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We study the effect of particle losses on dynamical phase diffusion in a two-mode Bose–Einstein con-
densate. Starting with an equal-population coherent state, the single-particle coherence is solved ana-
lytically by the Monte Carlo wave function method. We show that decoherence slows down the loss of
single-particle coherence. Moreover, we find that the bigger phase diffusion is, the more sensitive to the
noise it becomes. Finally, we discuss the effect of the losses on the spin squeezing and show that the
squeezing angle is robust to the decoherence even though the value of the squeezing is greatly affected.

topics: phase diffusion, Bose–Einstein condensate, particle losses, Monte Carlo wave function

1. Introduction

Bose–Einstein condensates (BECs) of dilute gases
with weak interaction are widely used to study vari-
ous condensed-matter models. In addition to study-
ing the small perturbations of the ground state,
BECs provide a platform for exploring nonequi-
librium dynamics with remarkable control. In the
BECs system, the spin squeezing can be gener-
ated due to the internal self-interaction [1–17],
where the effective spins are collective variables that
can be defined in terms of two different internal
states of the atoms [18] or two orthogonal bosonic
modes [19]. Although the self-interaction can gener-
ate spin squeezing, it also leads to phase diffusion of
the BEC. It indicates a decay of single-particle de-
coherence [20–29] and thus restricts the applications
of the BEC systems in high-precision measurement
and quantum information processing. In the cur-
rent experiments, phase diffusion can be observed
by measuring the fringe visibility in atomic inter-
ference experiments [30].

In the past few years, many schemes have been
proposed to suppress phase diffusion [31, 32]. How-
ever, the decoherence, which is unavoidable, may
always affect phase diffusion. Under the current
experimental conditions, the BECs are usually re-
garded as an open system coupled with the en-
vironment since the collisions of condensed atoms
with the noncondensed thermal clouds, which lead
to atom losses, are unavoidable. Many theoreti-
cal works have investigated the dissipation-induced

effects in the open two-mode BECs [33–36] and
showed that some changes in the dynamical proper-
ties of the condensate could not be negligible any-
more. However, the decoherence may result in the
enhancement of the quantum effect. It is similar to
the phenomenon of the quantum Zeno effect [37–41],
which results from the continuous projection onto
relative number states and thus prevents the cor-
responding phase from taking a definite value. For
example, dephasing of the quasimomentum modes
suppressing phase diffusion was observed in the
two-site Bose–Hubbard model with quantum Zeno
limit [42]. The maximum spin squeezing in two-
mode BECs can also be reached in the presence
of particle losses [43]. In addition, the dissipation
could even lead to enhancement of coherence in
the open two-mode BEC with some specific con-
ditions [44, 45].

In this paper, we investigate the phase diffusion
in the two-mode BECs with particle losses. We dis-
cuss the dynamic behavior of the first-order coher-
ence and the von Neumann entropy to describe the
behavior of the phase diffusion. We give an ana-
lytical result of the single-particle coherence by the
Monte Carlo wave function method and show that
the presence of particle losses suppresses the phase
diffusion. We also discuss the effect of the parti-
cle losses on the spin squeezing angle, which plays
an important role in squeezing measurement and
quantum metrology. We find the squeezing angle is
robust to the particle losses even though the spin
squeezing is greatly affected.
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The paper is organized as follows: Sect. 2 in-
troduces two-mode BECs and the master equation
of the system with the particle losses. In Sect. 3,
we discuss the single-particle coherence using the
Monte Carlo wave function method. The effect of
the particle losses on the spin squeezing and the
squeezing angle are discussed in Sect. 4. Summary
and conclusions are presented in the last section.

2. Theoretical model

We consider a two-component weakly interacting
BEC consisting of N particles. The second quan-
tized Hamiltonian of the system in the single-mode
approximation reads [43]

Ĥ0 =
χ

4
(â†â− b̂†b̂)2 + f(â†â+ b̂†b̂), (1)

where the first term is induced by atom-atom
collisions with χ being the nonlinear interaction
strength. The second one in Ĥ0 is some function
of the total atom number. Here, we note that the
second term commutes with the density operator ρ̂
of the system and can be omitted. Introducing the
angular momentum operators, Ĵx = (â†b̂ + b̂†â)/2,
Ĵy = (â†b̂ − b̂†â)/(2i), Ĵz = (â†â − b̂†b̂)/2, which
obey the SU(2) Lie algebra, the Hamiltonian in (1)
reduces to Ĥ0 = χĴ2

z .
In the practical experiments of cold atoms, parti-

cle losses are the unavoidable source of decoherence.
In such a case, the dynamics of the system will obey
the Markovian kinetic master equation,

dρ̂

dt
= − i

[
Ĥ0, ρ̂

]
+ L̂, (2)

where ρ̂ is the density matrix of the system, L̂ ≡
− 1

2

∑
ε=a,b γε(ĉ

†
ε ĉερ̂+ ρ̂ĉ†ε ĉε − 2ĉερ̂ĉ

†
ε) is the dissipa-

tion with γε being the dissipation velocity of com-
ponent ε. Here ĉa = â and ĉb = b̂. For simplicity, we
set γa = γb = γ in the following discussion.

It is well known that the self-interaction χJ2
z ,

the so-called one-axis twisting (OAT) effect, induces
spin squeezing [1–4]. In fact, the self-interaction also
leads to phase diffusion, which indicates a decay of
the single-particle coherence. Such a kind of coher-
ence can be measured by off-diagonal elements of
the reduced single-particle density matrix elements

Rij =
1

〈N̂〉

(
〈N̂〉1

2
+ 〈Ĵx〉σx + 〈Ĵy〉σy + 〈Ĵz〉σz

)
ij

,

(3)
where 1 and σx,y,z are the identity and Pauli matri-
ces, respectively, N̂ = â†a+b̂†b, and i, j = 1, 2. Such
coherence can be observed in the experiment by ex-
tracting the visibility of the Ramsey fringes [30].
In this paper, we focus on the effect of the particle
losses on the first-order coherence R12. We assume
the initial state is prepared as the equal-population
coherent states

|Ψ(0)〉 =

(
â† + e iϕb̂†

)N
√

2NN !
|0〉 , (4)

where |0〉 is a vacuum state. Such an initial
state can also be written as a coherent spin
state |ϑ = π/2, ϕ〉, which is defined as |ϑ, ϕ〉 =

exp
[

i
2ϑ(Ĵx sin(ϕ) − Ĵy cos(ϕ)) |j, j〉

]
. For simplic-

ity, we assume the initial relative phase ϕ = 0, and
so that 〈Ψ(0)|Ĵx |Ψ(0)〉 = N/2, which means the
collective spin initially along the x axis. In the ab-
sence of particle losses (γ = 0), we have [46, 47]

R12 =
1

2
cosN−1(χt) ' 1

2
e−(t/td)2 . (5)

The diffusion time td is given by χtd =
√
N/2.

According to (5), the coherence R12 will decay to
zero at t0 = π/(2χ) and revive to maximum at
tr = π/χ. Such a behavior exactly reflects the bi-
nomial Gaussian-like distribution of the occupation
shown in (4).

3. Phase diffusion with Monte Carlo
wave function approach

In the presence of the losses, the exact solutions of
the master equation in (2) can be found by expand-
ing it in the number Fock state basis and numerical
integration. In order to get an analytical result of
R12, we adopt the Monte Carlo wave function ap-
proach [43, 48]. Firstly, we rewrite the master equa-
tion in the interaction picture with respect to Ĥ0,
and then we get

dρ̃

dt
= −1

2

∑
ε=a,b

γ
(
c̃†ε c̃ερ̃+ ρ̃c̃†ε c̃ε − 2c̃ερ̃c̃

†
ε

)
, (6)

where ρ̃ = e i Ĥ0tρ̂e− i Ĥ0t and c̃ε = e i Ĥ0tĉε e− i Ĥ0t.
Next, we define an effective non-Hermitian Hamil-
tonian and the jump operator Ĵε as, respectively,

Ĥeff = − iγ

2

(
c̃†ac̃a + c̃†b c̃b

)
, (7)

and
Ĵε =

√
γ c̃ε. (8)

The master equation in (6) reduces to
dρ̃

dt
= − i

(
Ĥeff ρ̃− ρ̃Ĥeff

)
+
∑
ε=a,b

Ĵερ̃Ĵ
†
ε , (9)

and the last term is usually interpreted as
the one responsible for the so-called quantum
jumps [43, 48].

In the process of the time evolution, we assume
that a small fraction of atoms will be lost, and thus
we consider the parameters χ and γ as constants.
Under the Monte Carlo wave function approach, the
state evolution in a single quantum trajectory is
a sequence of random quantum jumps at times tk
with the non-unitary Hamiltonian evolutions of du-
ration τk, the detailed process of the state evolution
is given by [43]
|Ψ(t)〉 = e− iHeff (t−tk)Jεk(tk)e− iHeffτkJεk−1(tk−1)

× . . . Jεk−1
(t1)e− iHeffτ1 |Ψ(0)〉 , (10)

where |Ψ(0)〉 is the initial state of the system. For
an arbitrary observable operator Â, the expecta-
tion value can be obtained by averaging all possi-
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Fig. 1. The single-particle coherence R12 as
a function of rescaled time χt, starting from the
coherent state |π/2, 0〉 with different γ. The initial
particle number of the system is N = 104.

ble stochastic realizations, including the times and
number of quantum jumps. In the calculation, each
trajectory is weighted by its probability, and then
we get
〈Â〉 = (11)∑
k

∫
0<t1<t2<
...tk<t

dt1 dt2 . . . dtk
∑
k

〈Ψ(t)|Â |Ψ(t)〉 .

With the initial state |π/2, 0〉 and constant loss rate
approximation, we get 〈N̂〉 = N e−γt and the exact
result of the single-particle coherence

R12 =
1

2

 e−γt
(
γχ sin(χt)+χ2 cos(χt)

)
+ γ2

γ2 + χ2

N−1

.

(12)
In the limit of N(χt)2 � 1, a more insightful ex-
pression for R12 is obtained as

R12 ≈
1

2
cosN−1(χt) +

1

6
Nγχ2t3 =

R
(0)
12

[
1 +

Nγχ2t3

3R
(0)
12

]
, (13)

where R(0)
12 = 1

2 cosN−1(χt) is the single-particle co-
herence in the absence of particle losses. The second
term describes the noise added to the diffusion. This
shows that (i) the fact that only a small fraction of
atoms are lost at a short time does not imply that
the correction on the phase diffusion due to losses

is small; (ii) the bigger phase diffusion is, the more
sensitive R12 is to the losses. As shown in Fig. 1,
we plot R12 as a function of χt for different γ, and
we can see that R12 becomes large as γ increases. It
means that the presence of the particle losses lightly
suppresses the phase diffusion.

To further investigate the phase diffusion, the
single-particle coherence is also evaluated by using
the von Neumann entropy of the state ρ, which is
defined as

S ≡ −Tr
(
ρ ln(ρ)

)
. (14)

With the reduced single-particle density matrix,
S becomes S = −Tr(R ln(R)). According to (3),
we obtain

S = −1

2
ln

[
(1+2R12)(1+2R12)(1−2R12)(1−2R12)

4

]
.

(15)
In Fig. 2, we plot the von Neumann entropy as
a function of χt with different γ. It clearly shows
that S decreases a bit as the parameter γ in-
creases, which indicates that the presence of the
losses slightly slows down the phase diffusion.

4. Effect of the particle losses
on the spin squeezing

It is well known that the system with the Hamil-
tonian Ĥ0 can generate spin-squeezed states, which
is a good resource for quantum metrology. Even
though the spin squeezing was intensively stud-
ied in the past, the spin squeezing angle is rarely
discussed. In fact, the squeezing angle is very im-
portant for the measurement of squeezing and in
quantum metrology. Starting with the initial state
|π/2, 0〉, the mean spin direction along the x-
direction and the spin squeezing is quantified by
the parameter [3, 17]

ξ2 =
〈N̂〉min(∆Ŝ2

n⊥
)

〈Ŝx〉2
, (16)

where n⊥ refers to an axis on the (y, z) plane and
the minimization is over all directions n⊥. The op-
erator Ŝn⊥ is defined as Ŝn⊥ = cos(θ)Ŝy + sin(θ)Ŝz
with θ being the squeezing angle and given by

θ = 1
2 arctan

(
B/A

)
, (17)

where A = 〈Ŝ2
y − Ŝ2

z 〉 and B = 〈ŜyŜz + ŜzŜy〉. Ac-
cording to the Monte Carlo wave function method,
we obtain

A =
N(N − 1)

8
e−2γt

[
1−

(
γ2 + e−γt

(
4χ2 cos(2χt) + 2γχ sin(2χt)

)
γ2 + 4χ2

)N−2 ]
(18)

and

B =
N(N − 1)

2
sin(χt)e−2γt

(
)
γ2 + e−γt

(
χ2 cos(χt) + γχ sin(χt)

)
γ2 + χ2

)N−2

. (19)
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Fig. 2. Single-particle von Neumann entropy S as
a function of the rescaled time χt for different γ with
the initial coherent state |π/2, 0〉 and N = 104.

Fig. 3. (a) Spin squeezing and (b) spin squeez-
ing angle as a function of the rescaled time,
starting from the coherent state for different γ
with N = 104.

In the limit of N(χt)2 � 1, we obtain

B/A ≈ 2

Nχt
− χt+

2

3
γχt2. (20)

Here, we notice that the last term in (20) is much
smaller than the first and second terms. Thus the
particle losses will not affect the squeezing angle.
In Fig. 3, we plot ξ2 and the squeezing angle θ as
a function of χt. Obviously, the spin squeezing is
greatly affected by particle losses (see Fig. 3a), while
in the case of the squeezing angle, we can find it is
robust to such decoherence.

5. Conclusion

In summary, we have studied the collisional phase
diffusion in a two-mode Bose–Einstein condensate
with particle losses. We employ the Monte Carlo
function method to analytically solve the single-
particle coherence and von Neumann entropy. We
show that the particle losses suppress the phase
diffusion. In addition, we also find that the big-
ger phase diffusion is, the more sensitive the single-
particle coherence is to the losses. Finally, we dis-
cuss the effect of the particle losses on the spin
squeezing angle and reveal that the squeezing an-
gle is robust to the particle losses.
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