances the degree of squeezing of the two-mode light. Although the driving
coherent light has no effect on quadrature squeezing, it increases the intensity of the cavity modes.
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1. Introduction

Three-level laser is a quantum optical system in
which three-level atoms in a cascade configuration,
initially prepared in a coherent superposition of the
top and bottom levels, are injected into the cav-
ity coupled to a vacuum reservoir via a single-port
mirror. When a three-level atom makes a transition
from the top to bottom level via the intermediate
level, two photons are generated. If the generated
light modes have the same frequencies, it is called
a degenerate three-level laser; otherwise, it is called
a nondegenerate three-level laser. The two gener-
ated photons are highly correlated, and this corre-
lation is responsible for the non-classical future of
the light produced by the system. Squeezed states
are the non-classical future of light that cannot be
explained using classical theories or characterized
by the reduction of quantum fluctuations (noise) in
one quadrature below that of the quantum standard
limit or below that achievable in a coherent state at
the expense of increased fluctuations in another con-
jugate quadrature, such that the product of these
fluctuations still obeys the uncertainty relation.

An optical parametric oscillator is a quantum op-
tical system and the most efficient source of squeez-
ing. This quantum optical system consists of a non-
linear crystal pumped by coherent light and the
cavity modes coupled to a vacuum reservoir via
a single-port mirror. In a parametric oscillator,
a pump photon of frequency 2ω is down-converted

into a pair of correlated photons. It has achieved
the best squeezing of 93% noise reduction relative
to the vacuum [1–4].

Several studies have shown that three-level lasers
can produce squeezed light under certain condi-
tions: when the atoms are initially prepared in a co-
herent superposition of the top and bottom levels
or when these levels are coupled by strong coherent
light [5–13]. Moreover, Alebachew and Fesseha [5]
have considered a degenerate three-level laser, the
cavity of which contains a parametric amplifier,
with the top and bottom levels of the injected atoms
coupled by the pump mode emerging from the para-
metric amplifier. They have studied this system for
the specific case in which the numbers of atoms
initially in the top and bottom levels are equal.
They have found that the system generates a highly
squeezed light under certain conditions. The squeez-
ing, in this case, is exclusively due to the parametric
amplifier and the coupling of the top and bottom
levels.

The main finding of this paper is to show the
effects of single-mode driving coherent light and de-
generate parametric oscillator on the nondegener-
ate three-level laser. Many studies have shown that
nondegenerate three-level laser generates squeezed
light [6, 7]. Squeezed light has potential and prac-
tical applications such as gravitational wave detec-
tion, noiseless communication etc. Our research in-
dicates that there is a possibility to enhance the
degree of squeezing and mean photon number of
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Fig. 1. Schematic representation of a nondegenerate three-level laser with a degenerate parametric oscillator,
driven by coherent light, and coupled to vacuum reservoir.

the light generated by the nondegenerate three-level
laser, if the laser cavity contains a single-mode de-
generate parametric amplifier and one of the cavity
modes driven by coherent light.

2. Materials and methods

Our system is a nondegenerate three-level laser
in which the three-level atoms in a cascade config-
uration, initially prepared in a coherent superposi-
tion of the upper and bottom levels, are injected
into the cavity at some constant rate ra. It is as-
sumed that the laser cavity contains a non-linear
crystal that generates paired modes with the same
frequencies. One of the cavity modes is driven by
coherent light, and the cavity modes are coupled
to a vacuum reservoir (as seen in Fig. 1). Using
the master equation of the system under considera-
tion, we have obtained the expectation values of the
c-number cavity mode variables associated with the
normal order at steady state. Making use of the re-
sulting expectation values, the quadrature variances
and mean photon numbers of the cavity modes have
been calculated. Finally, with the help of the defi-
nition for quadrature squeezing relative to coher-
ent/vacuum state and plots, we analyze the prop-
erties of the quadrature squeezing and the mean
photon number using MATLAB software.

2.1. Master equation

A nondegenerate three-level laser with a degen-
erate parametric oscillator and one of the cav-
ity modes driven by single-mode coherent light, as
well as the cavity modes coupled to the vacuum
reservoir, can be described by the Hamiltonian (as
seen in Fig. 1)

Ĥ = ig
(
|a〉〈b|â− â†|b〉〈a|+ |b〉〈c|b̂− b̂†|c〉〈b|

)
+iε

(
b̂† − b̂

)
+

i

2
λ
(
â†2 − â2

)
+iε

(
â†âin − â†inâ+ b̂†b̂in − b̂†inb̂

)
, (1)

where g is the coupling constant for the interac-
tion between the atom and cavity modes, ε is the
coupling constant for the interaction between the
cavity and reservoir modes, ε is the amplitude pro-
portional to the driving mode, λ is the amplitude
proportional to the pump mode, â and b̂ are annihi-
lation operators for the cavity modes, and âin and
b̂in are the input operators. We take the atom to be
initially in state
|ψA(0)〉 = Ca|a〉+ Cc|c〉. (2)

The density operator corresponding to this state for
a single atom is

ρ̂A(0) = ρ(0)aa |a〉〈a|+ ρ(0)ac |a〉〈c|

+ρ(0)ca |c〉〈a|+ ρ(0)cc |c〉〈c|, (3)

where ρ(0)aa = C∗aCa and ρ(0)cc = C∗cCc are the prob-
ability of atom finding in the upper level and the
lower level, respectively, and |ρ(0)ac |2 = ρ

(0)
aa ρ

(0)
cc rep-

resents the atomic coherence. The equation of evo-
lution of the density operator for the nondegenerate
three-level laser is given by [14] as following

dρ̂(t)

dt
=
Aρ

(0)
aa

2

(
2â†ρ̂â− ââ†ρ̂− ρ̂ââ†

)
+
Aρ

(0)
cc

2

(
2b̂ρ̂b̂† − ρ̂b̂†b̂− b̂†b̂ρ̂

)
−Aρ

(0)
ac

2

(
2b̂ρ̂â− âb̂ρ̂− ρ̂âb̂

)
, (4)
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in which

A =
2g2ra
γ2

(5)

is the atomic linear gain coefficient, with ra and
γ being the atomic injection rate and the atomic
decay constants, respectively. The equation of evo-
lution of the density operator corresponding to the
degenerate parametric oscillator and driving coher-
ent light is

dρ̂(t)

dt
=

1

2
λ
(
â†2ρ̂− â2ρ̂− ρ̂â†2 + ρ̂â2

)
+ε
(
b̂†ρ̂− b̂ρ̂− ρ̂b̂† + ρ̂b̂

)
. (6)

Moreover, the equation of evolution of the reduced
density operator for cavity modes coupled to vac-
uum reservoir can be written as [14]

dρ̂

dt
=

1

2
κ
(

2âρ̂â† − â†âρ̂− ρ̂â†â

+2b̂ρ̂b̂† − b̂†b̂ρ̂− ρ̂b̂†b̂
)
, (7)

where κ is the cavity decay constant. With the
aid of (4), (6) and (7), the master equation for
the system under consideration can be written in
the form

dρ̂(t)

dt
=

1

2
Aρ(0)aa

(
â†ρ̂â− ââ†ρ̂

)
+

1

2
κ
(
âρ̂â† − â†âρ̂

)
+

1

2

(
κ+Aρ(0)cc

)(
b̂ρ̂b̂† − b̂†b̂ρ̂

)
−1

2
Aρ(0)ac

(
2b̂ρ̂â− âb̂ρ̂− ρ̂âb̂

)
+

1

2
λ
(
ρ̂â2 − ρ̂â†2

)
+ ε
(
ρ̂b̂− b̂ρ̂

)
+ C.C, (8)

in which C.C represents the complex conjugate of
the equation, A is the linear gain coefficient of the
laser, and κ is the dumping constant of the cavity
modes.

2.2. The cavity-mode variables

We next proceed to determine the expectation
values of the c-number cavity mode variables asso-
ciated with the normal order at steady state. To
this end, employing (8) and the relation d

dt 〈Â〉 =

Tr
(

d
dt ρ̂Â

)
, we easily find

d

dt
〈α〉 = −1

2
µa〈α〉 −

1

2
ν〈β∗〉+ λ〈α∗〉, (9)

d

dt
〈β〉 = −1

2
µc〈β〉+

1

2
ν〈α∗〉+ ε, (10)

d

dt
〈α2〉 = −µa〈α2〉 − ν〈β∗α〉+ 2λ〈α∗α〉+ λ,

(11)

d

dt
〈β2〉 = −µc〈β2〉+ ν〈α∗β〉+ 2ε〈β〉, (12)

d

dt
〈α∗α〉 = −µa〈α∗α〉 −

1

2
ν (〈α∗β∗〉+ 〈αβ〉)

+λ
(
〈α∗2〉+ 〈α2〉

)
+Aρ(0)aa , (13)

d

dt
〈β∗β〉 = −µc〈β∗β〉+

1

2
ν (〈α∗β∗〉+ 〈αβ〉)

+ε (〈β∗〉+ 〈β〉) , (14)

d

dt
〈αβ〉 = −1

2
(µa + µc)〈αβ〉+ λ〈α∗β〉

+
1

2
ν (〈α∗α〉 − 〈β∗β〉) + ε〈α〉+

1

2
ν, (15)

d

dt
〈α∗β〉 = −1

2
(µa + µc) 〈α∗β〉+ λ〈αβ〉

+
1

2
ν
(
〈α∗2〉 − 〈β2〉

)
+ ε〈α∗〉, (16)

where

µa =
1

2
(2κ+Aη −A), (17)

µc =
1

2
(2κ+Aη +A), (18)

ν =
1

2
A
√

1− η2, (19)

with
η = ρ(0)cc − ρ(0)aa . (20)

Furthermore, we introduce new variables defined by
A± = 〈α∗α〉 ± 〈α2〉, (21)

B± = 〈β∗β〉 ± 〈β2〉, (22)

C± = 〈α∗β〉 ± 〈αβ〉. (23)
Taking into account (9)–(16) at steady state, we can
write that

〈α〉 = − 2εν

µcµa− + ν2
, (24)

〈β〉 =
2εµa−

µcµa− + ν2
. (25)

µa∓A± ± νC± =
1

2
(A(1− η)± 2λ) , (26)

µcB± ∓ νC± = 2(1± 1)ε〈β〉, (27)

(µa∓ + µc)C± ∓ νA± ± νB± =

2(1± 1)ε〈α〉 ± ν, (28)
where

µa∓ = µa ∓ 2λ. (29)
With the aid of (26)–(28) we find

A± =
[A(1− η)±2λ][µ2

c + µa∓µc + ν2]− 2µcν
2

2(µa∓ + µc)[µa∓µc + ν2]

+
4(1± 1)ε2ν2(µa− ± µc)

(µcµa− + ν2)(µa∓ + µc)[µa∓µc + ν2]
, (30)
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B± =
ν2[κ∓ λ]

(µa∓ + µc)[µa∓µc + ν2]
+

4(1± 1)ε2

(µcµa− + ν2)

×
[
µa−µa∓[µa∓ + µc] + [µa− ∓ µa∓]ν2

]
(µa∓ + µc)[µa∓µc + ν2]

, (31)

C± = ± µcν[κ∓ λ]

(µa∓ + µc)[µa∓µc + ν2]

− 4(1± 1)ε2µa∓ν(µa− ± µc)

(µcµa− + ν2)(µa∓ + µc)[µa∓µc + ν2]
. (32)

2.3. Quadrature squeezing
In Sect. 2.3 we seek to analyze the effects of the

driving coherent light and the parametric amplifier
on the quadrature squeezing of the cavity modes of
nondegenerate three-level laser.
2.3.1. Quadrature squeezing of a single-mode light

The variances of the plus and minus quadratures
for mode a and mode b defined by operators

â± =
√
±1(â† ± â),

b̂± =
√
±1(b̂† ± b̂), (33)

can be written as
∆a2± = 〈â±, â±〉,

∆b2± = 〈b̂±, b̂±〉. (34)
It can be easily verified that

[â+, â−] = [b̂+, b̂−] = 2i . (35)
A single-mode light is said to be in a squeezed state
if one of the quadrature variances is less than that
of the quadrature variance of the coherent/vacuum
state with the satisfaction of the uncertainty princi-
ple. Employing (21) and (22), (34) can be expressed
in terms of c-number variables associated with the
normal order as

∆a2± = 1 + 2A± − 2(1± 1)〈α〉2,

∆b2± = 1 + 2B± − 2(1± 1)〈β〉2. (36)
On account of (24), (25), (30), and (31), we obtain
∆a2± =

1 +
[A(1− η)± 2λ][µ2

c + µa∓µc + ν2]− 4µcν
2

2(µa∓ + µc)[µa∓µc + ν2]

+
8(1± 1)ε2ν2(µa− ± µc)

(µcµa− + ν2)(µa∓ + µc)[µa∓µc + ν2]

− 8(1± 1)ε2ν2

(µcµa− + ν2)2
, (37)

∆b2± = 1 +
2ν2[κ∓ λ]

(µa∓ + µc)[µa∓µc + ν2]

+
8(1± 1)ε2

[
µa−[µ2

a∓ + µa∓µc + ν2]∓ µa∓ν
2
]

(µcµa− + ν2)(µa∓ + µc)[µa∓µc + ν2]

−
8(1± 1)ε2µ2

a−
(µcµa− + ν2)2

, (38)

which represent the quadrature variances of mode
a and mode b, respectively.

Fig. 2. Plots of the quadrature variances of
mode a.

Fig. 3. Plots of the quadrature variances of
mode b.

Figures 2 and 3 represent the plots of the quadra-
ture variances of, respectively, mode a (37) and
mode b (38) vs η, for κ = 0.8, A = 10, λ = 0.3,
and ε = 0.2. We see in the figures that mode a
exhibits squeezing in the minus quadrature for the
value η > 0.7. Mode b, however, does not exhibit
any squeezing in both quadratures.

The quadrature squeezing of mode a relative to
the quadrature variance of coherent/vacuum state
is defined by

S =
(∆a2±)v/c − (∆a2±)

(∆a2±)v/c
, (39)

where (∆a2±)v/c is the quadrature variance of the
coherent/vacuum state. We note that the quadra-
ture variance of the coherent/vacuum state is one.
In view of this, (39) can be written as

S = 1−∆a2−. (40)
Taking (37) into account, we obtain

Sa = − (A(1− η)− 2λ)[µ2
c + µa+µc + ν2]− 4µcν

2

2(µa+ + µc)[µa+µc + ν2]
.

(41)
Since the variable ε does not appear in (41), the
driving coherent light has no effect on the quadra-
ture squeezing of mode a.
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2.3.2. Quadrature squeezing of two-mode light

In Sect. 2.3.2 we calculate the quadrature squeez-
ing of a two-mode light produced by the system un-
der consideration. We define the quadrature vari-
ance for a two-mode light as

∆c2± = 〈ĉ±, ĉ±〉, (42)

where

ĉ± =

√
±1

2

(
â† ± â+ b̂† ± b̂

)
(43)

is the quadrature operator for two-mode light. One
can easily verify that

[ĉ+, ĉ−] = 2i . (44)

A two-mode light is said to be in the squeezed
state if either ∆c2+ < 1 or ∆c2− < 1, provided that
∆c2+∆c2− ≥ 1.

In view of (36), (42) can be written as
∆c2± = 1 +A± +B± + C± − (1± 1)(〈α〉+ 〈β〉)2.

(45)
Up on substituting (24), (25), and (30)–(32) in (45),
we have

∆c2± = 1 +
[A(1− η)± 2λ][µ2

c + µa∓µc + ν2]

2(µa∓ + µc)[µa∓µc + ν2]

−µcν[κ∓ λ] + ν2[µc − (κ∓ λ)]

(µa∓ + µc)[µa∓µc + ν2]

+
4(1± 1)ε2ν [(µa− ± µc)[ν − µa∓]∓ µa∓ν]

(µcµa− + ν2)(µa∓ + µc)[µa∓µc + ν2]

+
4(1± 1)ε2µa−[µ2

a∓ + µa∓µc + ν2]

(µcµa− + ν2)(µa∓ + µc)[µa∓µc + ν2]

−
4ε2(1± 1)[ν2 + µ2

a−]

(µcµa− + ν2)2
, (46)

which represents the quadrature variances of the
two-mode light produced by nondegenerate three-
level laser with degenerate parametric oscillator,
one of the cavity modes driven by coherent light,
and the cavity modes coupled to a vacuum reservoir.

Fig. 4. Plots of the quadrature variances of two-
mode light vs η.

Figure 4 presents the plots of quadrature variance
of two-mode light (46) vs η for κ = 0.8, λ = 0.3,
ε = 0.2, and A = 100. The plots show that the two-
mode light exhibits squeezing in the minus quadra-
ture.

The quadrature squeezing of the two-mode light
relative to the quadrature variance of the vacuum
state level on the basis of (39), is defined by

S = 1−∆c2−. (47)
In view of (46), we have

Sc = − [A(1− η)− 2λ][µ2
c + µa+µc + ν2]

2(µa+ + µc)[µa+µc + ν2]

+
µcν(κ− λ)− ν2[µc − (κ+ λ)]

(µa+ + µc)[µa+µc + ν2]
. (48)

We note that as the variable ε does not appear
in (48), the driving coherent light has no effect on
quadrature squeezing of the two-mode light.

2.4. The photon number sum and difference

In Sect. 2.4 we calculate the mean photon number
sum and difference of mode a and mode b produced
by a nondegenerate three-level laser with a degen-
erate parametric oscillator and one of the cavity
modes driven by coherent light. The mean photon
number sum and difference are defined by

n̄± = n̄a ± n̄b, (49)
where

n̄a = 〈α∗α〉, (50)

n̄b = 〈β∗β〉 (51)
are the mean photon numbers for mode a and mode
b, respectively. Using (21) and (22), the mean of the
photon number for mode a and mode b can be writ-
ten as

na =
1

2
(A+ +A−) , (52)

nb =
1

2
(B+ +B−) . (53)

Applying (30) and (31), the mean photon number
can be found as

na =
[A(1− η) + 2λ][µ2

c + µa−µc + ν2]− 2µcν
2

4(µa− + µc)[µa−µc + ν2]

+
4ε2ν2

(µcµa− + ν2)[µa−µc + ν2]

+
[A(1− η)− 2λ][µ2

c + µa+µc + ν2]− 2µcν
2

4(µa+ + µc)[µa+µc + ν2]
,

(54)

nb =
ν2[κ− λ]

2(µa− + µc)[µa−µc + ν2]

+
4ε2µ2

a−
(µcµa− + ν2)[µa−µc + ν2]

+
ν2[κ+ λ]

2(µa+ + µc)[µa+µc + ν2]
. (55)
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Fig. 5. Plots of the quadrature squeezing of mode
a for different values of λ.

Fig. 6. Plots of the quadrature squeezing two-
mode light relative to coherent light for different
values of λ.

Hence Combination of (54) and (55) results in

n± =
[A(1− η) + 2λ][µ2

c + µa−µc + ν2]

4(µa− + µc)[µa−µc + ν2]

− 2ν2[µc ∓ (κ− λ)]

4(µa− + µc)[µa−µc + ν2]

+
4ε2
[
ν2 ± µ2

a−
]

(µcµa− + ν2)[µa−µc + ν2]

+
[A(1− η)− 2λ][µ2

c + µa+µc + ν2]

4(µa+ + µc)[µa+µc + ν2]

− 2ν2[µc ∓ (κ+ λ)]

4(µa+ + µc)[µa+µc + ν2]
, (56)

which represents the mean photon number sum and
difference of mode a and mode b produced by a non-
degenerate three-level laser with a degenerate para-
metric oscillator; the cavity modes are driven by
coherent light and coupled to a vacuum reservoir.

3. Results and discussion

In Fig. 5, we plot the quadrature squeezing of
mode a relative to coherent state (41) vs η for
κ = 0.8, A = 100, ε = 0.2, and for different values

Fig. 7. Plots of the mean photon number sum (56)
vs η for κ = 0.8, ε = 0.3, and A = 100 for different
values of λ.

Fig. 8. Plots of the mean photon number sum (56)
vs η for κ = 0.8, λ = 0, and A = 10 for different
values of ε.

of the amplitude proportional to the pump mode
λ = 0.0 (dash-dotted), λ = 0.1 (dotted), λ = 0.2
(dashed), and λ = 3.0 (solid). The plots indicate
that the degree of squeezing of mode a increases
with the amplitude proportional to the pump mode.
We also observe that mode a can exhibit squeezing
due to a presence of a degenerate parametric ampli-
fier in the laser cavity. Moreover, we see that 43%
of maximum quadrature squeezing can be obtained
for the given values at η = 1.

Figure 6 represents the plots of the quadrature
squeezing of two-mode light relative to coherent
light (48) vs η for A = 100, ε = 0.2, κ = 0.8, and
for different values of the amplitude proportional
to pump mode λ = 0.0 (solid), λ = 0.1 (dashed),
λ = 0.2 (dotted), and λ = 0.3 (dash-dotted). The
plots indicate that a presence of a degenerate para-
metric amplifier in the laser cavity increases the de-
gree of squeezing of the two-mode light. The max-
imum quadrature squeezing for ε = 0.2, A = 100,
κ = 0.8 is found to be 83% below the coherent state
level.
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Fig. 9. Plots of the mean photon number differ-
ence (56) vs η for κ = 0.8, λ = 0.1, and A = 2 for
different values of driving mode ε.

Fig. 10. Plots of the mean photon number differ-
ence (56) vs η for κ = 0.8, ε = 0.2, and A = 5 for
different values of λ.

In Fig. 7, we plot the mean photon number sum
(56) vs η for κ = 0.8, ε = 0.3, and A = 100 for
different values of λ = 1.5 (dash-dotted), λ = 2.0
(dotted), λ = 2.5 (dashed), and λ = 0.3 (solid).
In Fig. 8, we plot the mean photon number sum (56)
vs η for κ = 0.8, λ = 0, and A = 10 for different
values of ε = 0 (solid), ε = 0.1 (dash), ε = 0.2
(dotted), and ε = 0.3 (dash-dotted). The plots in
both figures indicate that the mean of the photon
number sum increases with the driving mode, and
the amplitude is proportional to the pump mode.

Figure 9 represents the mean photon number dif-
ference (56) vs η for κ = 0.8, λ = 1.0, and A = 2
for different values of driving mode ε = 0.0 (dash-
dotted), ε = 0.1(dotted), ε = 0.2 (dashed), and
ε = 0.3 (solid). Figure 10 represents the mean pho-
ton number difference (56) vs η for κ = 0.8, ε = 0.2,
and A = 5 for different values of λ = 0.05 (solid),
λ = 0.06 (dashed), λ = 0.07 (dotted), and λ = 0.08
(dash-dotted). We see in both figures that the mean
of the photon number difference increases as the
driving coherent light mode and the amplitude pro-
portional to the pump mode increase.

4. Conclusions

We have studied the effects of single-mode driv-
ing coherent light and degenerate parametric os-
cillator on a nondegenerate three-level laser. Us-
ing the steady state solutions of the cavity mode
variables, we have calculated quadrature squeezing
and mean photon number sum and difference. The
results show that mode a and the two-mode light
produced by the system under consideration ex-
hibit squeezing in the minus quadrature. In addi-
tion, we observed that the presence of a degenerate
parametric amplifier in the laser cavity enhances
the quadrature squeezing of the two-mode light, the
mean photon number sum and difference, and it also
generates single-mode squeezed light. Although the
driving light has no effect on the quadrature squeez-
ing, it increases the mean photon number sum and
difference.
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