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In this paper, we propose a quantum algorithm simulating the interaction between an atom and a one-
dimensional electromagnetic quantum field. We examine the two-channel decay of the atom excited
state with the emission of photons. The paper studies the properties of the proposed algorithm and
then compares the obtained results with theoretical predictions.
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1. Introduction

In the near future, quantum calculations can
make a major contribution to the development of
informatics [1]. Nowadays, some institutions claim
to have a quantum computer and offer its comput-
ing power. Probably wider access to these machines
will become possible soon (perhaps with the help
of quantum dots technology [2] or using anyons in
a topological quantum computer [3]). Therefore, it
is worth examining what new possibilities are of-
fered by quantum computing.

For many years, we have known Shor [4] and
Grover [5, 6] algorithms which are of lower compu-
tational complexity than their best classical coun-
terparts. Another promising application of a quan-
tum computer are quantum simulations [7–9], i.e.,
computer modeling of physical quantum systems.
It gives the possibility of effective modeling quan-
tum processes, which is not possible using classi-
cal computers [10]. Quantum computers can simu-
late a wide variety of quantum systems, including
fermionic lattice models [11, 12], quantum chem-
istry [13, 14], and quantum field theories [15].

As is well known, simulations of quantum systems
performed with the use of conventional computers
are not effective. This means that for a classical
computer, the memory resources and the time re-
quired for simulation grow exponentially with the
size of the quantum system. In the case of a quan-
tum computer, the situation is different. The rela-
tionship between the size of the quantum computer
(register) and the size of the simulated quantum
system is linear. Therefore, a very important task
is to find appropriate algorithms that can properly
simulate complex quantum systems and non-trivial
interactions between them. This is a difficult issue

because most of the interesting quantum systems
are feasible in infinitely-dimensional Hilbert spaces.
In such situations, we can use the technique of sam-
pling the wave function and build an algorithm
based on the quantum Fourier transform. This case
was tested in [16–19] where the free Schrödinger
particle and the harmonic oscillator were examined.
In our previous works, we have shown that also
rectangular potentials (like thresholds and wells)
can be simulated with this method. This provides
the opportunity to examine other interesting pro-
cesses such as diffusion [20] and scattering [21] of
the Schrödinger particle.

Another important issue is the simulation of
quantum optics processes, such as the photon emis-
sion or absorption by an atom or a molecule. This
requires simulating an electromagnetic quantum
field, which is a system with an infinite number
of degrees of freedom. In this case, we can replace
the continuous band of energy levels with its dis-
crete counterpart. We use this method in the cur-
rent publication as well as in [21, 22]. In the above-
mentioned works, we successfully simulated the pro-
cess of atom deexcitation. The disadvantage of the
algorithm used is the sparse coding of states in the
quantum register (one level per qubit). For this rea-
son, we could only simulate a few photon energy
levels. In current considerations, we have proposed
a new, more complex algorithm that enables dense
coding of photon states in the register. In nq qubits
we can encode 2nq photon levels. This allows us to
store the states of two independent photons in a reg-
ister of 12–16 qubits. In this work, we use this possi-
bility to simulate the two-channel decay of the atom
excited state. Furthermore, we have made a com-
plete redevelopment of the interaction algorithm.
Quantum gates have been reordered using the Gray
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code sequence. This reduced the number of auxil-
iary (σx and CNOT) gates to a minimum and sig-
nificantly shortened the computation time.

A theoretical approach to the problem of unstable
quantum systems decay can be found in [23]. Works
of other authors also focus on simulating the decay
of excited states. Models based on cavity quantum
electrodynamics (QED) are particularly tested. For
example, processes such as beta decay of the he-
lium atom [24] and the decay of a two-level atom in
a crystal [25] are examined. Contrary to the cited
works, we examine the problem on a purely algo-
rithmic ground, using the abstract model of quan-
tum gates. We completely abstract from specified
physical implementation.

In the papers [26–28] quantum computing meth-
ods are used in order to find the excited state of
a molecule and study its properties. However, the
above-mentioned works do not analyse the problem
of photon emission. In the paper [29] the optical ra-
diation from a two-level atom is tested numerically
(using a damping oscillator description of a dipole
current). Unfortunately, in [29] the authors do not
propose a quantum algorithm. In the paper [30]
an approach similar to ours is investigated. How-
ever, only the algorithm for the single photon mode
is presented there.

In order to simulate the quantum register, we
used a simple environment written in C++ lan-
guage based on direct matrix multiplication. We
also performed several tests of the algorithm with
the use of the Qiskit SDK environment [31]. In both
cases, we obtained the same results.

2. Description of the simulated system

Let us consider a complex quantum system that
is composed of three parts: A, F1 and F2 (as shown
in Fig. 1). The subsystem A (atom) has two energy
levels, i.e., the level |0〉A with energy equal to zero
(the ground state) and the level |1〉A with the en-
ergy EA (the excited state). We identify the subsys-
tems Fi with photons (without spin) trapped inside
a one-dimensional cavity of length xmax (with pe-
riodic boundary conditions (ψ(0) = ψ(xmax)). Ad-
ditionally, we assume that both photons are mutu-
ally distinguishable (they are quanta of two differ-
ent fields). The base states of each subsystem Fi are
denoted by |n〉Fi

. We identify the state |0〉Fi
with

the vacuum state (no photon in the cavity). Other
states for (n 6= 0) are stationary states of a single
photon with a wavenumber equal to
kn = n∆k for n = nmin+1, nmin+2, . . . , nmax,

(1)
where ∆k = 2π/xmax. Due to the limited capacity
of the quantum register, we assume that the energy
spectrum of each photon is bounded (nmin < n ≤
nmax). Only |n〉Fi

levels with energy close to EA are
simulated. The probability of filling the remaining
levels is negligible.

Fig. 1. Scheme of the simulated system. Lower en-
ergy levels of photons (with negligibly low occupa-
tion probability) are not simulated.

The following operator is chosen as the Hamilto-
nian of interaction between subsystems A and Fi

ĤAFi
=

nmax∑
n=nmin+1

1√
−ωn

(
ginâ

†b̂in + g∗inâb̂
†
in

)
,

(2)
where â is the energy decreasing operator of the
subsystem A (â|1〉A = |0〉A; â†|0〉A = |1〉A),
b̂in is the annihilation operator of the subsystem Fi
(b̂in|n〉Fi

= |0〉Fi
; b̂†in|0〉Fi

= |n〉Fi
) and ωn = ckn.

The complex parameters gin are the coupling con-
stants (given in the Appendix by (17)). The Hamil-
tonian (2) describes transitions between states in
the form |0〉A|n〉Fi

↔ |1〉A|0〉Fi
).

The total Hamiltonian of the system AF1F2 has
the form

Ĥ = EAâ
†â+

nmax∑
n=nmin+1

Enb̂
†
1nb̂1n

+

nmax∑
n=nmin+1

Enb̂
†
2nb̂2n + ĤAF1 + ĤAF2 , (3)

where En = c~kn.
In order to solve the Schrödinger equation for the

Hamiltonian (3), we use the time evolution operator
in the form

Û(dt) = exp
[
− iĤ dt/~

]
. (4)

For dt → 0 the operator given by (4) can be ap-
proximated as follows

Û(dt) = exp

(
− iEA

~
â†âdt

)

×
2∏
i=1

∏
n

exp

(
− iEn

~
b̂†inb̂indt

)

×
2∏
i=1

∏
n

exp

(
− i

~
(
ginâ

†b̂in + g∗inâb̂
†
in

)
dt

)
,

(5)
where the product over n goes from nmin+1 to nmax.
The above equation (5) is equivalent to using the
first-order Lie-Trotter formula with Trotter error
O(t2) [32]. The simulation for a longer time t is
obtained by dividing the evolution into n Trotter
steps (t = n dt).
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3. Algorithm simulating the propagation
of a free photon

State of each photon is encoded in the momentum
representation in the nf -qubit subregister (subreg-
isters F1 and F2). The base states of the F1 and F2

subregisters are denoted by |j〉1 and |j〉2, respec-
tively, where j = 0, 1, . . . , 2nf−1. Let us consider
two possibilities:

• a photon with only positive momentum
(kn > 0);
In this case, the state for j=0 (state |00 . . . 0〉)
encodes the vacuum state. Other base states
of the subregister — from j=1 (state
|00 . . . 01〉) to j=2nf−1 (state |11 . . . 11〉)
— encode a photon with the wavenumber
kj+nmin

, i.e., n=j+nmin (see (1)). In this sit-
uation, nmax=nmin+2nf−1.

• a photon with the momentum of any sign;
In this case, the oldest qubit (nf − 1) encodes
the photon momentum sign (state |0〉 corre-
sponds to kj > 0, while state |1〉 encodes the
case of kj < 0). The rest of the qubits en-
code |kj |. Both register states j = 0 (state
|00..0〉) and j = 2nf−1 (state |10 . . . 0〉) encode
the vacuum state (but the latter is not used).
In this situation, nmax=nmin + 2nf−1−1.

The algorithm simulating the free propagation of
a photon (corresponding to the second and the third
components in (3)) is shown in Fig. 2. The gates Paφ
are phase-shift gates that operate according to the
scheme
|0〉 → |0〉, |1〉 → exp (− iaφ) |1〉, (6)

where φ = dE dt/~, and dE = 2π~c/xmax is
the distance between adjacent energy levels. The
gate P∆φ is a controlled phase-shift gate defined as
|0, 0, 0, 0, 0〉 → exp(i∆φ) |0, 0, 0, 0, 0〉, where ∆φ =
nmin dE dt/~. It implements a shift of the photon
spectrum by the nmin value. This is achieved by
a decrease of the vacuum energy by nmin dE in re-
lation to other levels.

Fig. 2. Algorithms simulating the free propaga-
tion of a photon (example for nf = 5). The left
scheme shows the algorithm for kn > 0 only, the
right one shows the algorithm for kn of any sign.
The oldest qubit (denoted by Fsg) encodes the sign
of kn.

4. Algorithm simulating
the atom–photon interaction

The scheme of the whole algorithm is shown
in Fig. 3. The PφA

gate is a phase shift gate sim-
ulating the free evolution of subsystem A (first
component in (3)). The phase shift angle for the
PφA

gate is equal to φA = EA dt/~. The UF
blocks (implementing photon free evolution) were
discussed in the previous section (see Fig. 2). The R
blocks implement interaction between an atom and
a photon.

The implementation of the R block (example for
nf = 2) is shown in Fig. 4. Each component of
the sum from the Hamiltonian (2) (describing the
transition |0〉A|j+nmin〉Fi ↔ |1〉A|0〉Fi) is simulated
by a separate Rj gate which operates as follows
|0〉 → cos(φij) |0〉+ i e iηij sin(φij) |1〉, (7)

|1〉 → cos(φij) |1〉+ i e− iηij sin(φij) |0〉, (8)
where φij = |gi,j+nmin | dt/~, ηij = arg(gi,j+nmin)
and gin are given in the Appendix by (17). The
order of the Rj gates follows the Gray code [33] for
the j number. As a result, the number of CNOT
gates is reduced to a minimum. CNOT gates (with
control qubit, active in |0〉 state) act on a qubit for
which a bit flip (0↔ 1) occurs in the j number.

The NOT (σx) and CNOT gates implement the
transformation
|0〉A|j〉F → |0〉A|1 . . . 1〉F, (9)

|1〉A|0〉F → |1〉A|1 . . . 1〉F. (10)

Fig. 3. Scheme of the algorithm. The UF block im-
plements the photon free evolution (Fig. 2). The
PφA gate simulates the free evolution of an atom.
The R blocks implement interaction between the
atom and the photon. A sample implementation of
the R block is shown in Fig. 4.

Fig. 4. Implementation of block R (for nf = 2)
simulating interaction between an atom (the highest
qubit) with a photon. The numbers below the Rj
gates are binary representation of the j number.
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Fig. 5. Implementation of gate Rj (for nf = 2).
Gates denoted by P and -P are standard phase shift
gates. The phase angle is equal to ηij for the first P
gate and −ηij for the gate denoted by -P. The Rx
gate parameter is equal to φ = −2φij .

Fig. 6. Excited state decay as a function of time
(in 10−16 s units). The following curves are shown:
pA — probability of finding the atom in the excited
state; pD— emission probability of the first photon;
pG — emission probability of the second photon;
thr — theoretical prediction of pA, app — approxi-
mation of pA by an exponential function. The plots
are made (a) for g1n = g2n = 1.6 × 10−13 J/

√
s

and (b) for g1n = 1.1 × 10−13 J/
√
s and g2n =

2.8 × 10−13 J/
√
s. In panel (a), the curve pD is

not visible because it overlaps with the pG curve.
A similar situation occurs between the thr and app
curves.

For example, (for nf = 2) the first two gates
in Fig. 4 (i.e., σx and CNOT) implement the trans-
formation for j = 1 as
|0〉A|01〉F → |0〉A|11〉F, (11)

|1〉A|00〉F → |1〉A|11〉F. (12)
If we attach another CNOT gate (the gate between
R1 and R3), we obtain the transformation for j = 3
as
|0〉A|11〉F → |0〉A|11〉F, (13)

|1〉A|00〉F → |1〉A|11〉F. (14)

Fig. 7. Electric wave functions of the first (D) and
second (G) photon emitted by the atom (located
at the point xa = 0). The plots are made (a) for
g1n = g2n = 1.6 × 10−13 J/

√
s and (b) for g1n =

1.1×10−13 J/
√
s and g2n = 2.8×10−13 J/

√
s. Values

on the horizontal axis are given in µm. The electric
field (on the vertical axis) is measured in kV/m.
In panel (a), the curve D is not visible because it
overlaps with the G curve.

The Rj gates defined by (7)–(8) can be con-
structed from two standard phase shift gates and
Rx gate (as shown in Fig. 5). The standard Rx
gate is defined as follows
|0〉 → cos

(
φ
2

)
|0〉 − i sin

(
φ
2

)
|1〉, (15)

|1〉 → cos
(
φ
2 ) |1〉 − i sin

(
φ
2

)
|0〉. (16)

5. Simulation results

The algorithm has been tested in the nq = 11
qubit quantum register. The state of each photon
is encoded in the subregister of nf = 5 qubits.
The cavity length is equal to xmax = 3 × 10−5 m
(the atom position in the cavity is xa = 0) and the
time step of the simulation is dt = 10−17 s. We
chose a total number of time steps of 4000. The
photon levels from nmin = 32 to nmax = 63 were
simulated. We chose the atom excited state energy
equal to EA = 2 eV. This corresponds to n = 48
(48.4029) photon level in the cavity. As the initial
state of the system, we chose |1〉A|0〉F1

|0〉F2
. The

simulation results are shown in Figs. 6–8 and in
Table I. Only the results for photons with positive
momentum (kn > 0) are presented (the left scheme
in Fig. 2).
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Fig. 8. Electric wave functions of the first (D) and
second (G) photon emitted by the atom (located at
the point xa = 0) in the case of single-channel decay.
The plots are made (a) for g1n = 1.1× 10−13 J/

√
s

and g2n = 0, and (b) for g1n = 0 and g2n = 2.8 ×
10−13 J/

√
s. Values on the horizontal axis are given

in µm. The electric field (on the vertical axis) is
measured in kV/m.

TABLE I

Decay probabilities for the first and second channel
(photon) for different values of the constants g1n and
g2n (measured in ×10−13 [J/

√
s]), p1thr and p2thr are

the results of theoretical predictions (given in the Ap-
pendix by (26), (27) and (19)), while p1sym and p2sym
are the simulation results.

g1n g2n p1thr p2thr p1sym p2sym

2.8

5.04 0.2358 0.7642 0.2361 0.7615

4.48 0.2809 0.7191 0.2812 0.7171

3.92 0.3378 0.6622 0.3383 0.6609

3.36 0.4098 0.5902 0.4104 0.5893

2.80 0.5000 0.5000 0.5004 0.4992

2.24 0.6098 0.3902 0.6099 0.3896

1.68 0.7353 0.2647 0.7348 0.2640

1.12 0.8621 0.1379 0.8626 0.1379

0.56 0.9615 0.0385 0.9616 0.0384

0.28 0.9901 0.0099 0.9900 0.0099

In Fig. 6, in addition to the simulation results,
we present the approximation (the least squares
method) and the theoretical prediction (given in the
Appendix by (23)) of the pA curve.

6. Conclusions

• The evidence from this study suggests that
even for the nq = 11 qubits, it is possible to
obtain satisfactory results. However, the al-
gorithm is scalable, i.e., an increase in the
number of qubits means a higher sampling
density of the photon spectrum and, conse-
quently, more accurate results.

• The main advantage of the presented algo-
rithm is lower computational complexity com-
pared to classical algorithms. The number of
quantum gates in the UF block (see Fig. 3)
is of the order of log2(M), where M is
the number of modes. This is a much bet-
ter situation than in the case of classical
algorithms, where each mode is simulated
separately (the computational complexity is
O(M)). In the case of the R block 2M phase
gates and M Rx-gates (with log2(M) con-
trol qubits) are needed. The computational
complexity of classical interaction algorithm
is O(M2).

• The number of qubits necessary to perform
the simulation is equal to nq = N log2(M)+1,
where N is the number of simulated photons
and M is the number of single photon modes.
In the case of classical simulation, the 2NM
floating point numbers are needed.

• In this work, photons with only positive mo-
mentum are simulated. This case does not
seem to be physically realistic, however, simu-
lating both positive and negative momentum
adds nothing to the matter. The photon emis-
sion amplitudes for +k and −k momenta are
exactly the same. In the case of two photons
and quantum register emulation on a clas-
sic computer, we waste 75% of the proces-
sor time. A much better solution is to use as
many qubits as possible to increase the spec-
trum density. This improves the quality of the
results obtained.

• As is well known, the typical lifetime of the
atom excited states is in the order of 10−8 s
(excluding metastable states). This time is
much longer compared to the time of pho-
ton propagation in the cavity (on the order
of 10−14 s). Therefore, we chose gin param-
eter values corresponding to the deexcitation
process time of the order of 10−14 s.

• In Fig. 6, there is a discrepancy between pA
and thr curves. This is due to the discretiza-
tion of the photon spectrum. We should ob-
tain the full convergence between both curves
for dE → 0 and nf →∞.

• The transition from the momentum represen-
tation to the position representation given by
the formula (20) in the Appendix is made out-
side the quantum register.
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• As shown in Fig. 7, the shape of the photon
wave function generated by i-th decay channel
depends only on λ = λ1 + λ2, not on λi.

Appendix

A. Atom–photon interaction

The problem of atom–photon interaction is well
known and widely presented in the literature. In
this appendix, we present only the most important
formulas and conclusions based on [34].

Using dipole approximation, we can write the
atom–electromagnietic field interaction coefficients
in the following form

gin = 〈0i, ψs|Ĥi|ψf , 1i〉
√
−ωn = (17)

e

me

√
~3

8ε0V
e iknxa

∫
d3r ψ∗s (r) ε · ∇ψf (r),

where Ĥi is the interaction Hamiltonian between
the atom and i-th field, |0〉i and |1〉i are the vacuum
state and the single-photon state (for mode n), re-
spectively. The initial and final electron wave func-
tions are ψs and ψf , respectively. The parameter xa
is the position of the atom in the cavity, and V is
the volume of the cavity.

The exact solution of the atom deexcitation prob-
lem for the case of a single channel decay can be
expressed as follows

pA = exp(−λit), (18)
where pA is the probability of finding the atom in
the excited state, and

λi =
2π|gin|2

~ dE ωA
, (19)

where dE is the distance between the photon en-
ergy levels, and EA (ωA = EA/~) is the energy (fre-
quency) of the atom excited state (see [34]). The
solution (18) is strictly met only in the case of a con-
tinuous band of photon energy levels (for V → ∞
and dE → 0).

The electric field E related to a photon is equal
to

E(x, t) = −
√

~
ε0V

∑
n

√
2ωn

×
[
Im
(
ψn(t)

)
cos(knx) + Re

(
ψn(t)

)
sin(knx)

]
.

(20)

B. Two-channel decay law

Probability in two-channel decay is
pA + p1 + p2 = 0, (21)

where pA is the probability of finding the atom in
the excited state, and pi is probability of the photon
emission in i-th channel.

Decay equations for i-th channel reads as
dpi
pA

= λidt, (22)

where λi is the decay constant for i-th channel.

After calculating the differential of (21), then in-
serting (22) and solving the differential equation
(with the initial condition pA(0) = 1), we obtain

pA(t) = e−(λ1+λ2)t (23)
and

p1(t) =
λ1

λ1 + λ2

(
1− e−(λ1+λ2)t

)
, (24)

p2(t) =
λ2

λ1 + λ2

(
1− e−(λ1+λ2)t

)
. (25)

For t→∞, we obtain

p1 =
λ1

λ1 + λ2
, (26)

p2 =
λ2

λ1 + λ2
. (27)
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